9d91530d2d
This commit leverages the Montgomery ladder scaffold introduced in #6690 (alongside a specialized Lopez-Dahab ladder for binary curves) to provide a specialized differential addition-and-double implementation to speedup prime curves, while keeping all the features of `ec_scalar_mul_ladder` against SCA attacks. The arithmetic in ladder_pre, ladder_step and ladder_post is auto generated with tooling, from the following formulae: - `ladder_pre`: Formula 3 for doubling from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks", as described at https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 - `ladder_step`: differential addition-and-doubling Eq. (8) and (10) from Izu-Takagi "A fast parallel elliptic curve multiplication resistant against side channel attacks", as described at https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3 - `ladder_post`: y-coordinate recovery using Eq. (8) from Brier-Joye "Weierstrass Elliptic Curves and Side-Channel Attacks", modified to work in projective coordinates. Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6772)
167 lines
4.8 KiB
C
167 lines
4.8 KiB
C
/*
|
|
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/obj_mac.h>
|
|
#include "ec_lcl.h"
|
|
|
|
const EC_METHOD *EC_GFp_nist_method(void)
|
|
{
|
|
static const EC_METHOD ret = {
|
|
EC_FLAGS_DEFAULT_OCT,
|
|
NID_X9_62_prime_field,
|
|
ec_GFp_simple_group_init,
|
|
ec_GFp_simple_group_finish,
|
|
ec_GFp_simple_group_clear_finish,
|
|
ec_GFp_nist_group_copy,
|
|
ec_GFp_nist_group_set_curve,
|
|
ec_GFp_simple_group_get_curve,
|
|
ec_GFp_simple_group_get_degree,
|
|
ec_group_simple_order_bits,
|
|
ec_GFp_simple_group_check_discriminant,
|
|
ec_GFp_simple_point_init,
|
|
ec_GFp_simple_point_finish,
|
|
ec_GFp_simple_point_clear_finish,
|
|
ec_GFp_simple_point_copy,
|
|
ec_GFp_simple_point_set_to_infinity,
|
|
ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_point_set_affine_coordinates,
|
|
ec_GFp_simple_point_get_affine_coordinates,
|
|
0, 0, 0,
|
|
ec_GFp_simple_add,
|
|
ec_GFp_simple_dbl,
|
|
ec_GFp_simple_invert,
|
|
ec_GFp_simple_is_at_infinity,
|
|
ec_GFp_simple_is_on_curve,
|
|
ec_GFp_simple_cmp,
|
|
ec_GFp_simple_make_affine,
|
|
ec_GFp_simple_points_make_affine,
|
|
0 /* mul */ ,
|
|
0 /* precompute_mult */ ,
|
|
0 /* have_precompute_mult */ ,
|
|
ec_GFp_nist_field_mul,
|
|
ec_GFp_nist_field_sqr,
|
|
0 /* field_div */ ,
|
|
0 /* field_encode */ ,
|
|
0 /* field_decode */ ,
|
|
0, /* field_set_to_one */
|
|
ec_key_simple_priv2oct,
|
|
ec_key_simple_oct2priv,
|
|
0, /* set private */
|
|
ec_key_simple_generate_key,
|
|
ec_key_simple_check_key,
|
|
ec_key_simple_generate_public_key,
|
|
0, /* keycopy */
|
|
0, /* keyfinish */
|
|
ecdh_simple_compute_key,
|
|
0, /* field_inverse_mod_ord */
|
|
ec_GFp_simple_blind_coordinates,
|
|
ec_GFp_simple_ladder_pre,
|
|
ec_GFp_simple_ladder_step,
|
|
ec_GFp_simple_ladder_post
|
|
};
|
|
|
|
return &ret;
|
|
}
|
|
|
|
int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
|
{
|
|
dest->field_mod_func = src->field_mod_func;
|
|
|
|
return ec_GFp_simple_group_copy(dest, src);
|
|
}
|
|
|
|
int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
if (ctx == NULL)
|
|
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_192;
|
|
else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_224;
|
|
else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_256;
|
|
else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_384;
|
|
else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_521;
|
|
else {
|
|
ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME);
|
|
goto err;
|
|
}
|
|
|
|
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
if (!group || !r || !a || !b) {
|
|
ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER);
|
|
goto err;
|
|
}
|
|
if (!ctx)
|
|
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_mul(r, a, b, ctx))
|
|
goto err;
|
|
if (!group->field_mod_func(r, r, group->field, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_free(ctx_new);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_nist_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
if (!group || !r || !a) {
|
|
ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER);
|
|
goto err;
|
|
}
|
|
if (!ctx)
|
|
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_sqr(r, a, ctx))
|
|
goto err;
|
|
if (!group->field_mod_func(r, r, group->field, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_free(ctx_new);
|
|
return ret;
|
|
}
|