e0033efc30
This commit adds a dedicated function in `EC_METHOD` to access a modular field inversion implementation suitable for the specifics of the implemented curve, featuring SCA countermeasures. The new pointer is defined as: `int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)` and computes the multiplicative inverse of `a` in the underlying field, storing the result in `r`. Three implementations are included, each including specific SCA countermeasures: - `ec_GFp_simple_field_inv()`, featuring SCA hardening through blinding. - `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's Little Theorem (FLT) inversion. - `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which already features SCA hardening through blinding. From a security point of view, this also helps addressing a leakage previously affecting conversions from projective to affine coordinates. This commit also adds a new error reason code (i.e., `EC_R_CANNOT_INVERT`) to improve consistency between the three implementations as all of them could fail for the same reason but through different code paths resulting in inconsistent error stack states. Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com> Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com> (Merged from https://github.com/openssl/openssl/pull/8254)
168 lines
4.8 KiB
C
168 lines
4.8 KiB
C
/*
|
|
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/obj_mac.h>
|
|
#include "ec_lcl.h"
|
|
|
|
const EC_METHOD *EC_GFp_nist_method(void)
|
|
{
|
|
static const EC_METHOD ret = {
|
|
EC_FLAGS_DEFAULT_OCT,
|
|
NID_X9_62_prime_field,
|
|
ec_GFp_simple_group_init,
|
|
ec_GFp_simple_group_finish,
|
|
ec_GFp_simple_group_clear_finish,
|
|
ec_GFp_nist_group_copy,
|
|
ec_GFp_nist_group_set_curve,
|
|
ec_GFp_simple_group_get_curve,
|
|
ec_GFp_simple_group_get_degree,
|
|
ec_group_simple_order_bits,
|
|
ec_GFp_simple_group_check_discriminant,
|
|
ec_GFp_simple_point_init,
|
|
ec_GFp_simple_point_finish,
|
|
ec_GFp_simple_point_clear_finish,
|
|
ec_GFp_simple_point_copy,
|
|
ec_GFp_simple_point_set_to_infinity,
|
|
ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
|
ec_GFp_simple_point_set_affine_coordinates,
|
|
ec_GFp_simple_point_get_affine_coordinates,
|
|
0, 0, 0,
|
|
ec_GFp_simple_add,
|
|
ec_GFp_simple_dbl,
|
|
ec_GFp_simple_invert,
|
|
ec_GFp_simple_is_at_infinity,
|
|
ec_GFp_simple_is_on_curve,
|
|
ec_GFp_simple_cmp,
|
|
ec_GFp_simple_make_affine,
|
|
ec_GFp_simple_points_make_affine,
|
|
0 /* mul */ ,
|
|
0 /* precompute_mult */ ,
|
|
0 /* have_precompute_mult */ ,
|
|
ec_GFp_nist_field_mul,
|
|
ec_GFp_nist_field_sqr,
|
|
0 /* field_div */ ,
|
|
ec_GFp_simple_field_inv,
|
|
0 /* field_encode */ ,
|
|
0 /* field_decode */ ,
|
|
0, /* field_set_to_one */
|
|
ec_key_simple_priv2oct,
|
|
ec_key_simple_oct2priv,
|
|
0, /* set private */
|
|
ec_key_simple_generate_key,
|
|
ec_key_simple_check_key,
|
|
ec_key_simple_generate_public_key,
|
|
0, /* keycopy */
|
|
0, /* keyfinish */
|
|
ecdh_simple_compute_key,
|
|
0, /* field_inverse_mod_ord */
|
|
ec_GFp_simple_blind_coordinates,
|
|
ec_GFp_simple_ladder_pre,
|
|
ec_GFp_simple_ladder_step,
|
|
ec_GFp_simple_ladder_post
|
|
};
|
|
|
|
return &ret;
|
|
}
|
|
|
|
int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
|
{
|
|
dest->field_mod_func = src->field_mod_func;
|
|
|
|
return ec_GFp_simple_group_copy(dest, src);
|
|
}
|
|
|
|
int ec_GFp_nist_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
if (ctx == NULL)
|
|
if ((ctx = new_ctx = BN_CTX_new()) == NULL)
|
|
return 0;
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if (BN_ucmp(BN_get0_nist_prime_192(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_192;
|
|
else if (BN_ucmp(BN_get0_nist_prime_224(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_224;
|
|
else if (BN_ucmp(BN_get0_nist_prime_256(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_256;
|
|
else if (BN_ucmp(BN_get0_nist_prime_384(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_384;
|
|
else if (BN_ucmp(BN_get0_nist_prime_521(), p) == 0)
|
|
group->field_mod_func = BN_nist_mod_521;
|
|
else {
|
|
ECerr(EC_F_EC_GFP_NIST_GROUP_SET_CURVE, EC_R_NOT_A_NIST_PRIME);
|
|
goto err;
|
|
}
|
|
|
|
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(new_ctx);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_nist_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
if (!group || !r || !a || !b) {
|
|
ECerr(EC_F_EC_GFP_NIST_FIELD_MUL, ERR_R_PASSED_NULL_PARAMETER);
|
|
goto err;
|
|
}
|
|
if (!ctx)
|
|
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_mul(r, a, b, ctx))
|
|
goto err;
|
|
if (!group->field_mod_func(r, r, group->field, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_free(ctx_new);
|
|
return ret;
|
|
}
|
|
|
|
int ec_GFp_nist_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
BN_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
BN_CTX *ctx_new = NULL;
|
|
|
|
if (!group || !r || !a) {
|
|
ECerr(EC_F_EC_GFP_NIST_FIELD_SQR, EC_R_PASSED_NULL_PARAMETER);
|
|
goto err;
|
|
}
|
|
if (!ctx)
|
|
if ((ctx_new = ctx = BN_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
if (!BN_sqr(r, a, ctx))
|
|
goto err;
|
|
if (!group->field_mod_func(r, r, group->field, ctx))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
BN_CTX_free(ctx_new);
|
|
return ret;
|
|
}
|