openssl/crypto/bn/asm/s390x-mont.pl
Matt Caswell 83cf7abf8e Update copyright year
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6371)
2018-05-29 13:16:04 +01:00

284 lines
6.8 KiB
Raku

#! /usr/bin/env perl
# Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# April 2007.
#
# Performance improvement over vanilla C code varies from 85% to 45%
# depending on key length and benchmark. Unfortunately in this context
# these are not very impressive results [for code that utilizes "wide"
# 64x64=128-bit multiplication, which is not commonly available to C
# programmers], at least hand-coded bn_asm.c replacement is known to
# provide 30-40% better results for longest keys. Well, on a second
# thought it's not very surprising, because z-CPUs are single-issue
# and _strictly_ in-order execution, while bn_mul_mont is more or less
# dependent on CPU ability to pipe-line instructions and have several
# of them "in-flight" at the same time. I mean while other methods,
# for example Karatsuba, aim to minimize amount of multiplications at
# the cost of other operations increase, bn_mul_mont aim to neatly
# "overlap" multiplications and the other operations [and on most
# platforms even minimize the amount of the other operations, in
# particular references to memory]. But it's possible to improve this
# module performance by implementing dedicated squaring code-path and
# possibly by unrolling loops...
# January 2009.
#
# Reschedule to minimize/avoid Address Generation Interlock hazard,
# make inner loops counter-based.
# November 2010.
#
# Adapt for -m31 build. If kernel supports what's called "highgprs"
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
# instructions and achieve "64-bit" performance even in 31-bit legacy
# application context. The feature is not specific to any particular
# processor, as long as it's "z-CPU". Latter implies that the code
# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
# is achieved by swapping words after 64-bit loads, follow _dswap-s.
# On z990 it was measured to perform 2.6-2.2 times better than
# compiler-generated code, less for longer keys...
$flavour = shift;
if ($flavour =~ /3[12]/) {
$SIZE_T=4;
$g="";
} else {
$SIZE_T=8;
$g="g";
}
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$stdframe=16*$SIZE_T+4*8;
$mn0="%r0";
$num="%r1";
# int bn_mul_mont(
$rp="%r2"; # BN_ULONG *rp,
$ap="%r3"; # const BN_ULONG *ap,
$bp="%r4"; # const BN_ULONG *bp,
$np="%r5"; # const BN_ULONG *np,
$n0="%r6"; # const BN_ULONG *n0,
#$num="160(%r15)" # int num);
$bi="%r2"; # zaps rp
$j="%r7";
$ahi="%r8";
$alo="%r9";
$nhi="%r10";
$nlo="%r11";
$AHI="%r12";
$NHI="%r13";
$count="%r14";
$sp="%r15";
$code.=<<___;
.text
.globl bn_mul_mont
.type bn_mul_mont,\@function
bn_mul_mont:
lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
la $bp,0($num,$bp)
st${g} %r2,2*$SIZE_T($sp)
cghi $num,16 #
lghi %r2,0 #
blr %r14 # if($num<16) return 0;
___
$code.=<<___ if ($flavour =~ /3[12]/);
tmll $num,4
bnzr %r14 # if ($num&1) return 0;
___
$code.=<<___ if ($flavour !~ /3[12]/);
cghi $num,96 #
bhr %r14 # if($num>96) return 0;
___
$code.=<<___;
stm${g} %r3,%r15,3*$SIZE_T($sp)
lghi $rp,-$stdframe-8 # leave room for carry bit
lcgr $j,$num # -$num
lgr %r0,$sp
la $rp,0($rp,$sp)
la $sp,0($j,$rp) # alloca
st${g} %r0,0($sp) # back chain
sra $num,3 # restore $num
la $bp,0($j,$bp) # restore $bp
ahi $num,-1 # adjust $num for inner loop
lg $n0,0($n0) # pull n0
_dswap $n0
lg $bi,0($bp)
_dswap $bi
lg $alo,0($ap)
_dswap $alo
mlgr $ahi,$bi # ap[0]*bp[0]
lgr $AHI,$ahi
lgr $mn0,$alo # "tp[0]"*n0
msgr $mn0,$n0
lg $nlo,0($np) #
_dswap $nlo
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
alcgr $NHI,$nhi
la $j,8(%r0) # j=1
lr $count,$num
.align 16
.L1st:
lg $alo,0($j,$ap)
_dswap $alo
mlgr $ahi,$bi # ap[j]*bp[0]
algr $alo,$AHI
lghi $AHI,0
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
_dswap $nlo
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
alcgr $nhi,$NHI # +="tp[j]"
algr $nlo,$alo
alcgr $NHI,$nhi
stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.L1st
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI # upmost overflow bit
stg $NHI,$stdframe-8($j,$sp)
stg $AHI,$stdframe($j,$sp)
la $bp,8($bp) # bp++
.Louter:
lg $bi,0($bp) # bp[i]
_dswap $bi
lg $alo,0($ap)
_dswap $alo
mlgr $ahi,$bi # ap[0]*bp[i]
alg $alo,$stdframe($sp) # +=tp[0]
lghi $AHI,0
alcgr $AHI,$ahi
lgr $mn0,$alo
msgr $mn0,$n0 # tp[0]*n0
lg $nlo,0($np) # np[0]
_dswap $nlo
mlgr $nhi,$mn0 # np[0]*m1
algr $nlo,$alo # +="tp[0]"
lghi $NHI,0
alcgr $NHI,$nhi
la $j,8(%r0) # j=1
lr $count,$num
.align 16
.Linner:
lg $alo,0($j,$ap)
_dswap $alo
mlgr $ahi,$bi # ap[j]*bp[i]
algr $alo,$AHI
lghi $AHI,0
alcgr $ahi,$AHI
alg $alo,$stdframe($j,$sp)# +=tp[j]
alcgr $AHI,$ahi
lg $nlo,0($j,$np)
_dswap $nlo
mlgr $nhi,$mn0 # np[j]*m1
algr $nlo,$NHI
lghi $NHI,0
alcgr $nhi,$NHI
algr $nlo,$alo # +="tp[j]"
alcgr $NHI,$nhi
stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
la $j,8($j) # j++
brct $count,.Linner
algr $NHI,$AHI
lghi $AHI,0
alcgr $AHI,$AHI
alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
lghi $ahi,0
alcgr $AHI,$ahi # new upmost overflow bit
stg $NHI,$stdframe-8($j,$sp)
stg $AHI,$stdframe($j,$sp)
la $bp,8($bp) # bp++
cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
jne .Louter
l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
la $ap,$stdframe($sp)
ahi $num,1 # restore $num, incidentally clears "borrow"
la $j,0(%r0)
lr $count,$num
.Lsub: lg $alo,0($j,$ap)
lg $nlo,0($j,$np)
_dswap $nlo
slbgr $alo,$nlo
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lsub
lghi $ahi,0
slbgr $AHI,$ahi # handle upmost carry
lghi $NHI,-1
xgr $NHI,$AHI
la $j,0(%r0)
lgr $count,$num
.Lcopy: lg $ahi,$stdframe($j,$sp) # conditional copy
lg $alo,0($j,$rp)
ngr $ahi,$AHI
ngr $alo,$NHI
ogr $alo,$ahi
_dswap $alo
stg $j,$stdframe($j,$sp) # zap tp
stg $alo,0($j,$rp)
la $j,8($j)
brct $count,.Lcopy
la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
lm${g} %r6,%r15,0(%r1)
lghi %r2,1 # signal "processed"
br %r14
.size bn_mul_mont,.-bn_mul_mont
.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
print $_,"\n";
}
close STDOUT;