openssl/ssl/record/rec_layer_s3.c
Viktor Dukhovni 919ba00942 DANE support structures, constructructors and accessors
Also tweak some of the code in demos/bio, to enable interactive
testing of BIO_s_accept's use of SSL_dup.  Changed the sconnect
client to authenticate the server, which now exercises the new
SSL_set1_host() function.

Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-01-05 19:31:49 -05:00

1487 lines
49 KiB
C

/* ssl/record/rec_layer_s3.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#define USE_SOCKETS
#include "../ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/rand.h>
#include "record_locl.h"
#ifndef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
# define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
#endif
#if defined(OPENSSL_SMALL_FOOTPRINT) || \
!( defined(AES_ASM) && ( \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_AMD64) || defined(_M_X64) || \
defined(__INTEL__) ) \
)
# undef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
# define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
#endif
void RECORD_LAYER_init(RECORD_LAYER *rl, SSL *s)
{
rl->s = s;
SSL3_RECORD_clear(&rl->rrec);
SSL3_RECORD_clear(&rl->wrec);
}
void RECORD_LAYER_clear(RECORD_LAYER *rl)
{
rl->rstate = SSL_ST_READ_HEADER;
/* Do I need to clear read_ahead? As far as I can tell read_ahead did not
* previously get reset by SSL_clear...so I'll keep it that way..but is
* that right?
*/
rl->packet = NULL;
rl->packet_length = 0;
rl->wnum = 0;
memset(rl->alert_fragment, 0, sizeof(rl->alert_fragment));
rl->alert_fragment_len = 0;
memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment));
rl->handshake_fragment_len = 0;
rl->wpend_tot = 0;
rl->wpend_type = 0;
rl->wpend_ret = 0;
rl->wpend_buf = NULL;
SSL3_BUFFER_clear(&rl->rbuf);
SSL3_BUFFER_clear(&rl->wbuf);
SSL3_RECORD_clear(&rl->rrec);
SSL3_RECORD_clear(&rl->wrec);
RECORD_LAYER_reset_read_sequence(rl);
RECORD_LAYER_reset_write_sequence(rl);
if (rl->d)
DTLS_RECORD_LAYER_clear(rl);
}
void RECORD_LAYER_release(RECORD_LAYER *rl)
{
if (SSL3_BUFFER_is_initialised(&rl->rbuf))
ssl3_release_read_buffer(rl->s);
if (SSL3_BUFFER_is_initialised(&rl->wbuf))
ssl3_release_write_buffer(rl->s);
SSL3_RECORD_release(&rl->rrec);
}
int RECORD_LAYER_read_pending(RECORD_LAYER *rl)
{
return SSL3_BUFFER_get_left(&rl->rbuf) != 0;
}
int RECORD_LAYER_write_pending(RECORD_LAYER *rl)
{
return SSL3_BUFFER_get_left(&rl->wbuf) != 0;
}
int RECORD_LAYER_set_data(RECORD_LAYER *rl, const unsigned char *buf, int len)
{
rl->packet_length = len;
if (len != 0) {
rl->rstate = SSL_ST_READ_HEADER;
if (!SSL3_BUFFER_is_initialised(&rl->rbuf))
if (!ssl3_setup_read_buffer(rl->s))
return 0;
}
rl->packet = SSL3_BUFFER_get_buf(&rl->rbuf);
SSL3_BUFFER_set_data(&rl->rbuf, buf, len);
return 1;
}
void RECORD_LAYER_reset_read_sequence(RECORD_LAYER *rl)
{
memset(rl->read_sequence, 0, sizeof(rl->read_sequence));
}
void RECORD_LAYER_reset_write_sequence(RECORD_LAYER *rl)
{
memset(rl->write_sequence, 0, sizeof(rl->write_sequence));
}
int RECORD_LAYER_setup_comp_buffer(RECORD_LAYER *rl)
{
return SSL3_RECORD_setup(&(rl)->rrec);
}
int ssl3_pending(const SSL *s)
{
if (s->rlayer.rstate == SSL_ST_READ_BODY)
return 0;
return (SSL3_RECORD_get_type(&s->rlayer.rrec) == SSL3_RT_APPLICATION_DATA)
? SSL3_RECORD_get_length(&s->rlayer.rrec) : 0;
}
const char *SSL_rstate_string_long(const SSL *s)
{
const char *str;
switch (s->rlayer.rstate) {
case SSL_ST_READ_HEADER:
str = "read header";
break;
case SSL_ST_READ_BODY:
str = "read body";
break;
case SSL_ST_READ_DONE:
str = "read done";
break;
default:
str = "unknown";
break;
}
return (str);
}
const char *SSL_rstate_string(const SSL *s)
{
const char *str;
switch (s->rlayer.rstate) {
case SSL_ST_READ_HEADER:
str = "RH";
break;
case SSL_ST_READ_BODY:
str = "RB";
break;
case SSL_ST_READ_DONE:
str = "RD";
break;
default:
str = "unknown";
break;
}
return (str);
}
int ssl3_read_n(SSL *s, int n, int max, int extend)
{
/*
* If extend == 0, obtain new n-byte packet; if extend == 1, increase
* packet by another n bytes. The packet will be in the sub-array of
* s->s3->rbuf.buf specified by s->packet and s->packet_length. (If
* s->rlayer.read_ahead is set, 'max' bytes may be stored in rbuf [plus
* s->packet_length bytes if extend == 1].)
*/
int i, len, left;
size_t align = 0;
unsigned char *pkt;
SSL3_BUFFER *rb;
if (n <= 0)
return n;
rb = &s->rlayer.rbuf;
if (rb->buf == NULL)
if (!ssl3_setup_read_buffer(s))
return -1;
left = rb->left;
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
align = (size_t)rb->buf + SSL3_RT_HEADER_LENGTH;
align = (0-align) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
if (!extend) {
/* start with empty packet ... */
if (left == 0)
rb->offset = align;
else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
/*
* check if next packet length is large enough to justify payload
* alignment...
*/
pkt = rb->buf + rb->offset;
if (pkt[0] == SSL3_RT_APPLICATION_DATA
&& (pkt[3] << 8 | pkt[4]) >= 128) {
/*
* Note that even if packet is corrupted and its length field
* is insane, we can only be led to wrong decision about
* whether memmove will occur or not. Header values has no
* effect on memmove arguments and therefore no buffer
* overrun can be triggered.
*/
memmove(rb->buf + align, pkt, left);
rb->offset = align;
}
}
s->rlayer.packet = rb->buf + rb->offset;
s->rlayer.packet_length = 0;
/* ... now we can act as if 'extend' was set */
}
/*
* For DTLS/UDP reads should not span multiple packets because the read
* operation returns the whole packet at once (as long as it fits into
* the buffer).
*/
if (SSL_IS_DTLS(s)) {
if (left == 0 && extend)
return 0;
if (left > 0 && n > left)
n = left;
}
/* if there is enough in the buffer from a previous read, take some */
if (left >= n) {
s->rlayer.packet_length += n;
rb->left = left - n;
rb->offset += n;
return (n);
}
/* else we need to read more data */
len = s->rlayer.packet_length;
pkt = rb->buf + align;
/*
* Move any available bytes to front of buffer: 'len' bytes already
* pointed to by 'packet', 'left' extra ones at the end
*/
if (s->rlayer.packet != pkt) { /* len > 0 */
memmove(pkt, s->rlayer.packet, len + left);
s->rlayer.packet = pkt;
rb->offset = len + align;
}
if (n > (int)(rb->len - rb->offset)) { /* does not happen */
SSLerr(SSL_F_SSL3_READ_N, ERR_R_INTERNAL_ERROR);
return -1;
}
/* We always act like read_ahead is set for DTLS */
if (!s->rlayer.read_ahead && !SSL_IS_DTLS(s))
/* ignore max parameter */
max = n;
else {
if (max < n)
max = n;
if (max > (int)(rb->len - rb->offset))
max = rb->len - rb->offset;
}
while (left < n) {
/*
* Now we have len+left bytes at the front of s->s3->rbuf.buf and
* need to read in more until we have len+n (up to len+max if
* possible)
*/
clear_sys_error();
if (s->rbio != NULL) {
s->rwstate = SSL_READING;
i = BIO_read(s->rbio, pkt + len + left, max - left);
} else {
SSLerr(SSL_F_SSL3_READ_N, SSL_R_READ_BIO_NOT_SET);
i = -1;
}
if (i <= 0) {
rb->left = left;
if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
if (len + left == 0)
ssl3_release_read_buffer(s);
return (i);
}
left += i;
/*
* reads should *never* span multiple packets for DTLS because the
* underlying transport protocol is message oriented as opposed to
* byte oriented as in the TLS case.
*/
if (SSL_IS_DTLS(s)) {
if (n > left)
n = left; /* makes the while condition false */
}
}
/* done reading, now the book-keeping */
rb->offset += n;
rb->left = left - n;
s->rlayer.packet_length += n;
s->rwstate = SSL_NOTHING;
return (n);
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len)
{
const unsigned char *buf = buf_;
int tot;
unsigned int n, nw;
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
unsigned int max_send_fragment;
unsigned int u_len = (unsigned int)len;
#endif
SSL3_BUFFER *wb = &s->rlayer.wbuf;
int i;
if (len < 0) {
SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_NEGATIVE_LENGTH);
return -1;
}
s->rwstate = SSL_NOTHING;
tot = s->rlayer.wnum;
/*
* ensure that if we end up with a smaller value of data to write out
* than the the original len from a write which didn't complete for
* non-blocking I/O and also somehow ended up avoiding the check for
* this in ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be
* possible to end up with (len-tot) as a large number that will then
* promptly send beyond the end of the users buffer ... so we trap and
* report the error in a way the user will notice
*/
if ((unsigned int)len < s->rlayer.wnum) {
SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_BAD_LENGTH);
return -1;
}
s->rlayer.wnum = 0;
if (SSL_in_init(s) && !ossl_statem_get_in_handshake(s)) {
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_SSL3_WRITE_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return -1;
}
}
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (wb->left != 0) {
i = ssl3_write_pending(s, type, &buf[tot], s->rlayer.wpend_tot);
if (i <= 0) {
/* XXX should we ssl3_release_write_buffer if i<0? */
s->rlayer.wnum = tot;
return i;
}
tot += i; /* this might be last fragment */
}
#if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
/*
* Depending on platform multi-block can deliver several *times*
* better performance. Downside is that it has to allocate
* jumbo buffer to accomodate up to 8 records, but the
* compromise is considered worthy.
*/
if (type == SSL3_RT_APPLICATION_DATA &&
u_len >= 4 * (max_send_fragment = s->max_send_fragment) &&
s->compress == NULL && s->msg_callback == NULL &&
!SSL_USE_ETM(s) && SSL_USE_EXPLICIT_IV(s) &&
EVP_CIPHER_flags(s->enc_write_ctx->cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) {
unsigned char aad[13];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
int packlen;
/* minimize address aliasing conflicts */
if ((max_send_fragment & 0xfff) == 0)
max_send_fragment -= 512;
if (tot == 0 || wb->buf == NULL) { /* allocate jumbo buffer */
ssl3_release_write_buffer(s);
packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE,
max_send_fragment, NULL);
if (u_len >= 8 * max_send_fragment)
packlen *= 8;
else
packlen *= 4;
wb->buf = OPENSSL_malloc(packlen);
if (wb->buf == NULL) {
SSLerr(SSL_F_SSL3_WRITE_BYTES, ERR_R_MALLOC_FAILURE);
return -1;
}
wb->len = packlen;
} else if (tot == len) { /* done? */
OPENSSL_free(wb->buf); /* free jumbo buffer */
wb->buf = NULL;
return tot;
}
n = (len - tot);
for (;;) {
if (n < 4 * max_send_fragment) {
OPENSSL_free(wb->buf); /* free jumbo buffer */
wb->buf = NULL;
break;
}
if (s->s3->alert_dispatch) {
i = s->method->ssl_dispatch_alert(s);
if (i <= 0) {
s->rlayer.wnum = tot;
return i;
}
}
if (n >= 8 * max_send_fragment)
nw = max_send_fragment * (mb_param.interleave = 8);
else
nw = max_send_fragment * (mb_param.interleave = 4);
memcpy(aad, s->rlayer.write_sequence, 8);
aad[8] = type;
aad[9] = (unsigned char)(s->version >> 8);
aad[10] = (unsigned char)(s->version);
aad[11] = 0;
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = nw;
packlen = EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen <= 0 || packlen > (int)wb->len) { /* never happens */
OPENSSL_free(wb->buf); /* free jumbo buffer */
wb->buf = NULL;
break;
}
mb_param.out = wb->buf;
mb_param.inp = &buf[tot];
mb_param.len = nw;
if (EVP_CIPHER_CTX_ctrl(s->enc_write_ctx,
EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param) <= 0)
return -1;
s->rlayer.write_sequence[7] += mb_param.interleave;
if (s->rlayer.write_sequence[7] < mb_param.interleave) {
int j = 6;
while (j >= 0 && (++s->rlayer.write_sequence[j--]) == 0) ;
}
wb->offset = 0;
wb->left = packlen;
s->rlayer.wpend_tot = nw;
s->rlayer.wpend_buf = &buf[tot];
s->rlayer.wpend_type = type;
s->rlayer.wpend_ret = nw;
i = ssl3_write_pending(s, type, &buf[tot], nw);
if (i <= 0) {
if (i < 0 && (!s->wbio || !BIO_should_retry(s->wbio))) {
OPENSSL_free(wb->buf);
wb->buf = NULL;
}
s->rlayer.wnum = tot;
return i;
}
if (i == (int)n) {
OPENSSL_free(wb->buf); /* free jumbo buffer */
wb->buf = NULL;
return tot + i;
}
n -= i;
tot += i;
}
} else
#endif
if (tot == len) { /* done? */
if (s->mode & SSL_MODE_RELEASE_BUFFERS && !SSL_IS_DTLS(s))
ssl3_release_write_buffer(s);
return tot;
}
n = (len - tot);
for (;;) {
if (n > s->max_send_fragment)
nw = s->max_send_fragment;
else
nw = n;
i = do_ssl3_write(s, type, &(buf[tot]), nw, 0);
if (i <= 0) {
/* XXX should we ssl3_release_write_buffer if i<0? */
s->rlayer.wnum = tot;
return i;
}
if ((i == (int)n) ||
(type == SSL3_RT_APPLICATION_DATA &&
(s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) {
/*
* next chunk of data should get another prepended empty fragment
* in ciphersuites with known-IV weakness:
*/
s->s3->empty_fragment_done = 0;
if ((i == (int)n) && s->mode & SSL_MODE_RELEASE_BUFFERS &&
!SSL_IS_DTLS(s))
ssl3_release_write_buffer(s);
return tot + i;
}
n -= i;
tot += i;
}
}
int do_ssl3_write(SSL *s, int type, const unsigned char *buf,
unsigned int len, int create_empty_fragment)
{
unsigned char *p, *plen;
int i, mac_size, clear = 0;
int prefix_len = 0;
int eivlen;
size_t align = 0;
SSL3_RECORD *wr;
SSL3_BUFFER *wb = &s->rlayer.wbuf;
SSL_SESSION *sess;
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (SSL3_BUFFER_get_left(wb) != 0)
return (ssl3_write_pending(s, type, buf, len));
/* If we have an alert to send, lets send it */
if (s->s3->alert_dispatch) {
i = s->method->ssl_dispatch_alert(s);
if (i <= 0)
return (i);
/* if it went, fall through and send more stuff */
}
if (!SSL3_BUFFER_is_initialised(wb))
if (!ssl3_setup_write_buffer(s))
return -1;
if (len == 0 && !create_empty_fragment)
return 0;
wr = &s->rlayer.wrec;
sess = s->session;
if ((sess == NULL) ||
(s->enc_write_ctx == NULL) ||
(EVP_MD_CTX_md(s->write_hash) == NULL)) {
clear = s->enc_write_ctx ? 0 : 1; /* must be AEAD cipher */
mac_size = 0;
} else {
mac_size = EVP_MD_CTX_size(s->write_hash);
if (mac_size < 0)
goto err;
}
/*
* 'create_empty_fragment' is true only when this function calls itself
*/
if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done) {
/*
* countermeasure against known-IV weakness in CBC ciphersuites (see
* http://www.openssl.org/~bodo/tls-cbc.txt)
*/
if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) {
/*
* recursive function call with 'create_empty_fragment' set; this
* prepares and buffers the data for an empty fragment (these
* 'prefix_len' bytes are sent out later together with the actual
* payload)
*/
prefix_len = do_ssl3_write(s, type, buf, 0, 1);
if (prefix_len <= 0)
goto err;
if (prefix_len >
(SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD))
{
/* insufficient space */
SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR);
goto err;
}
}
s->s3->empty_fragment_done = 1;
}
if (create_empty_fragment) {
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
/*
* extra fragment would be couple of cipher blocks, which would be
* multiple of SSL3_ALIGN_PAYLOAD, so if we want to align the real
* payload, then we can just pretent we simply have two headers.
*/
align = (size_t)SSL3_BUFFER_get_buf(wb) + 2 * SSL3_RT_HEADER_LENGTH;
align = (0-align) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
p = SSL3_BUFFER_get_buf(wb) + align;
SSL3_BUFFER_set_offset(wb, align);
} else if (prefix_len) {
p = SSL3_BUFFER_get_buf(wb) + SSL3_BUFFER_get_offset(wb) + prefix_len;
} else {
#if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
align = (size_t)SSL3_BUFFER_get_buf(wb) + SSL3_RT_HEADER_LENGTH;
align = (0-align) & (SSL3_ALIGN_PAYLOAD - 1);
#endif
p = SSL3_BUFFER_get_buf(wb) + align;
SSL3_BUFFER_set_offset(wb, align);
}
/* write the header */
*(p++) = type & 0xff;
SSL3_RECORD_set_type(wr, type);
*(p++) = (s->version >> 8);
/*
* Some servers hang if iniatial client hello is larger than 256 bytes
* and record version number > TLS 1.0
*/
if (SSL_get_state(s) == TLS_ST_CW_CLNT_HELLO
&& !s->renegotiate && TLS1_get_version(s) > TLS1_VERSION)
*(p++) = 0x1;
else
*(p++) = s->version & 0xff;
/* field where we are to write out packet length */
plen = p;
p += 2;
/* Explicit IV length, block ciphers appropriate version flag */
if (s->enc_write_ctx && SSL_USE_EXPLICIT_IV(s)) {
int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx);
if (mode == EVP_CIPH_CBC_MODE) {
eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx);
if (eivlen <= 1)
eivlen = 0;
}
/* Need explicit part of IV for GCM mode */
else if (mode == EVP_CIPH_GCM_MODE)
eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
else if (mode == EVP_CIPH_CCM_MODE)
eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN;
else
eivlen = 0;
} else
eivlen = 0;
/* lets setup the record stuff. */
SSL3_RECORD_set_data(wr, p + eivlen);
SSL3_RECORD_set_length(wr, (int)len);
SSL3_RECORD_set_input(wr, (unsigned char *)buf);
/*
* we now 'read' from wr->input, wr->length bytes into wr->data
*/
/* first we compress */
if (s->compress != NULL) {
if (!ssl3_do_compress(s)) {
SSLerr(SSL_F_DO_SSL3_WRITE, SSL_R_COMPRESSION_FAILURE);
goto err;
}
} else {
memcpy(wr->data, wr->input, wr->length);
SSL3_RECORD_reset_input(wr);
}
/*
* we should still have the output to wr->data and the input from
* wr->input. Length should be wr->length. wr->data still points in the
* wb->buf
*/
if (!SSL_USE_ETM(s) && mac_size != 0) {
if (s->method->ssl3_enc->mac(s, &(p[wr->length + eivlen]), 1) < 0)
goto err;
SSL3_RECORD_add_length(wr, mac_size);
}
SSL3_RECORD_set_data(wr, p);
SSL3_RECORD_reset_input(wr);
if (eivlen) {
/*
* if (RAND_pseudo_bytes(p, eivlen) <= 0) goto err;
*/
SSL3_RECORD_add_length(wr, eivlen);
}
if (s->method->ssl3_enc->enc(s, 1) < 1)
goto err;
if (SSL_USE_ETM(s) && mac_size != 0) {
if (s->method->ssl3_enc->mac(s, p + wr->length, 1) < 0)
goto err;
SSL3_RECORD_add_length(wr, mac_size);
}
/* record length after mac and block padding */
s2n(SSL3_RECORD_get_length(wr), plen);
if (s->msg_callback)
s->msg_callback(1, 0, SSL3_RT_HEADER, plen - 5, 5, s,
s->msg_callback_arg);
/*
* we should now have wr->data pointing to the encrypted data, which is
* wr->length long
*/
SSL3_RECORD_set_type(wr, type); /* not needed but helps for debugging */
SSL3_RECORD_add_length(wr, SSL3_RT_HEADER_LENGTH);
if (create_empty_fragment) {
/*
* we are in a recursive call; just return the length, don't write
* out anything here
*/
return SSL3_RECORD_get_length(wr);
}
/* now let's set up wb */
SSL3_BUFFER_set_left(wb, prefix_len + SSL3_RECORD_get_length(wr));
/*
* memorize arguments so that ssl3_write_pending can detect bad write
* retries later
*/
s->rlayer.wpend_tot = len;
s->rlayer.wpend_buf = buf;
s->rlayer.wpend_type = type;
s->rlayer.wpend_ret = len;
/* we now just need to write the buffer */
return ssl3_write_pending(s, type, buf, len);
err:
return -1;
}
/* if s->s3->wbuf.left != 0, we need to call this */
int ssl3_write_pending(SSL *s, int type, const unsigned char *buf,
unsigned int len)
{
int i;
SSL3_BUFFER *wb = &s->rlayer.wbuf;
/* XXXX */
if ((s->rlayer.wpend_tot > (int)len)
|| ((s->rlayer.wpend_buf != buf) &&
!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER))
|| (s->rlayer.wpend_type != type)) {
SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BAD_WRITE_RETRY);
return (-1);
}
for (;;) {
clear_sys_error();
if (s->wbio != NULL) {
s->rwstate = SSL_WRITING;
i = BIO_write(s->wbio,
(char *)&(SSL3_BUFFER_get_buf(wb)[SSL3_BUFFER_get_offset(wb)]),
(unsigned int)SSL3_BUFFER_get_left(wb));
} else {
SSLerr(SSL_F_SSL3_WRITE_PENDING, SSL_R_BIO_NOT_SET);
i = -1;
}
if (i == SSL3_BUFFER_get_left(wb)) {
SSL3_BUFFER_set_left(wb, 0);
SSL3_BUFFER_add_offset(wb, i);
s->rwstate = SSL_NOTHING;
return (s->rlayer.wpend_ret);
} else if (i <= 0) {
if (SSL_IS_DTLS(s)) {
/*
* For DTLS, just drop it. That's kind of the whole point in
* using a datagram service
*/
SSL3_BUFFER_set_left(wb, 0);
}
return (i);
}
SSL3_BUFFER_add_offset(wb, i);
SSL3_BUFFER_add_left(wb, -i);
}
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec
* messages are treated as if they were handshake messages *if* the |recd_type|
* argument is non NULL.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int ssl3_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf,
int len, int peek)
{
int al, i, j, ret;
unsigned int n;
SSL3_RECORD *rr;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
if (!SSL3_BUFFER_is_initialised(&s->rlayer.rbuf)) {
/* Not initialized yet */
if (!ssl3_setup_read_buffer(s))
return (-1);
}
if ((type && (type != SSL3_RT_APPLICATION_DATA)
&& (type != SSL3_RT_HANDSHAKE)) || (peek
&& (type !=
SSL3_RT_APPLICATION_DATA))) {
SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
return -1;
}
if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->rlayer.handshake_fragment;
unsigned char *dst = buf;
unsigned int k;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->rlayer.handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->rlayer.handshake_fragment_len; k++)
s->rlayer.handshake_fragment[k] = *src++;
if (recvd_type != NULL)
*recvd_type = SSL3_RT_HANDSHAKE;
return n;
}
/*
* Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
*/
if (!ossl_statem_get_in_handshake(s) && SSL_in_init(s)) {
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
}
start:
s->rwstate = SSL_NOTHING;
/*-
* s->s3->rrec.type - is the type of record
* s->s3->rrec.data, - data
* s->s3->rrec.off, - offset into 'data' for next read
* s->s3->rrec.length, - number of bytes.
*/
rr = &s->rlayer.rrec;
/* get new packet if necessary */
if ((SSL3_RECORD_get_length(rr) == 0)
|| (s->rlayer.rstate == SSL_ST_READ_BODY)) {
ret = ssl3_get_record(s);
if (ret <= 0)
return (ret);
}
/* we now have a packet which can be read and processed */
if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (SSL3_RECORD_get_type(rr) != SSL3_RT_HANDSHAKE)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
goto f_err;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
SSL3_RECORD_set_length(rr, 0);
s->rwstate = SSL_NOTHING;
return (0);
}
if (type == SSL3_RECORD_get_type(rr)
|| (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
&& type == SSL3_RT_HANDSHAKE && recvd_type != NULL)) {
/*
* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC
*/
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
(s->enc_read_ctx == NULL)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE);
goto f_err;
}
if (type == SSL3_RT_HANDSHAKE
&& SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC
&& s->rlayer.handshake_fragment_len > 0) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
goto f_err;
}
if (recvd_type != NULL)
*recvd_type = SSL3_RECORD_get_type(rr);
if (len <= 0)
return (len);
if ((unsigned int)len > SSL3_RECORD_get_length(rr))
n = SSL3_RECORD_get_length(rr);
else
n = (unsigned int)len;
memcpy(buf, &(rr->data[rr->off]), n);
if (!peek) {
SSL3_RECORD_add_length(rr, -n);
SSL3_RECORD_add_off(rr, n);
if (SSL3_RECORD_get_length(rr) == 0) {
s->rlayer.rstate = SSL_ST_READ_HEADER;
SSL3_RECORD_set_off(rr, 0);
if (s->mode & SSL_MODE_RELEASE_BUFFERS
&& SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0)
ssl3_release_read_buffer(s);
}
}
return (n);
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello) or invalid (we
* were actually expecting a CCS).
*/
if (rr->type == SSL3_RT_HANDSHAKE && type == SSL3_RT_CHANGE_CIPHER_SPEC) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/*
* Lets just double check that we've not got an SSLv2 record
*/
if (rr->rec_version == SSL2_VERSION) {
/*
* Should never happen. ssl3_get_record() should only give us an SSLv2
* record back if this is the first packet and we are looking for an
* initial ClientHello. Therefore |type| should always be equal to
* |rr->type|. If not then something has gone horribly wrong
*/
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
goto f_err;
}
if(s->method->version == TLS_ANY_VERSION
&& (s->server || rr->type != SSL3_RT_ALERT)) {
/*
* If we've got this far and still haven't decided on what version
* we're using then this must be a client side alert we're dealing with
* (we don't allow heartbeats yet). We shouldn't be receiving anything
* other than a ClientHello if we are a server.
*/
s->version = rr->rec_version;
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/*
* In case of record types for which we have 'fragment' storage, fill
* that so that we can process the data at a fixed place.
*/
{
unsigned int dest_maxlen = 0;
unsigned char *dest = NULL;
unsigned int *dest_len = NULL;
if (SSL3_RECORD_get_type(rr) == SSL3_RT_HANDSHAKE) {
dest_maxlen = sizeof s->rlayer.handshake_fragment;
dest = s->rlayer.handshake_fragment;
dest_len = &s->rlayer.handshake_fragment_len;
} else if (SSL3_RECORD_get_type(rr) == SSL3_RT_ALERT) {
dest_maxlen = sizeof s->rlayer.alert_fragment;
dest = s->rlayer.alert_fragment;
dest_len = &s->rlayer.alert_fragment_len;
}
#ifndef OPENSSL_NO_HEARTBEATS
else if (SSL3_RECORD_get_type(rr)== TLS1_RT_HEARTBEAT) {
/* We can ignore 0 return values */
if (tls1_process_heartbeat(s, SSL3_RECORD_get_data(rr),
SSL3_RECORD_get_length(rr)) < 0) {
return -1;
}
/* Exit and notify application to read again */
SSL3_RECORD_set_length(rr, 0);
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
return (-1);
}
#endif
if (dest_maxlen > 0) {
n = dest_maxlen - *dest_len; /* available space in 'dest' */
if (SSL3_RECORD_get_length(rr) < n)
n = SSL3_RECORD_get_length(rr); /* available bytes */
/* now move 'n' bytes: */
while (n-- > 0) {
dest[(*dest_len)++] =
SSL3_RECORD_get_data(rr)[SSL3_RECORD_get_off(rr)];
SSL3_RECORD_add_off(rr, 1);
SSL3_RECORD_add_length(rr, -1);
}
if (*dest_len < dest_maxlen)
goto start; /* fragment was too small */
}
}
/*-
* s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE;
* s->rlayer.alert_fragment_len == 2 iff rr->type == SSL3_RT_ALERT.
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
/* If we are a client, check for an incoming 'Hello Request': */
if ((!s->server) &&
(s->rlayer.handshake_fragment_len >= 4) &&
(s->rlayer.handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
(s->session != NULL) && (s->session->cipher != NULL)) {
s->rlayer.handshake_fragment_len = 0;
if ((s->rlayer.handshake_fragment[1] != 0) ||
(s->rlayer.handshake_fragment[2] != 0) ||
(s->rlayer.handshake_fragment[3] != 0)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_BAD_HELLO_REQUEST);
goto f_err;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
s->rlayer.handshake_fragment, 4, s,
s->msg_callback_arg);
if (SSL_is_init_finished(s) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
!s->s3->renegotiate) {
ssl3_renegotiate(s);
if (ssl3_renegotiate_check(s)) {
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_SSL3_READ_BYTES,
SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) {
/* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data,
* but we trigger an SSL handshake, we return -1 with
* the retry option set. Otherwise renegotiation may
* cause nasty problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
}
}
/*
* we either finished a handshake or ignored the request, now try
* again to obtain the (application) data we were asked for
*/
goto start;
}
/*
* If we are a server and get a client hello when renegotiation isn't
* allowed send back a no renegotiation alert and carry on. WARNING:
* experimental code, needs reviewing (steve)
*/
if (s->server &&
SSL_is_init_finished(s) &&
!s->s3->send_connection_binding &&
(s->version > SSL3_VERSION) &&
(s->rlayer.handshake_fragment_len >= 4) &&
(s->rlayer.handshake_fragment[0] == SSL3_MT_CLIENT_HELLO) &&
(s->session != NULL) && (s->session->cipher != NULL) &&
!(s->ctx->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
SSL3_RECORD_set_length(rr, 0);
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_RENEGOTIATION);
goto start;
}
if (s->rlayer.alert_fragment_len >= 2) {
int alert_level = s->rlayer.alert_fragment[0];
int alert_descr = s->rlayer.alert_fragment[1];
s->rlayer.alert_fragment_len = 0;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT,
s->rlayer.alert_fragment, 2, s,
s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (s->ctx->info_callback != NULL)
cb = s->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(s, SSL_CB_READ_ALERT, j);
}
if (alert_level == SSL3_AL_WARNING) {
s->s3->warn_alert = alert_descr;
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return (0);
}
/*
* This is a warning but we receive it if we requested
* renegotiation and the peer denied it. Terminate with a fatal
* alert because if application tried to renegotiatie it
* presumably had a good reason and expects it to succeed. In
* future we might have a renegotiation where we don't care if
* the peer refused it where we carry on.
*/
else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_NO_RENEGOTIATION);
goto f_err;
}
#ifdef SSL_AD_MISSING_SRP_USERNAME
else if (alert_descr == SSL_AD_MISSING_SRP_USERNAME)
return (0);
#endif
} else if (alert_level == SSL3_AL_FATAL) {
char tmp[16];
s->rwstate = SSL_NOTHING;
s->s3->fatal_alert = alert_descr;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + alert_descr);
BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr);
ERR_add_error_data(2, "SSL alert number ", tmp);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
SSL_CTX_remove_session(s->ctx, s->session);
return (0);
} else {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE);
goto f_err;
}
goto start;
}
if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
* shutdown */
s->rwstate = SSL_NOTHING;
SSL3_RECORD_set_length(rr, 0);
return (0);
}
if (SSL3_RECORD_get_type(rr) == SSL3_RT_CHANGE_CIPHER_SPEC) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_CCS_RECEIVED_EARLY);
goto f_err;
}
/*
* Unexpected handshake message (Client Hello, or protocol violation)
*/
if ((s->rlayer.handshake_fragment_len >= 4)
&& !ossl_statem_get_in_handshake(s)) {
if (SSL_is_init_finished(s) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) {
ossl_statem_set_in_init(s, 1);
s->renegotiate = 1;
s->new_session = 1;
}
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (SSL3_BUFFER_get_left(&s->rlayer.rbuf) == 0) {
/* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
goto start;
}
switch (SSL3_RECORD_get_type(rr)) {
default:
/*
* TLS up to v1.1 just ignores unknown message types: TLS v1.2 give
* an unexpected message alert.
*/
if (s->version >= TLS1_VERSION && s->version <= TLS1_1_VERSION) {
SSL3_RECORD_set_length(rr, 0);
goto start;
}
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but
* that should not happen when type != rr->type
*/
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
goto f_err;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (ossl_statem_app_data_allowed(s)) {
s->s3->in_read_app_data = 2;
return (-1);
} else {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_SSL3_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
}
}
/* not reached */
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return (-1);
}
void ssl3_record_sequence_update(unsigned char *seq)
{
int i;
for (i = 7; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
}
/*
* Returns true if the current rrec was sent in SSLv2 backwards compatible
* format and false otherwise.
*/
int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl)
{
return SSL3_RECORD_is_sslv2_record(&rl->rrec);
}
/*
* Returns the length in bytes of the current rrec
*/
unsigned int RECORD_LAYER_get_rrec_length(RECORD_LAYER *rl)
{
return SSL3_RECORD_get_length(&rl->rrec);
}