openssl/crypto/ec/ecp_nist.c
Billy Brumley 9d91530d2d EC GFp ladder
This commit leverages the Montgomery ladder scaffold introduced in #6690
(alongside a specialized Lopez-Dahab ladder for binary curves) to
provide a specialized differential addition-and-double implementation to
speedup prime curves, while keeping all the features of
`ec_scalar_mul_ladder` against SCA attacks.

The arithmetic in ladder_pre, ladder_step and ladder_post is auto
generated with tooling, from the following formulae:

- `ladder_pre`: Formula 3 for doubling from Izu-Takagi "A fast parallel
  elliptic curve multiplication resistant against side channel attacks",
  as described at
  https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- `ladder_step`: differential addition-and-doubling Eq. (8) and (10)
  from Izu-Takagi "A fast parallel elliptic curve multiplication
  resistant against side channel attacks", as described at
  https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3
- `ladder_post`: y-coordinate recovery using Eq. (8) from Brier-Joye
  "Weierstrass Elliptic Curves and Side-Channel Attacks", modified to
  work in projective coordinates.

Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6772)
2018-07-26 19:41:16 +02:00

167 lines
4.8 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <limits.h>
#include <openssl/err.h>
#include <openssl/obj_mac.h>
#include "ec_lcl.h"
const EC_METHOD *EC_GFp_nist_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_simple_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_nist_group_copy,
ec_GFp_nist_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_simple_point_get_affine_coordinates,
0, 0, 0,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
0 /* mul */ ,
0 /* precompute_mult */ ,
0 /* have_precompute_mult */ ,
ec_GFp_nist_field_mul,
ec_GFp_nist_field_sqr,
0 /* field_div */ ,
0 /* field_encode */ ,
0 /* field_decode */ ,
0, /* field_set_to_one */
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates,
ec_GFp_simple_ladder_pre,
ec_GFp_simple_ladder_step,
ec_GFp_simple_ladder_post
};
return &ret;
}
int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
dest->field_mod_func = src->field_mod_func;
return ec_GFp_simple_group_copy(dest, src);
}
int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
if (ctx == NULL)
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
return 0;
BN_CTX_start(ctx);
if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0)
group->field_mod_func = BN_nist_mod_192;
else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0)
group->field_mod_func = BN_nist_mod_224;
else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0)
group->field_mod_func = BN_nist_mod_256;
else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0)
group->field_mod_func = BN_nist_mod_384;
else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0)
group->field_mod_func = BN_nist_mod_521;
else {
ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME);
goto err;
}
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *ctx_new = NULL;
if (!group || !r || !a || !b) {
ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
if (!ctx)
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
goto err;
if (!BN_mul(r, a, b, ctx))
goto err;
if (!group->field_mod_func(r, r, group->field, ctx))
goto err;
ret = 1;
err:
BN_CTX_free(ctx_new);
return ret;
}
int ec_GFp_nist_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
{
int ret = 0;
BN_CTX *ctx_new = NULL;
if (!group || !r || !a) {
ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER);
goto err;
}
if (!ctx)
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
goto err;
if (!BN_sqr(r, a, ctx))
goto err;
if (!group->field_mod_func(r, r, group->field, ctx))
goto err;
ret = 1;
err:
BN_CTX_free(ctx_new);
return ret;
}