openssl/crypto/rand/rand_unix.c
Dr. Matthias St. Pierre ad416c8058 Revert the DEVRANDOM_WAIT feature
The DEVRANDOM_WAIT feature added a select() call to wait for the
`/dev/random` device to become readable before reading from the
`/dev/urandom` device. It was introduced in commit 38023b87f0
in order to mitigate the fact that the `/dev/urandom` device
does not block until the initial seeding of the kernel CSPRNG
has completed, contrary to the behaviour of the `getrandom()`
system call.

It turned out that this change had negative side effects on
performance which were not acceptable. After some discussion it
was decided to revert this feature and leave it up to the OS
resp. the platform maintainer to ensure a proper initialization
during early boot time.

Fixes #9078

This partially reverts commit 38023b87f0.

Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>

(cherry picked from commit a08714e181)

(Merged from https://github.com/openssl/openssl/pull/9118)
2019-06-09 09:53:39 +02:00

707 lines
20 KiB
C

/*
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
#include "e_os.h"
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/rand.h>
#include "rand_lcl.h"
#include "internal/rand_int.h"
#include <stdio.h>
#include "internal/dso.h"
#if defined(__linux)
# include <asm/unistd.h>
#endif
#if defined(__FreeBSD__)
# include <sys/types.h>
# include <sys/sysctl.h>
# include <sys/param.h>
#endif
#if defined(__OpenBSD__) || defined(__NetBSD__)
# include <sys/param.h>
#endif
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
# include <sys/types.h>
# include <sys/stat.h>
# include <fcntl.h>
# include <unistd.h>
# include <sys/time.h>
static uint64_t get_time_stamp(void);
static uint64_t get_timer_bits(void);
/* Macro to convert two thirty two bit values into a sixty four bit one */
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
/*
* Check for the existence and support of POSIX timers. The standard
* says that the _POSIX_TIMERS macro will have a positive value if they
* are available.
*
* However, we want an additional constraint: that the timer support does
* not require an extra library dependency. Early versions of glibc
* require -lrt to be specified on the link line to access the timers,
* so this needs to be checked for.
*
* It is worse because some libraries define __GLIBC__ but don't
* support the version testing macro (e.g. uClibc). This means
* an extra check is needed.
*
* The final condition is:
* "have posix timers and either not glibc or glibc without -lrt"
*
* The nested #if sequences are required to avoid using a parameterised
* macro that might be undefined.
*/
# undef OSSL_POSIX_TIMER_OKAY
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
# if defined(__GLIBC__)
# if defined(__GLIBC_PREREQ)
# if __GLIBC_PREREQ(2, 17)
# define OSSL_POSIX_TIMER_OKAY
# endif
# endif
# else
# define OSSL_POSIX_TIMER_OKAY
# endif
# endif
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
#if defined(OPENSSL_RAND_SEED_NONE)
/* none means none. this simplifies the following logic */
# undef OPENSSL_RAND_SEED_OS
# undef OPENSSL_RAND_SEED_GETRANDOM
# undef OPENSSL_RAND_SEED_LIBRANDOM
# undef OPENSSL_RAND_SEED_DEVRANDOM
# undef OPENSSL_RAND_SEED_RDTSC
# undef OPENSSL_RAND_SEED_RDCPU
# undef OPENSSL_RAND_SEED_EGD
#endif
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
!defined(OPENSSL_RAND_SEED_NONE)
# error "UEFI and VXWorks only support seeding NONE"
#endif
#if defined(OPENSSL_SYS_VXWORKS)
/* empty implementation */
int rand_pool_init(void)
{
return 1;
}
void rand_pool_cleanup(void)
{
}
void rand_pool_keep_random_devices_open(int keep)
{
}
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
return rand_pool_entropy_available(pool);
}
#endif
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|| defined(OPENSSL_SYS_UEFI))
# if defined(OPENSSL_SYS_VOS)
# ifndef OPENSSL_RAND_SEED_OS
# error "Unsupported seeding method configured; must be os"
# endif
# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
# error "Unsupported HP-PA and IA32 at the same time."
# endif
# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
# error "Must have one of HP-PA or IA32"
# endif
/*
* The following algorithm repeatedly samples the real-time clock (RTC) to
* generate a sequence of unpredictable data. The algorithm relies upon the
* uneven execution speed of the code (due to factors such as cache misses,
* interrupts, bus activity, and scheduling) and upon the rather large
* relative difference between the speed of the clock and the rate at which
* it can be read. If it is ported to an environment where execution speed
* is more constant or where the RTC ticks at a much slower rate, or the
* clock can be read with fewer instructions, it is likely that the results
* would be far more predictable. This should only be used for legacy
* platforms.
*
* As a precaution, we assume only 2 bits of entropy per byte.
*/
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
short int code;
int i, k;
size_t bytes_needed;
struct timespec ts;
unsigned char v;
# ifdef OPENSSL_SYS_VOS_HPPA
long duration;
extern void s$sleep(long *_duration, short int *_code);
# else
long long duration;
extern void s$sleep2(long long *_duration, short int *_code);
# endif
bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
for (i = 0; i < bytes_needed; i++) {
/*
* burn some cpu; hope for interrupts, cache collisions, bus
* interference, etc.
*/
for (k = 0; k < 99; k++)
ts.tv_nsec = random();
# ifdef OPENSSL_SYS_VOS_HPPA
/* sleep for 1/1024 of a second (976 us). */
duration = 1;
s$sleep(&duration, &code);
# else
/* sleep for 1/65536 of a second (15 us). */
duration = 1;
s$sleep2(&duration, &code);
# endif
/* Get wall clock time, take 8 bits. */
clock_gettime(CLOCK_REALTIME, &ts);
v = (unsigned char)(ts.tv_nsec & 0xFF);
rand_pool_add(pool, arg, &v, sizeof(v) , 2);
}
return rand_pool_entropy_available(pool);
}
void rand_pool_cleanup(void)
{
}
void rand_pool_keep_random_devices_open(int keep)
{
}
# else
# if defined(OPENSSL_RAND_SEED_EGD) && \
(defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
# error "Seeding uses EGD but EGD is turned off or no device given"
# endif
# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
# error "Seeding uses urandom but DEVRANDOM is not configured"
# endif
# if defined(OPENSSL_RAND_SEED_OS)
# if !defined(DEVRANDOM)
# error "OS seeding requires DEVRANDOM to be configured"
# endif
# define OPENSSL_RAND_SEED_GETRANDOM
# define OPENSSL_RAND_SEED_DEVRANDOM
# endif
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
# error "librandom not (yet) supported"
# endif
# if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
/*
* sysctl_random(): Use sysctl() to read a random number from the kernel
* Returns the number of bytes returned in buf on success, -1 on failure.
*/
static ssize_t sysctl_random(char *buf, size_t buflen)
{
int mib[2];
size_t done = 0;
size_t len;
/*
* Note: sign conversion between size_t and ssize_t is safe even
* without a range check, see comment in syscall_random()
*/
/*
* On FreeBSD old implementations returned longs, newer versions support
* variable sizes up to 256 byte. The code below would not work properly
* when the sysctl returns long and we want to request something not a
* multiple of longs, which should never be the case.
*/
if (!ossl_assert(buflen % sizeof(long) == 0)) {
errno = EINVAL;
return -1;
}
/*
* On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
* filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
* it returns a variable number of bytes with the current version supporting
* up to 256 bytes.
* Just return an error on older NetBSD versions.
*/
#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
errno = ENOSYS;
return -1;
#endif
mib[0] = CTL_KERN;
mib[1] = KERN_ARND;
do {
len = buflen;
if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
return done > 0 ? done : -1;
done += len;
buf += len;
buflen -= len;
} while (buflen > 0);
return done;
}
# endif
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
/*
* syscall_random(): Try to get random data using a system call
* returns the number of bytes returned in buf, or < 0 on error.
*/
static ssize_t syscall_random(void *buf, size_t buflen)
{
/*
* Note: 'buflen' equals the size of the buffer which is used by the
* get_entropy() callback of the RAND_DRBG. It is roughly bounded by
*
* 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
*
* which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
* between size_t and ssize_t is safe even without a range check.
*/
/*
* Do runtime detection to find getentropy().
*
* Known OSs that should support this:
* - Darwin since 16 (OSX 10.12, IOS 10.0).
* - Solaris since 11.3
* - OpenBSD since 5.6
* - Linux since 3.17 with glibc 2.25
* - FreeBSD since 12.0 (1200061)
*/
# if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
extern int getentropy(void *buffer, size_t length) __attribute__((weak));
if (getentropy != NULL)
return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
# else
union {
void *p;
int (*f)(void *buffer, size_t length);
} p_getentropy;
/*
* We could cache the result of the lookup, but we normally don't
* call this function often.
*/
ERR_set_mark();
p_getentropy.p = DSO_global_lookup("getentropy");
ERR_pop_to_mark();
if (p_getentropy.p != NULL)
return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
# endif
/* Linux supports this since version 3.17 */
# if defined(__linux) && defined(__NR_getrandom)
return syscall(__NR_getrandom, buf, buflen, 0);
# elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
return sysctl_random(buf, buflen);
# else
errno = ENOSYS;
return -1;
# endif
}
# endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
static const char *random_device_paths[] = { DEVRANDOM };
static struct random_device {
int fd;
dev_t dev;
ino_t ino;
mode_t mode;
dev_t rdev;
} random_devices[OSSL_NELEM(random_device_paths)];
static int keep_random_devices_open = 1;
/*
* Verify that the file descriptor associated with the random source is
* still valid. The rationale for doing this is the fact that it is not
* uncommon for daemons to close all open file handles when daemonizing.
* So the handle might have been closed or even reused for opening
* another file.
*/
static int check_random_device(struct random_device * rd)
{
struct stat st;
return rd->fd != -1
&& fstat(rd->fd, &st) != -1
&& rd->dev == st.st_dev
&& rd->ino == st.st_ino
&& ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
&& rd->rdev == st.st_rdev;
}
/*
* Open a random device if required and return its file descriptor or -1 on error
*/
static int get_random_device(size_t n)
{
struct stat st;
struct random_device * rd = &random_devices[n];
/* reuse existing file descriptor if it is (still) valid */
if (check_random_device(rd))
return rd->fd;
/* open the random device ... */
if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
return rd->fd;
/* ... and cache its relevant stat(2) data */
if (fstat(rd->fd, &st) != -1) {
rd->dev = st.st_dev;
rd->ino = st.st_ino;
rd->mode = st.st_mode;
rd->rdev = st.st_rdev;
} else {
close(rd->fd);
rd->fd = -1;
}
return rd->fd;
}
/*
* Close a random device making sure it is a random device
*/
static void close_random_device(size_t n)
{
struct random_device * rd = &random_devices[n];
if (check_random_device(rd))
close(rd->fd);
rd->fd = -1;
}
int rand_pool_init(void)
{
size_t i;
for (i = 0; i < OSSL_NELEM(random_devices); i++)
random_devices[i].fd = -1;
return 1;
}
void rand_pool_cleanup(void)
{
size_t i;
for (i = 0; i < OSSL_NELEM(random_devices); i++)
close_random_device(i);
}
void rand_pool_keep_random_devices_open(int keep)
{
if (!keep)
rand_pool_cleanup();
keep_random_devices_open = keep;
}
# else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
int rand_pool_init(void)
{
return 1;
}
void rand_pool_cleanup(void)
{
}
void rand_pool_keep_random_devices_open(int keep)
{
}
# endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
/*
* Try the various seeding methods in turn, exit when successful.
*
* TODO(DRBG): If more than one entropy source is available, is it
* preferable to stop as soon as enough entropy has been collected
* (as favored by @rsalz) or should one rather be defensive and add
* more entropy than requested and/or from different sources?
*
* Currently, the user can select multiple entropy sources in the
* configure step, yet in practice only the first available source
* will be used. A more flexible solution has been requested, but
* currently it is not clear how this can be achieved without
* overengineering the problem. There are many parameters which
* could be taken into account when selecting the order and amount
* of input from the different entropy sources (trust, quality,
* possibility of blocking).
*/
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
{
# if defined(OPENSSL_RAND_SEED_NONE)
return rand_pool_entropy_available(pool);
# else
size_t bytes_needed;
size_t entropy_available = 0;
unsigned char *buffer;
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
{
ssize_t bytes;
/* Maximum allowed number of consecutive unsuccessful attempts */
int attempts = 3;
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
while (bytes_needed != 0 && attempts-- > 0) {
buffer = rand_pool_add_begin(pool, bytes_needed);
bytes = syscall_random(buffer, bytes_needed);
if (bytes > 0) {
rand_pool_add_end(pool, bytes, 8 * bytes);
bytes_needed -= bytes;
attempts = 3; /* reset counter after successful attempt */
} else if (bytes < 0 && errno != EINTR) {
break;
}
}
}
entropy_available = rand_pool_entropy_available(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
{
/* Not yet implemented. */
}
# endif
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
{
size_t i;
for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) {
ssize_t bytes = 0;
/* Maximum allowed number of consecutive unsuccessful attempts */
int attempts = 3;
const int fd = get_random_device(i);
if (fd == -1)
continue;
while (bytes_needed != 0 && attempts-- > 0) {
buffer = rand_pool_add_begin(pool, bytes_needed);
bytes = read(fd, buffer, bytes_needed);
if (bytes > 0) {
rand_pool_add_end(pool, bytes, 8 * bytes);
bytes_needed -= bytes;
attempts = 3; /* reset counter after successful attempt */
} else if (bytes < 0 && errno != EINTR) {
break;
}
}
if (bytes < 0 || !keep_random_devices_open)
close_random_device(i);
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
}
entropy_available = rand_pool_entropy_available(pool);
if (entropy_available > 0)
return entropy_available;
}
# endif
# if defined(OPENSSL_RAND_SEED_RDTSC)
entropy_available = rand_acquire_entropy_from_tsc(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# if defined(OPENSSL_RAND_SEED_RDCPU)
entropy_available = rand_acquire_entropy_from_cpu(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# if defined(OPENSSL_RAND_SEED_EGD)
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
if (bytes_needed > 0) {
static const char *paths[] = { DEVRANDOM_EGD, NULL };
int i;
for (i = 0; paths[i] != NULL; i++) {
buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
int num = RAND_query_egd_bytes(paths[i],
buffer, (int)bytes_needed);
if (num == (int)bytes_needed)
bytes = bytes_needed;
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
if (entropy_available > 0)
return entropy_available;
}
}
# endif
return rand_pool_entropy_available(pool);
# endif
}
# endif
#endif
#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
int rand_pool_add_nonce_data(RAND_POOL *pool)
{
struct {
pid_t pid;
CRYPTO_THREAD_ID tid;
uint64_t time;
} data = { 0 };
/*
* Add process id, thread id, and a high resolution timestamp to
* ensure that the nonce is unique with high probability for
* different process instances.
*/
data.pid = getpid();
data.tid = CRYPTO_THREAD_get_current_id();
data.time = get_time_stamp();
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
int rand_pool_add_additional_data(RAND_POOL *pool)
{
struct {
CRYPTO_THREAD_ID tid;
uint64_t time;
} data = { 0 };
/*
* Add some noise from the thread id and a high resolution timer.
* The thread id adds a little randomness if the drbg is accessed
* concurrently (which is the case for the <master> drbg).
*/
data.tid = CRYPTO_THREAD_get_current_id();
data.time = get_timer_bits();
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
}
/*
* Get the current time with the highest possible resolution
*
* The time stamp is added to the nonce, so it is optimized for not repeating.
* The current time is ideal for this purpose, provided the computer's clock
* is synchronized.
*/
static uint64_t get_time_stamp(void)
{
# if defined(OSSL_POSIX_TIMER_OKAY)
{
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
}
# endif
# if defined(__unix__) \
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
{
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
return TWO32TO64(tv.tv_sec, tv.tv_usec);
}
# endif
return time(NULL);
}
/*
* Get an arbitrary timer value of the highest possible resolution
*
* The timer value is added as random noise to the additional data,
* which is not considered a trusted entropy sourec, so any result
* is acceptable.
*/
static uint64_t get_timer_bits(void)
{
uint64_t res = OPENSSL_rdtsc();
if (res != 0)
return res;
# if defined(__sun) || defined(__hpux)
return gethrtime();
# elif defined(_AIX)
{
timebasestruct_t t;
read_wall_time(&t, TIMEBASE_SZ);
return TWO32TO64(t.tb_high, t.tb_low);
}
# elif defined(OSSL_POSIX_TIMER_OKAY)
{
struct timespec ts;
# ifdef CLOCK_BOOTTIME
# define CLOCK_TYPE CLOCK_BOOTTIME
# elif defined(_POSIX_MONOTONIC_CLOCK)
# define CLOCK_TYPE CLOCK_MONOTONIC
# else
# define CLOCK_TYPE CLOCK_REALTIME
# endif
if (clock_gettime(CLOCK_TYPE, &ts) == 0)
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
}
# endif
# if defined(__unix__) \
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
{
struct timeval tv;
if (gettimeofday(&tv, NULL) == 0)
return TWO32TO64(tv.tv_sec, tv.tv_usec);
}
# endif
return time(NULL);
}
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */