fc57ebc057
comment out in the previous commit
901 lines
22 KiB
C
901 lines
22 KiB
C
/* crypto/bn/bn_exp.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include "cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
#ifdef ATALLA
|
|
# include <alloca.h>
|
|
# include <atasi.h>
|
|
# include <assert.h>
|
|
# include <dlfcn.h>
|
|
#endif
|
|
|
|
|
|
#define TABLE_SIZE 32
|
|
|
|
/* slow but works */
|
|
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *t;
|
|
int r=0;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(b);
|
|
bn_check_top(m);
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((t = BN_CTX_get(ctx)) == NULL) goto err;
|
|
if (a == b)
|
|
{ if (!BN_sqr(t,a,ctx)) goto err; }
|
|
else
|
|
{ if (!BN_mul(t,a,b,ctx)) goto err; }
|
|
if (!BN_mod(ret,t,m,ctx)) goto err;
|
|
r=1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return(r);
|
|
}
|
|
|
|
|
|
/* this one works - simple but works */
|
|
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx)
|
|
{
|
|
int i,bits,ret=0;
|
|
BIGNUM *v,*rr;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((r == a) || (r == p))
|
|
rr = BN_CTX_get(ctx);
|
|
else
|
|
rr = r;
|
|
if ((v = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
if (BN_copy(v,a) == NULL) goto err;
|
|
bits=BN_num_bits(p);
|
|
|
|
if (BN_is_odd(p))
|
|
{ if (BN_copy(rr,a) == NULL) goto err; }
|
|
else { if (!BN_one(rr)) goto err; }
|
|
|
|
for (i=1; i<bits; i++)
|
|
{
|
|
if (!BN_sqr(v,v,ctx)) goto err;
|
|
if (BN_is_bit_set(p,i))
|
|
{
|
|
if (!BN_mul(rr,rr,v,ctx)) goto err;
|
|
}
|
|
}
|
|
ret=1;
|
|
err:
|
|
if (r != rr) BN_copy(r,rr);
|
|
BN_CTX_end(ctx);
|
|
return(ret);
|
|
}
|
|
|
|
|
|
#ifdef ATALLA
|
|
|
|
/*
|
|
* This routine will dynamically check for the existance of an Atalla AXL-200
|
|
* SSL accelerator module. If one is found, the variable
|
|
* asi_accelerator_present is set to 1 and the function pointers
|
|
* ptr_ASI_xxxxxx above will be initialized to corresponding ASI API calls.
|
|
*/
|
|
typedef int tfnASI_GetPerformanceStatistics(int reset_flag,
|
|
unsigned int *ret_buf);
|
|
typedef int tfnASI_GetHardwareConfig(long card_num, unsigned int *ret_buf);
|
|
typedef int tfnASI_RSAPrivateKeyOpFn(RSAPrivateKey * rsaKey,
|
|
unsigned char *output,
|
|
unsigned char *input,
|
|
unsigned int modulus_len);
|
|
|
|
static tfnASI_GetHardwareConfig *ptr_ASI_GetHardwareConfig;
|
|
static tfnASI_RSAPrivateKeyOpFn *ptr_ASI_RSAPrivateKeyOpFn;
|
|
static tfnASI_GetPerformanceStatistics *ptr_ASI_GetPerformanceStatistics;
|
|
static int asi_accelerator_present;
|
|
static int tried_atalla;
|
|
|
|
void atalla_initialize_accelerator_handle(void)
|
|
{
|
|
void *dl_handle;
|
|
int status;
|
|
unsigned int config_buf[1024];
|
|
static int tested;
|
|
|
|
if(tested)
|
|
return;
|
|
|
|
tested=1;
|
|
|
|
bzero((void *)config_buf, 1024);
|
|
|
|
/*
|
|
* Check to see if the library is present on the system
|
|
*/
|
|
dl_handle = dlopen("atasi.so", RTLD_NOW);
|
|
if (dl_handle == (void *) NULL)
|
|
{
|
|
/* printf("atasi.so library is not present on the system\n");
|
|
printf("No HW acceleration available\n");*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The library is present. Now we'll check to insure that the
|
|
* LDM is up and running. First we'll get the address of the
|
|
* function in the atasi library that we need to see if the
|
|
* LDM is operating.
|
|
*/
|
|
|
|
ptr_ASI_GetHardwareConfig =
|
|
(tfnASI_GetHardwareConfig *)dlsym(dl_handle,"ASI_GetHardwareConfig");
|
|
|
|
if (ptr_ASI_GetHardwareConfig)
|
|
{
|
|
/*
|
|
* We found the call, now we'll get our config
|
|
* status. If we get a non 0 result, the LDM is not
|
|
* running and we cannot use the Atalla ASI *
|
|
* library.
|
|
*/
|
|
status = (*ptr_ASI_GetHardwareConfig)(0L, config_buf);
|
|
if (status != 0)
|
|
{
|
|
printf("atasi.so library is present but not initialized\n");
|
|
printf("No HW acceleration available\n");
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* printf("We found the library, but not the function. Very Strange!\n");*/
|
|
return ;
|
|
}
|
|
|
|
/*
|
|
* It looks like we have acceleration capabilities. Load up the
|
|
* pointers to our ASI API calls.
|
|
*/
|
|
ptr_ASI_RSAPrivateKeyOpFn=
|
|
(tfnASI_RSAPrivateKeyOpFn *)dlsym(dl_handle, "ASI_RSAPrivateKeyOpFn");
|
|
if (ptr_ASI_RSAPrivateKeyOpFn == NULL)
|
|
{
|
|
/* printf("We found the library, but no RSA function. Very Strange!\n");*/
|
|
return;
|
|
}
|
|
|
|
ptr_ASI_GetPerformanceStatistics =
|
|
(tfnASI_GetPerformanceStatistics *)dlsym(dl_handle, "ASI_GetPerformanceStatistics");
|
|
if (ptr_ASI_GetPerformanceStatistics == NULL)
|
|
{
|
|
/* printf("We found the library, but no stat function. Very Strange!\n");*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Indicate that acceleration is available
|
|
*/
|
|
asi_accelerator_present = 1;
|
|
|
|
/* printf("This system has acceleration!\n");*/
|
|
|
|
return;
|
|
}
|
|
|
|
/* make sure this only gets called once when bn_mod_exp calls bn_mod_exp_mont */
|
|
int BN_mod_exp_atalla(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m)
|
|
{
|
|
unsigned char *abin;
|
|
unsigned char *pbin;
|
|
unsigned char *mbin;
|
|
unsigned char *rbin;
|
|
int an,pn,mn,ret;
|
|
RSAPrivateKey keydata;
|
|
|
|
atalla_initialize_accelerator_handle();
|
|
if(!asi_accelerator_present)
|
|
return 0;
|
|
|
|
|
|
/* We should be able to run without size testing */
|
|
# define ASIZE 128
|
|
an=BN_num_bytes(a);
|
|
pn=BN_num_bytes(p);
|
|
mn=BN_num_bytes(m);
|
|
|
|
if(an <= ASIZE && pn <= ASIZE && mn <= ASIZE)
|
|
{
|
|
int size=mn;
|
|
|
|
assert(an <= mn);
|
|
abin=alloca(size);
|
|
memset(abin,'\0',mn);
|
|
BN_bn2bin(a,abin+size-an);
|
|
|
|
pbin=alloca(pn);
|
|
BN_bn2bin(p,pbin);
|
|
|
|
mbin=alloca(size);
|
|
memset(mbin,'\0',mn);
|
|
BN_bn2bin(m,mbin+size-mn);
|
|
|
|
rbin=alloca(size);
|
|
|
|
memset(&keydata,'\0',sizeof keydata);
|
|
keydata.privateExponent.data=pbin;
|
|
keydata.privateExponent.len=pn;
|
|
keydata.modulus.data=mbin;
|
|
keydata.modulus.len=size;
|
|
|
|
ret=(*ptr_ASI_RSAPrivateKeyOpFn)(&keydata,rbin,abin,keydata.modulus.len);
|
|
/*fprintf(stderr,"!%s\n",BN_bn2hex(a));*/
|
|
if(!ret)
|
|
{
|
|
BN_bin2bn(rbin,keydata.modulus.len,r);
|
|
/*fprintf(stderr,"?%s\n",BN_bn2hex(r));*/
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* def ATALLA */
|
|
|
|
|
|
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
bn_check_top(m);
|
|
|
|
#ifdef ATALLA
|
|
if(BN_mod_exp_atalla(r,a,p,m))
|
|
return 1;
|
|
/* If it fails, try the other methods (but don't try atalla again) */
|
|
tried_atalla=1;
|
|
#endif
|
|
|
|
#ifdef MONT_MUL_MOD
|
|
/* I have finally been able to take out this pre-condition of
|
|
* the top bit being set. It was caused by an error in BN_div
|
|
* with negatives. There was also another problem when for a^b%m
|
|
* a >= m. eay 07-May-97 */
|
|
/* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
|
|
|
|
if (BN_is_odd(m))
|
|
{
|
|
if (a->top == 1)
|
|
{
|
|
BN_ULONG A = a->d[0];
|
|
ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
|
|
}
|
|
else
|
|
ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
|
|
}
|
|
else
|
|
#endif
|
|
#ifdef RECP_MUL_MOD
|
|
{ ret=BN_mod_exp_recp(r,a,p,m,ctx); }
|
|
#else
|
|
{ ret=BN_mod_exp_simple(r,a,p,m,ctx); }
|
|
#endif
|
|
|
|
#ifdef ATALLA
|
|
tried_atalla=0;
|
|
#endif
|
|
|
|
return(ret);
|
|
}
|
|
|
|
|
|
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx)
|
|
{
|
|
int i,j,bits,ret=0,wstart,wend,window,wvalue;
|
|
int start=1,ts=0;
|
|
BIGNUM *aa;
|
|
BIGNUM val[TABLE_SIZE];
|
|
BN_RECP_CTX recp;
|
|
|
|
bits=BN_num_bits(p);
|
|
|
|
if (bits == 0)
|
|
{
|
|
BN_one(r);
|
|
return(1);
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((aa = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
BN_RECP_CTX_init(&recp);
|
|
if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
|
|
|
|
BN_init(&(val[0]));
|
|
ts=1;
|
|
|
|
if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
|
|
|
|
window = BN_window_bits_for_exponent_size(bits);
|
|
if (window > 1)
|
|
{
|
|
if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx))
|
|
goto err; /* 2 */
|
|
j=1<<(window-1);
|
|
for (i=1; i<j; i++)
|
|
{
|
|
BN_init(&val[i]);
|
|
if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx))
|
|
goto err;
|
|
}
|
|
ts=i;
|
|
}
|
|
|
|
start=1; /* This is used to avoid multiplication etc
|
|
* when there is only the value '1' in the
|
|
* buffer. */
|
|
wvalue=0; /* The 'value' of the window */
|
|
wstart=bits-1; /* The top bit of the window */
|
|
wend=0; /* The bottom bit of the window */
|
|
|
|
if (!BN_one(r)) goto err;
|
|
|
|
for (;;)
|
|
{
|
|
if (BN_is_bit_set(p,wstart) == 0)
|
|
{
|
|
if (!start)
|
|
if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
|
|
goto err;
|
|
if (wstart == 0) break;
|
|
wstart--;
|
|
continue;
|
|
}
|
|
/* We now have wstart on a 'set' bit, we now need to work out
|
|
* how bit a window to do. To do this we need to scan
|
|
* forward until the last set bit before the end of the
|
|
* window */
|
|
j=wstart;
|
|
wvalue=1;
|
|
wend=0;
|
|
for (i=1; i<window; i++)
|
|
{
|
|
if (wstart-i < 0) break;
|
|
if (BN_is_bit_set(p,wstart-i))
|
|
{
|
|
wvalue<<=(i-wend);
|
|
wvalue|=1;
|
|
wend=i;
|
|
}
|
|
}
|
|
|
|
/* wend is the size of the current window */
|
|
j=wend+1;
|
|
/* add the 'bytes above' */
|
|
if (!start)
|
|
for (i=0; i<j; i++)
|
|
{
|
|
if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
|
|
goto err;
|
|
}
|
|
|
|
/* wvalue will be an odd number < 2^window */
|
|
if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx))
|
|
goto err;
|
|
|
|
/* move the 'window' down further */
|
|
wstart-=wend+1;
|
|
wvalue=0;
|
|
start=0;
|
|
if (wstart < 0) break;
|
|
}
|
|
ret=1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
for (i=0; i<ts; i++)
|
|
BN_clear_free(&(val[i]));
|
|
BN_RECP_CTX_free(&recp);
|
|
return(ret);
|
|
}
|
|
|
|
|
|
int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
|
{
|
|
int i,j,bits,ret=0,wstart,wend,window,wvalue;
|
|
int start=1,ts=0;
|
|
BIGNUM *d,*r;
|
|
BIGNUM *aa;
|
|
BIGNUM val[TABLE_SIZE];
|
|
BN_MONT_CTX *mont=NULL;
|
|
|
|
bn_check_top(a);
|
|
bn_check_top(p);
|
|
bn_check_top(m);
|
|
|
|
#ifdef ATALLA
|
|
if(!tried_atalla && BN_mod_exp_atalla(rr,a,p,m))
|
|
return 1;
|
|
/* If it fails, try the other methods */
|
|
#endif
|
|
|
|
if (!(m->d[0] & 1))
|
|
{
|
|
BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
|
|
return(0);
|
|
}
|
|
bits=BN_num_bits(p);
|
|
if (bits == 0)
|
|
{
|
|
BN_one(rr);
|
|
return(1);
|
|
}
|
|
BN_CTX_start(ctx);
|
|
d = BN_CTX_get(ctx);
|
|
r = BN_CTX_get(ctx);
|
|
if (d == NULL || r == NULL) goto err;
|
|
|
|
/* If this is not done, things will break in the montgomery
|
|
* part */
|
|
|
|
if (in_mont != NULL)
|
|
mont=in_mont;
|
|
else
|
|
{
|
|
if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
|
|
if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
|
|
}
|
|
|
|
BN_init(&val[0]);
|
|
ts=1;
|
|
if (BN_ucmp(a,m) >= 0)
|
|
{
|
|
if (!BN_mod(&(val[0]),a,m,ctx))
|
|
goto err;
|
|
aa= &(val[0]);
|
|
}
|
|
else
|
|
aa=a;
|
|
if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */
|
|
|
|
window = BN_window_bits_for_exponent_size(bits);
|
|
if (window > 1)
|
|
{
|
|
if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */
|
|
j=1<<(window-1);
|
|
for (i=1; i<j; i++)
|
|
{
|
|
BN_init(&(val[i]));
|
|
if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx))
|
|
goto err;
|
|
}
|
|
ts=i;
|
|
}
|
|
|
|
start=1; /* This is used to avoid multiplication etc
|
|
* when there is only the value '1' in the
|
|
* buffer. */
|
|
wvalue=0; /* The 'value' of the window */
|
|
wstart=bits-1; /* The top bit of the window */
|
|
wend=0; /* The bottom bit of the window */
|
|
|
|
if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
|
|
for (;;)
|
|
{
|
|
if (BN_is_bit_set(p,wstart) == 0)
|
|
{
|
|
if (!start)
|
|
{
|
|
if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
|
|
goto err;
|
|
}
|
|
if (wstart == 0) break;
|
|
wstart--;
|
|
continue;
|
|
}
|
|
/* We now have wstart on a 'set' bit, we now need to work out
|
|
* how bit a window to do. To do this we need to scan
|
|
* forward until the last set bit before the end of the
|
|
* window */
|
|
j=wstart;
|
|
wvalue=1;
|
|
wend=0;
|
|
for (i=1; i<window; i++)
|
|
{
|
|
if (wstart-i < 0) break;
|
|
if (BN_is_bit_set(p,wstart-i))
|
|
{
|
|
wvalue<<=(i-wend);
|
|
wvalue|=1;
|
|
wend=i;
|
|
}
|
|
}
|
|
|
|
/* wend is the size of the current window */
|
|
j=wend+1;
|
|
/* add the 'bytes above' */
|
|
if (!start)
|
|
for (i=0; i<j; i++)
|
|
{
|
|
if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
|
|
goto err;
|
|
}
|
|
|
|
/* wvalue will be an odd number < 2^window */
|
|
if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx))
|
|
goto err;
|
|
|
|
/* move the 'window' down further */
|
|
wstart-=wend+1;
|
|
wvalue=0;
|
|
start=0;
|
|
if (wstart < 0) break;
|
|
}
|
|
if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
|
|
ret=1;
|
|
err:
|
|
if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
|
|
BN_CTX_end(ctx);
|
|
for (i=0; i<ts; i++)
|
|
BN_clear_free(&(val[i]));
|
|
return(ret);
|
|
}
|
|
|
|
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
|
{
|
|
BN_MONT_CTX *mont = NULL;
|
|
int b, bits, ret=0;
|
|
int r_is_one;
|
|
BN_ULONG w, next_w;
|
|
BIGNUM *d, *r, *t;
|
|
BIGNUM *swap_tmp;
|
|
#define BN_MOD_MUL_WORD(r, w, m) \
|
|
(BN_mul_word(r, (w)) && \
|
|
(/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
|
|
(BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
|
|
/* BN_MOD_MUL_WORD is only used with 'w' large,
|
|
* so the BN_ucmp test is probably more overhead
|
|
* than always using BN_mod (which uses BN_copy if
|
|
* a similar test returns true). */
|
|
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
|
|
(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
|
|
|
|
bn_check_top(p);
|
|
bn_check_top(m);
|
|
|
|
if (!(m->d[0] & 1))
|
|
{
|
|
BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
|
|
return(0);
|
|
}
|
|
bits = BN_num_bits(p);
|
|
if (bits == 0)
|
|
{
|
|
BN_one(rr);
|
|
return(1);
|
|
}
|
|
BN_CTX_start(ctx);
|
|
d = BN_CTX_get(ctx);
|
|
r = BN_CTX_get(ctx);
|
|
t = BN_CTX_get(ctx);
|
|
if (d == NULL || r == NULL || t == NULL) goto err;
|
|
|
|
#ifdef ATALLA
|
|
if (!tried_atalla)
|
|
{
|
|
BN_set_word(t, a);
|
|
if (BN_mod_exp_atalla(rr, t, p, m))
|
|
{
|
|
BN_CTX_end(ctx);
|
|
return 1;
|
|
}
|
|
}
|
|
/* If it fails, try the other methods */
|
|
#endif
|
|
|
|
if (in_mont != NULL)
|
|
mont=in_mont;
|
|
else
|
|
{
|
|
if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
|
|
if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
|
|
}
|
|
|
|
r_is_one = 1; /* except for Montgomery factor */
|
|
|
|
/* bits-1 >= 0 */
|
|
|
|
/* The result is accumulated in the product r*w. */
|
|
w = a; /* bit 'bits-1' of 'p' is always set */
|
|
for (b = bits-2; b >= 0; b--)
|
|
{
|
|
/* First, square r*w. */
|
|
next_w = w*w;
|
|
if ((next_w/w) != w) /* overflow */
|
|
{
|
|
if (r_is_one)
|
|
{
|
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
|
|
r_is_one = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
|
|
}
|
|
next_w = 1;
|
|
}
|
|
w = next_w;
|
|
if (!r_is_one)
|
|
{
|
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err;
|
|
}
|
|
|
|
/* Second, multiply r*w by 'a' if exponent bit is set. */
|
|
if (BN_is_bit_set(p, b))
|
|
{
|
|
next_w = w*a;
|
|
if ((next_w/a) != w) /* overflow */
|
|
{
|
|
if (r_is_one)
|
|
{
|
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
|
|
r_is_one = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
|
|
}
|
|
next_w = a;
|
|
}
|
|
w = next_w;
|
|
}
|
|
}
|
|
|
|
/* Finally, set r:=r*w. */
|
|
if (w != 1)
|
|
{
|
|
if (r_is_one)
|
|
{
|
|
if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
|
|
r_is_one = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
|
|
}
|
|
}
|
|
|
|
if (r_is_one) /* can happen only if a == 1*/
|
|
{
|
|
if (!BN_one(rr)) goto err;
|
|
}
|
|
else
|
|
{
|
|
if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
|
|
BN_CTX_end(ctx);
|
|
return(ret);
|
|
}
|
|
|
|
|
|
/* The old fallback, simple version :-) */
|
|
int BN_mod_exp_simple(BIGNUM *r, BIGNUM *a, BIGNUM *p, BIGNUM *m,
|
|
BN_CTX *ctx)
|
|
{
|
|
int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0;
|
|
int start=1;
|
|
BIGNUM *d;
|
|
BIGNUM val[TABLE_SIZE];
|
|
|
|
bits=BN_num_bits(p);
|
|
|
|
if (bits == 0)
|
|
{
|
|
BN_one(r);
|
|
return(1);
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((d = BN_CTX_get(ctx)) == NULL) goto err;
|
|
|
|
BN_init(&(val[0]));
|
|
ts=1;
|
|
if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */
|
|
|
|
window = BN_window_bits_for_exponent_size(bits);
|
|
if (window > 1)
|
|
{
|
|
if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx))
|
|
goto err; /* 2 */
|
|
j=1<<(window-1);
|
|
for (i=1; i<j; i++)
|
|
{
|
|
BN_init(&(val[i]));
|
|
if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx))
|
|
goto err;
|
|
}
|
|
ts=i;
|
|
}
|
|
|
|
start=1; /* This is used to avoid multiplication etc
|
|
* when there is only the value '1' in the
|
|
* buffer. */
|
|
wvalue=0; /* The 'value' of the window */
|
|
wstart=bits-1; /* The top bit of the window */
|
|
wend=0; /* The bottom bit of the window */
|
|
|
|
if (!BN_one(r)) goto err;
|
|
|
|
for (;;)
|
|
{
|
|
if (BN_is_bit_set(p,wstart) == 0)
|
|
{
|
|
if (!start)
|
|
if (!BN_mod_mul(r,r,r,m,ctx))
|
|
goto err;
|
|
if (wstart == 0) break;
|
|
wstart--;
|
|
continue;
|
|
}
|
|
/* We now have wstart on a 'set' bit, we now need to work out
|
|
* how bit a window to do. To do this we need to scan
|
|
* forward until the last set bit before the end of the
|
|
* window */
|
|
j=wstart;
|
|
wvalue=1;
|
|
wend=0;
|
|
for (i=1; i<window; i++)
|
|
{
|
|
if (wstart-i < 0) break;
|
|
if (BN_is_bit_set(p,wstart-i))
|
|
{
|
|
wvalue<<=(i-wend);
|
|
wvalue|=1;
|
|
wend=i;
|
|
}
|
|
}
|
|
|
|
/* wend is the size of the current window */
|
|
j=wend+1;
|
|
/* add the 'bytes above' */
|
|
if (!start)
|
|
for (i=0; i<j; i++)
|
|
{
|
|
if (!BN_mod_mul(r,r,r,m,ctx))
|
|
goto err;
|
|
}
|
|
|
|
/* wvalue will be an odd number < 2^window */
|
|
if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx))
|
|
goto err;
|
|
|
|
/* move the 'window' down further */
|
|
wstart-=wend+1;
|
|
wvalue=0;
|
|
start=0;
|
|
if (wstart < 0) break;
|
|
}
|
|
ret=1;
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
for (i=0; i<ts; i++)
|
|
BN_clear_free(&(val[i]));
|
|
return(ret);
|
|
}
|
|
|