609b0852e4
The prevailing style seems to not have trailing whitespace, but a few lines do. This is mostly in the perlasm files, but a few C files got them after the reformat. This is the result of: find . -name '*.pl' | xargs sed -E -i '' -e 's/( |'$'\t'')*$//' find . -name '*.c' | xargs sed -E -i '' -e 's/( |'$'\t'')*$//' find . -name '*.h' | xargs sed -E -i '' -e 's/( |'$'\t'')*$//' Then bn_prime.h was excluded since this is a generated file. Note mkerr.pl has some changes in a heredoc for some help output, but other lines there lack trailing whitespace too. Reviewed-by: Kurt Roeckx <kurt@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org>
434 lines
9.2 KiB
Raku
434 lines
9.2 KiB
Raku
#! /usr/bin/env perl
|
|
# Copyright 2007-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the OpenSSL license (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
#
|
|
# Hardware SPARC T4 support by David S. Miller <davem@davemloft.net>.
|
|
# ====================================================================
|
|
|
|
# Performance improvement is not really impressive on pre-T1 CPU: +8%
|
|
# over Sun C and +25% over gcc [3.3]. While on T1, a.k.a. Niagara, it
|
|
# turned to be 40% faster than 64-bit code generated by Sun C 5.8 and
|
|
# >2x than 64-bit code generated by gcc 3.4. And there is a gimmick.
|
|
# X[16] vector is packed to 8 64-bit registers and as result nothing
|
|
# is spilled on stack. In addition input data is loaded in compact
|
|
# instruction sequence, thus minimizing the window when the code is
|
|
# subject to [inter-thread] cache-thrashing hazard. The goal is to
|
|
# ensure scalability on UltraSPARC T1, or rather to avoid decay when
|
|
# amount of active threads exceeds the number of physical cores.
|
|
|
|
# SPARC T4 SHA1 hardware achieves 3.72 cycles per byte, which is 3.1x
|
|
# faster than software. Multi-process benchmark saturates at 11x
|
|
# single-process result on 8-core processor, or ~9GBps per 2.85GHz
|
|
# socket.
|
|
|
|
$output=pop;
|
|
open STDOUT,">$output";
|
|
|
|
@X=("%o0","%o1","%o2","%o3","%o4","%o5","%g1","%o7");
|
|
$rot1m="%g2";
|
|
$tmp64="%g3";
|
|
$Xi="%g4";
|
|
$A="%l0";
|
|
$B="%l1";
|
|
$C="%l2";
|
|
$D="%l3";
|
|
$E="%l4";
|
|
@V=($A,$B,$C,$D,$E);
|
|
$K_00_19="%l5";
|
|
$K_20_39="%l6";
|
|
$K_40_59="%l7";
|
|
$K_60_79="%g5";
|
|
@K=($K_00_19,$K_20_39,$K_40_59,$K_60_79);
|
|
|
|
$ctx="%i0";
|
|
$inp="%i1";
|
|
$len="%i2";
|
|
$tmp0="%i3";
|
|
$tmp1="%i4";
|
|
$tmp2="%i5";
|
|
|
|
sub BODY_00_15 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $xi=($i&1)?@X[($i/2)%8]:$Xi;
|
|
|
|
$code.=<<___;
|
|
sll $a,5,$tmp0 !! $i
|
|
add @K[$i/20],$e,$e
|
|
srl $a,27,$tmp1
|
|
add $tmp0,$e,$e
|
|
and $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
andn $d,$b,$tmp1
|
|
srl $b,2,$b
|
|
or $tmp1,$tmp0,$tmp1
|
|
or $tmp2,$b,$b
|
|
add $xi,$e,$e
|
|
___
|
|
if ($i&1 && $i<15) {
|
|
$code.=
|
|
" srlx @X[(($i+1)/2)%8],32,$Xi\n";
|
|
}
|
|
$code.=<<___;
|
|
add $tmp1,$e,$e
|
|
___
|
|
}
|
|
|
|
sub Xupdate {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $j=$i/2;
|
|
|
|
if ($i&1) {
|
|
$code.=<<___;
|
|
sll $a,5,$tmp0 !! $i
|
|
add @K[$i/20],$e,$e
|
|
srl $a,27,$tmp1
|
|
___
|
|
} else {
|
|
$code.=<<___;
|
|
sllx @X[($j+6)%8],32,$Xi ! Xupdate($i)
|
|
xor @X[($j+1)%8],@X[$j%8],@X[$j%8]
|
|
srlx @X[($j+7)%8],32,$tmp1
|
|
xor @X[($j+4)%8],@X[$j%8],@X[$j%8]
|
|
sll $a,5,$tmp0 !! $i
|
|
or $tmp1,$Xi,$Xi
|
|
add @K[$i/20],$e,$e !!
|
|
xor $Xi,@X[$j%8],@X[$j%8]
|
|
srlx @X[$j%8],31,$Xi
|
|
add @X[$j%8],@X[$j%8],@X[$j%8]
|
|
and $Xi,$rot1m,$Xi
|
|
andn @X[$j%8],$rot1m,@X[$j%8]
|
|
srl $a,27,$tmp1 !!
|
|
or $Xi,@X[$j%8],@X[$j%8]
|
|
___
|
|
}
|
|
}
|
|
|
|
sub BODY_16_19 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
|
|
&Xupdate(@_);
|
|
if ($i&1) {
|
|
$xi=@X[($i/2)%8];
|
|
} else {
|
|
$xi=$Xi;
|
|
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
|
|
}
|
|
$code.=<<___;
|
|
add $tmp0,$e,$e !!
|
|
and $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
add $xi,$e,$e
|
|
andn $d,$b,$tmp1
|
|
srl $b,2,$b
|
|
or $tmp1,$tmp0,$tmp1
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
___
|
|
}
|
|
|
|
sub BODY_20_39 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $xi;
|
|
&Xupdate(@_);
|
|
if ($i&1) {
|
|
$xi=@X[($i/2)%8];
|
|
} else {
|
|
$xi=$Xi;
|
|
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
|
|
}
|
|
$code.=<<___;
|
|
add $tmp0,$e,$e !!
|
|
xor $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
xor $d,$tmp0,$tmp1
|
|
srl $b,2,$b
|
|
add $tmp1,$e,$e
|
|
or $tmp2,$b,$b
|
|
add $xi,$e,$e
|
|
___
|
|
}
|
|
|
|
sub BODY_40_59 {
|
|
my ($i,$a,$b,$c,$d,$e)=@_;
|
|
my $xi;
|
|
&Xupdate(@_);
|
|
if ($i&1) {
|
|
$xi=@X[($i/2)%8];
|
|
} else {
|
|
$xi=$Xi;
|
|
$code.="\tsrlx @X[($i/2)%8],32,$xi\n";
|
|
}
|
|
$code.=<<___;
|
|
add $tmp0,$e,$e !!
|
|
and $c,$b,$tmp0
|
|
add $tmp1,$e,$e
|
|
sll $b,30,$tmp2
|
|
or $c,$b,$tmp1
|
|
srl $b,2,$b
|
|
and $d,$tmp1,$tmp1
|
|
add $xi,$e,$e
|
|
or $tmp1,$tmp0,$tmp1
|
|
or $tmp2,$b,$b
|
|
add $tmp1,$e,$e
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
#include "sparc_arch.h"
|
|
|
|
#ifdef __arch64__
|
|
.register %g2,#scratch
|
|
.register %g3,#scratch
|
|
#endif
|
|
|
|
.section ".text",#alloc,#execinstr
|
|
|
|
#ifdef __PIC__
|
|
SPARC_PIC_THUNK(%g1)
|
|
#endif
|
|
|
|
.align 32
|
|
.globl sha1_block_data_order
|
|
sha1_block_data_order:
|
|
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
|
|
ld [%g1+4],%g1 ! OPENSSL_sparcv9cap_P[1]
|
|
|
|
andcc %g1, CFR_SHA1, %g0
|
|
be .Lsoftware
|
|
nop
|
|
|
|
ld [%o0 + 0x00], %f0 ! load context
|
|
ld [%o0 + 0x04], %f1
|
|
ld [%o0 + 0x08], %f2
|
|
andcc %o1, 0x7, %g0
|
|
ld [%o0 + 0x0c], %f3
|
|
bne,pn %icc, .Lhwunaligned
|
|
ld [%o0 + 0x10], %f4
|
|
|
|
.Lhw_loop:
|
|
ldd [%o1 + 0x00], %f8
|
|
ldd [%o1 + 0x08], %f10
|
|
ldd [%o1 + 0x10], %f12
|
|
ldd [%o1 + 0x18], %f14
|
|
ldd [%o1 + 0x20], %f16
|
|
ldd [%o1 + 0x28], %f18
|
|
ldd [%o1 + 0x30], %f20
|
|
subcc %o2, 1, %o2 ! done yet?
|
|
ldd [%o1 + 0x38], %f22
|
|
add %o1, 0x40, %o1
|
|
prefetch [%o1 + 63], 20
|
|
|
|
.word 0x81b02820 ! SHA1
|
|
|
|
bne,pt SIZE_T_CC, .Lhw_loop
|
|
nop
|
|
|
|
.Lhwfinish:
|
|
st %f0, [%o0 + 0x00] ! store context
|
|
st %f1, [%o0 + 0x04]
|
|
st %f2, [%o0 + 0x08]
|
|
st %f3, [%o0 + 0x0c]
|
|
retl
|
|
st %f4, [%o0 + 0x10]
|
|
|
|
.align 8
|
|
.Lhwunaligned:
|
|
alignaddr %o1, %g0, %o1
|
|
|
|
ldd [%o1 + 0x00], %f10
|
|
.Lhwunaligned_loop:
|
|
ldd [%o1 + 0x08], %f12
|
|
ldd [%o1 + 0x10], %f14
|
|
ldd [%o1 + 0x18], %f16
|
|
ldd [%o1 + 0x20], %f18
|
|
ldd [%o1 + 0x28], %f20
|
|
ldd [%o1 + 0x30], %f22
|
|
ldd [%o1 + 0x38], %f24
|
|
subcc %o2, 1, %o2 ! done yet?
|
|
ldd [%o1 + 0x40], %f26
|
|
add %o1, 0x40, %o1
|
|
prefetch [%o1 + 63], 20
|
|
|
|
faligndata %f10, %f12, %f8
|
|
faligndata %f12, %f14, %f10
|
|
faligndata %f14, %f16, %f12
|
|
faligndata %f16, %f18, %f14
|
|
faligndata %f18, %f20, %f16
|
|
faligndata %f20, %f22, %f18
|
|
faligndata %f22, %f24, %f20
|
|
faligndata %f24, %f26, %f22
|
|
|
|
.word 0x81b02820 ! SHA1
|
|
|
|
bne,pt SIZE_T_CC, .Lhwunaligned_loop
|
|
for %f26, %f26, %f10 ! %f10=%f26
|
|
|
|
ba .Lhwfinish
|
|
nop
|
|
|
|
.align 16
|
|
.Lsoftware:
|
|
save %sp,-STACK_FRAME,%sp
|
|
sllx $len,6,$len
|
|
add $inp,$len,$len
|
|
|
|
or %g0,1,$rot1m
|
|
sllx $rot1m,32,$rot1m
|
|
or $rot1m,1,$rot1m
|
|
|
|
ld [$ctx+0],$A
|
|
ld [$ctx+4],$B
|
|
ld [$ctx+8],$C
|
|
ld [$ctx+12],$D
|
|
ld [$ctx+16],$E
|
|
andn $inp,7,$tmp0
|
|
|
|
sethi %hi(0x5a827999),$K_00_19
|
|
or $K_00_19,%lo(0x5a827999),$K_00_19
|
|
sethi %hi(0x6ed9eba1),$K_20_39
|
|
or $K_20_39,%lo(0x6ed9eba1),$K_20_39
|
|
sethi %hi(0x8f1bbcdc),$K_40_59
|
|
or $K_40_59,%lo(0x8f1bbcdc),$K_40_59
|
|
sethi %hi(0xca62c1d6),$K_60_79
|
|
or $K_60_79,%lo(0xca62c1d6),$K_60_79
|
|
|
|
.Lloop:
|
|
ldx [$tmp0+0],@X[0]
|
|
ldx [$tmp0+16],@X[2]
|
|
ldx [$tmp0+32],@X[4]
|
|
ldx [$tmp0+48],@X[6]
|
|
and $inp,7,$tmp1
|
|
ldx [$tmp0+8],@X[1]
|
|
sll $tmp1,3,$tmp1
|
|
ldx [$tmp0+24],@X[3]
|
|
subcc %g0,$tmp1,$tmp2 ! should be 64-$tmp1, but -$tmp1 works too
|
|
ldx [$tmp0+40],@X[5]
|
|
bz,pt %icc,.Laligned
|
|
ldx [$tmp0+56],@X[7]
|
|
|
|
sllx @X[0],$tmp1,@X[0]
|
|
ldx [$tmp0+64],$tmp64
|
|
___
|
|
for($i=0;$i<7;$i++)
|
|
{ $code.=<<___;
|
|
srlx @X[$i+1],$tmp2,$Xi
|
|
sllx @X[$i+1],$tmp1,@X[$i+1]
|
|
or $Xi,@X[$i],@X[$i]
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
srlx $tmp64,$tmp2,$tmp64
|
|
or $tmp64,@X[7],@X[7]
|
|
.Laligned:
|
|
srlx @X[0],32,$Xi
|
|
___
|
|
for ($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
|
|
for (;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
|
|
ld [$ctx+0],@X[0]
|
|
ld [$ctx+4],@X[1]
|
|
ld [$ctx+8],@X[2]
|
|
ld [$ctx+12],@X[3]
|
|
add $inp,64,$inp
|
|
ld [$ctx+16],@X[4]
|
|
cmp $inp,$len
|
|
|
|
add $A,@X[0],$A
|
|
st $A,[$ctx+0]
|
|
add $B,@X[1],$B
|
|
st $B,[$ctx+4]
|
|
add $C,@X[2],$C
|
|
st $C,[$ctx+8]
|
|
add $D,@X[3],$D
|
|
st $D,[$ctx+12]
|
|
add $E,@X[4],$E
|
|
st $E,[$ctx+16]
|
|
|
|
bne SIZE_T_CC,.Lloop
|
|
andn $inp,7,$tmp0
|
|
|
|
ret
|
|
restore
|
|
.type sha1_block_data_order,#function
|
|
.size sha1_block_data_order,(.-sha1_block_data_order)
|
|
.asciz "SHA1 block transform for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 4
|
|
___
|
|
|
|
# Purpose of these subroutines is to explicitly encode VIS instructions,
|
|
# so that one can compile the module without having to specify VIS
|
|
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
|
|
# Idea is to reserve for option to produce "universal" binary and let
|
|
# programmer detect if current CPU is VIS capable at run-time.
|
|
sub unvis {
|
|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
|
my $ref,$opf;
|
|
my %visopf = ( "faligndata" => 0x048,
|
|
"for" => 0x07c );
|
|
|
|
$ref = "$mnemonic\t$rs1,$rs2,$rd";
|
|
|
|
if ($opf=$visopf{$mnemonic}) {
|
|
foreach ($rs1,$rs2,$rd) {
|
|
return $ref if (!/%f([0-9]{1,2})/);
|
|
$_=$1;
|
|
if ($1>=32) {
|
|
return $ref if ($1&1);
|
|
# re-encode for upper double register addressing
|
|
$_=($1|$1>>5)&31;
|
|
}
|
|
}
|
|
|
|
return sprintf ".word\t0x%08x !%s",
|
|
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
|
|
$ref;
|
|
} else {
|
|
return $ref;
|
|
}
|
|
}
|
|
sub unalignaddr {
|
|
my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
|
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
|
|
my $ref="$mnemonic\t$rs1,$rs2,$rd";
|
|
|
|
foreach ($rs1,$rs2,$rd) {
|
|
if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
|
|
else { return $ref; }
|
|
}
|
|
return sprintf ".word\t0x%08x !%s",
|
|
0x81b00300|$rd<<25|$rs1<<14|$rs2,
|
|
$ref;
|
|
}
|
|
|
|
foreach (split("\n",$code)) {
|
|
s/\`([^\`]*)\`/eval $1/ge;
|
|
|
|
s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
|
|
&unvis($1,$2,$3,$4)
|
|
/ge;
|
|
s/\b(alignaddr)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
|
|
&unalignaddr($1,$2,$3,$4)
|
|
/ge;
|
|
|
|
print $_,"\n";
|
|
}
|
|
|
|
close STDOUT;
|