openssl/crypto/perlasm
Andy Polyakov 989f48d8c1 Avoid unnecessary pollution of object module name table. Cygwin shared
build workaround (DJGPP swallows it too). One probably should do same
as with ELF calling it COFF, but I'm very short in COFF platforms, so
I just go for easy ad-hoc solution. I'll take care of merge to 0.9.7
later.
2003-01-10 10:16:39 +00:00
..
alpha.pl Import of old SSLeay release: SSLeay 0.9.1b (unreleased) 1998-12-21 11:00:56 +00:00
cbc.pl IA-32 assembler modules (primarily DES) PIC-ification. Idea is to keep 2002-12-13 17:56:14 +00:00
readme Import of old SSLeay release: SSLeay 0.9.0b 1998-12-21 10:56:39 +00:00
x86asm.pl Avoid unnecessary pollution of object module name table. Cygwin shared 2003-01-10 10:16:39 +00:00
x86ms.pl DES PIC-ification. Windows companion. 2002-12-14 17:54:30 +00:00
x86nasm.pl As you might have noticed I tried to change for . prefix, because it's 2002-12-14 23:14:00 +00:00
x86unix.pl Avoid unnecessary pollution of object module name table. Cygwin shared 2003-01-10 10:16:39 +00:00

The perl scripts in this directory are my 'hack' to generate
multiple different assembler formats via the one origional script.

The way to use this library is to start with adding the path to this directory
and then include it.

push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";

The first thing we do is setup the file and type of assember

&asm_init($ARGV[0],$0);

The first argument is the 'type'.  Currently
'cpp', 'sol', 'a.out', 'elf' or 'win32'.
Argument 2 is the file name.

The reciprocal function is
&asm_finish() which should be called at the end.

There are 2 main 'packages'. x86ms.pl, which is the microsoft assembler,
and x86unix.pl which is the unix (gas) version.

Functions of interest are:
&external_label("des_SPtrans");	declare and external variable
&LB(reg);			Low byte for a register
&HB(reg);			High byte for a register
&BP(off,base,index,scale)	Byte pointer addressing
&DWP(off,base,index,scale)	Word pointer addressing
&stack_push(num)		Basically a 'sub esp, num*4' with extra
&stack_pop(num)			inverse of stack_push
&function_begin(name,extra)	Start a function with pushing of
				edi, esi, ebx and ebp.  extra is extra win32
				external info that may be required.
&function_begin_B(name,extra)	Same as norma function_begin but no pushing.
&function_end(name)		Call at end of function.
&function_end_A(name)		Standard pop and ret, for use inside functions
&function_end_B(name)		Call at end but with poping or 'ret'.
&swtmp(num)			Address on stack temp word.
&wparam(num)			Parameter number num, that was push
				in C convention.  This all works over pushes
				and pops.
&comment("hello there")		Put in a comment.
&label("loop")			Refer to a label, normally a jmp target.
&set_label("loop")		Set a label at this point.
&data_word(word)		Put in a word of data.

So how does this all hold together?  Given

int calc(int len, int *data)
	{
	int i,j=0;

	for (i=0; i<len; i++)
		{
		j+=other(data[i]);
		}
	}

So a very simple version of this function could be coded as

	push(@INC,"perlasm","../../perlasm");
	require "x86asm.pl";
	
	&asm_init($ARGV[0],"cacl.pl");

	&external_label("other");

	$tmp1=	"eax";
	$j=	"edi";
	$data=	"esi";
	$i=	"ebp";

	&comment("a simple function");
	&function_begin("calc");
	&mov(	$data,		&wparam(1)); # data
	&xor(	$j,		$j);
	&xor(	$i,		$i);

	&set_label("loop");
	&cmp(	$i,		&wparam(0));
	&jge(	&label("end"));

	&mov(	$tmp1,		&DWP(0,$data,$i,4));
	&push(	$tmp1);
	&call(	"other");
	&add(	$j,		"eax");
	&pop(	$tmp1);
	&inc(	$i);
	&jmp(	&label("loop"));

	&set_label("end");
	&mov(	"eax",		$j);

	&function_end("calc");

	&asm_finish();

The above example is very very unoptimised but gives an idea of how
things work.

There is also a cbc mode function generator in cbc.pl

&cbc(	$name,
	$encrypt_function_name,
	$decrypt_function_name,
	$true_if_byte_swap_needed,
	$parameter_number_for_iv,
	$parameter_number_for_encrypt_flag,
	$first_parameter_to_pass,
	$second_parameter_to_pass,
	$third_parameter_to_pass);

So for example, given
void BF_encrypt(BF_LONG *data,BF_KEY *key);
void BF_decrypt(BF_LONG *data,BF_KEY *key);
void BF_cbc_encrypt(unsigned char *in, unsigned char *out, long length,
        BF_KEY *ks, unsigned char *iv, int enc);

&cbc("BF_cbc_encrypt","BF_encrypt","BF_encrypt",1,4,5,3,-1,-1);

&cbc("des_ncbc_encrypt","des_encrypt","des_encrypt",0,4,5,3,5,-1);
&cbc("des_ede3_cbc_encrypt","des_encrypt3","des_decrypt3",0,6,7,3,4,5);