openssl/ssl/t1_lib.c
Dr. Stephen Henson 33f653adf3 New extension callback features.
Support separate parse and add callback arguments.
Add new callback so an application can free extension data.
Change return value for send functions so < 0 is an error 0
omits extension and > 0 includes it. This is more consistent
with the behaviour of other functions in OpenSSL.

Modify parse_cb handling so <= 0 is an error.

Make SSL_CTX_set_custom_cli_ext and SSL_CTX_set_custom_cli_ext argument
order consistent.

NOTE: these changes WILL break existing code.

Remove (now inaccurate) in line documentation.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
2014-08-28 17:06:53 +01:00

4639 lines
118 KiB
C

/* ssl/t1_lib.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/ocsp.h>
#include <openssl/rand.h>
#ifndef OPENSSL_NO_DH
#include <openssl/dh.h>
#include <openssl/bn.h>
#endif
#include "ssl_locl.h"
const char tls1_version_str[]="TLSv1" OPENSSL_VERSION_PTEXT;
#ifndef OPENSSL_NO_TLSEXT
static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
const unsigned char *sess_id, int sesslen,
SSL_SESSION **psess);
static int ssl_check_clienthello_tlsext_early(SSL *s);
int ssl_check_serverhello_tlsext(SSL *s);
#endif
SSL3_ENC_METHOD const TLSv1_enc_data={
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
0,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_1_enc_data={
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_2_enc_data={
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF
|SSL_ENC_FLAG_TLS1_2_CIPHERS,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write
};
long tls1_default_timeout(void)
{
/* 2 hours, the 24 hours mentioned in the TLSv1 spec
* is way too long for http, the cache would over fill */
return(60*60*2);
}
int tls1_new(SSL *s)
{
if (!ssl3_new(s)) return(0);
s->method->ssl_clear(s);
return(1);
}
void tls1_free(SSL *s)
{
#ifndef OPENSSL_NO_TLSEXT
if (s->tlsext_session_ticket)
{
OPENSSL_free(s->tlsext_session_ticket);
}
#endif /* OPENSSL_NO_TLSEXT */
ssl3_free(s);
}
void tls1_clear(SSL *s)
{
ssl3_clear(s);
s->version = s->method->version;
}
#ifndef OPENSSL_NO_EC
typedef struct
{
int nid; /* Curve NID */
int secbits; /* Bits of security (from SP800-57) */
unsigned int flags; /* Flags: currently just field type */
} tls_curve_info;
#define TLS_CURVE_CHAR2 0x1
#define TLS_CURVE_PRIME 0x0
static const tls_curve_info nid_list[] =
{
{NID_sect163k1, 80, TLS_CURVE_CHAR2},/* sect163k1 (1) */
{NID_sect163r1, 80, TLS_CURVE_CHAR2},/* sect163r1 (2) */
{NID_sect163r2, 80, TLS_CURVE_CHAR2},/* sect163r2 (3) */
{NID_sect193r1, 80, TLS_CURVE_CHAR2},/* sect193r1 (4) */
{NID_sect193r2, 80, TLS_CURVE_CHAR2},/* sect193r2 (5) */
{NID_sect233k1, 112, TLS_CURVE_CHAR2},/* sect233k1 (6) */
{NID_sect233r1, 112, TLS_CURVE_CHAR2},/* sect233r1 (7) */
{NID_sect239k1, 112, TLS_CURVE_CHAR2},/* sect239k1 (8) */
{NID_sect283k1, 128, TLS_CURVE_CHAR2},/* sect283k1 (9) */
{NID_sect283r1, 128, TLS_CURVE_CHAR2},/* sect283r1 (10) */
{NID_sect409k1, 192, TLS_CURVE_CHAR2},/* sect409k1 (11) */
{NID_sect409r1, 192, TLS_CURVE_CHAR2},/* sect409r1 (12) */
{NID_sect571k1, 256, TLS_CURVE_CHAR2},/* sect571k1 (13) */
{NID_sect571r1, 256, TLS_CURVE_CHAR2},/* sect571r1 (14) */
{NID_secp160k1, 80, TLS_CURVE_PRIME},/* secp160k1 (15) */
{NID_secp160r1, 80, TLS_CURVE_PRIME},/* secp160r1 (16) */
{NID_secp160r2, 80, TLS_CURVE_PRIME},/* secp160r2 (17) */
{NID_secp192k1, 80, TLS_CURVE_PRIME},/* secp192k1 (18) */
{NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME},/* secp192r1 (19) */
{NID_secp224k1, 112, TLS_CURVE_PRIME},/* secp224k1 (20) */
{NID_secp224r1, 112, TLS_CURVE_PRIME},/* secp224r1 (21) */
{NID_secp256k1, 128, TLS_CURVE_PRIME},/* secp256k1 (22) */
{NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME},/* secp256r1 (23) */
{NID_secp384r1, 192, TLS_CURVE_PRIME},/* secp384r1 (24) */
{NID_secp521r1, 256, TLS_CURVE_PRIME},/* secp521r1 (25) */
{NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
{NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
{NID_brainpoolP512r1, 256, TLS_CURVE_PRIME},/* brainpool512r1 (28) */
};
static const unsigned char ecformats_default[] =
{
TLSEXT_ECPOINTFORMAT_uncompressed,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
};
static const unsigned char eccurves_default[] =
{
0,14, /* sect571r1 (14) */
0,13, /* sect571k1 (13) */
0,25, /* secp521r1 (25) */
0,28, /* brainpool512r1 (28) */
0,11, /* sect409k1 (11) */
0,12, /* sect409r1 (12) */
0,27, /* brainpoolP384r1 (27) */
0,24, /* secp384r1 (24) */
0,9, /* sect283k1 (9) */
0,10, /* sect283r1 (10) */
0,26, /* brainpoolP256r1 (26) */
0,22, /* secp256k1 (22) */
0,23, /* secp256r1 (23) */
0,8, /* sect239k1 (8) */
0,6, /* sect233k1 (6) */
0,7, /* sect233r1 (7) */
0,20, /* secp224k1 (20) */
0,21, /* secp224r1 (21) */
0,4, /* sect193r1 (4) */
0,5, /* sect193r2 (5) */
0,18, /* secp192k1 (18) */
0,19, /* secp192r1 (19) */
0,1, /* sect163k1 (1) */
0,2, /* sect163r1 (2) */
0,3, /* sect163r2 (3) */
0,15, /* secp160k1 (15) */
0,16, /* secp160r1 (16) */
0,17, /* secp160r2 (17) */
};
static const unsigned char suiteb_curves[] =
{
0, TLSEXT_curve_P_256,
0, TLSEXT_curve_P_384
};
int tls1_ec_curve_id2nid(int curve_id)
{
/* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */
if ((curve_id < 1) || ((unsigned int)curve_id >
sizeof(nid_list)/sizeof(nid_list[0])))
return 0;
return nid_list[curve_id-1].nid;
}
int tls1_ec_nid2curve_id(int nid)
{
/* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */
switch (nid)
{
case NID_sect163k1: /* sect163k1 (1) */
return 1;
case NID_sect163r1: /* sect163r1 (2) */
return 2;
case NID_sect163r2: /* sect163r2 (3) */
return 3;
case NID_sect193r1: /* sect193r1 (4) */
return 4;
case NID_sect193r2: /* sect193r2 (5) */
return 5;
case NID_sect233k1: /* sect233k1 (6) */
return 6;
case NID_sect233r1: /* sect233r1 (7) */
return 7;
case NID_sect239k1: /* sect239k1 (8) */
return 8;
case NID_sect283k1: /* sect283k1 (9) */
return 9;
case NID_sect283r1: /* sect283r1 (10) */
return 10;
case NID_sect409k1: /* sect409k1 (11) */
return 11;
case NID_sect409r1: /* sect409r1 (12) */
return 12;
case NID_sect571k1: /* sect571k1 (13) */
return 13;
case NID_sect571r1: /* sect571r1 (14) */
return 14;
case NID_secp160k1: /* secp160k1 (15) */
return 15;
case NID_secp160r1: /* secp160r1 (16) */
return 16;
case NID_secp160r2: /* secp160r2 (17) */
return 17;
case NID_secp192k1: /* secp192k1 (18) */
return 18;
case NID_X9_62_prime192v1: /* secp192r1 (19) */
return 19;
case NID_secp224k1: /* secp224k1 (20) */
return 20;
case NID_secp224r1: /* secp224r1 (21) */
return 21;
case NID_secp256k1: /* secp256k1 (22) */
return 22;
case NID_X9_62_prime256v1: /* secp256r1 (23) */
return 23;
case NID_secp384r1: /* secp384r1 (24) */
return 24;
case NID_secp521r1: /* secp521r1 (25) */
return 25;
case NID_brainpoolP256r1: /* brainpoolP256r1 (26) */
return 26;
case NID_brainpoolP384r1: /* brainpoolP384r1 (27) */
return 27;
case NID_brainpoolP512r1: /* brainpool512r1 (28) */
return 28;
default:
return 0;
}
}
/* Get curves list, if "sess" is set return client curves otherwise
* preferred list
*/
static void tls1_get_curvelist(SSL *s, int sess,
const unsigned char **pcurves,
size_t *pcurveslen)
{
if (sess)
{
*pcurves = s->session->tlsext_ellipticcurvelist;
*pcurveslen = s->session->tlsext_ellipticcurvelist_length;
return;
}
/* For Suite B mode only include P-256, P-384 */
switch (tls1_suiteb(s))
{
case SSL_CERT_FLAG_SUITEB_128_LOS:
*pcurves = suiteb_curves;
*pcurveslen = sizeof(suiteb_curves);
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*pcurves = suiteb_curves;
*pcurveslen = 2;
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*pcurves = suiteb_curves + 2;
*pcurveslen = 2;
break;
default:
*pcurves = s->tlsext_ellipticcurvelist;
*pcurveslen = s->tlsext_ellipticcurvelist_length;
}
if (!*pcurves)
{
*pcurves = eccurves_default;
*pcurveslen = sizeof(eccurves_default);
}
}
/* See if curve is allowed by security callback */
static int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
{
const tls_curve_info *cinfo;
if (curve[0])
return 1;
if ((curve[1] < 1) || ((size_t)curve[1] >
sizeof(nid_list)/sizeof(nid_list[0])))
return 0;
cinfo = &nid_list[curve[1]-1];
return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
}
/* Check a curve is one of our preferences */
int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
{
const unsigned char *curves;
size_t curveslen, i;
unsigned int suiteb_flags = tls1_suiteb(s);
if (len != 3 || p[0] != NAMED_CURVE_TYPE)
return 0;
/* Check curve matches Suite B preferences */
if (suiteb_flags)
{
unsigned long cid = s->s3->tmp.new_cipher->id;
if (p[1])
return 0;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
{
if (p[2] != TLSEXT_curve_P_256)
return 0;
}
else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
{
if (p[2] != TLSEXT_curve_P_384)
return 0;
}
else /* Should never happen */
return 0;
}
tls1_get_curvelist(s, 0, &curves, &curveslen);
for (i = 0; i < curveslen; i += 2, curves += 2)
{
if (p[1] == curves[0] && p[2] == curves[1])
return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
}
return 0;
}
/* Return nth shared curve. If nmatch == -1 return number of
* matches. For nmatch == -2 return the NID of the curve to use for
* an EC tmp key.
*/
int tls1_shared_curve(SSL *s, int nmatch)
{
const unsigned char *pref, *supp;
size_t preflen, supplen, i, j;
int k;
/* Can't do anything on client side */
if (s->server == 0)
return -1;
if (nmatch == -2)
{
if (tls1_suiteb(s))
{
/* For Suite B ciphersuite determines curve: we
* already know these are acceptable due to previous
* checks.
*/
unsigned long cid = s->s3->tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
return NID_X9_62_prime256v1; /* P-256 */
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
return NID_secp384r1; /* P-384 */
/* Should never happen */
return NID_undef;
}
/* If not Suite B just return first preference shared curve */
nmatch = 0;
}
tls1_get_curvelist(s, !!(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE),
&supp, &supplen);
tls1_get_curvelist(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE),
&pref, &preflen);
preflen /= 2;
supplen /= 2;
k = 0;
for (i = 0; i < preflen; i++, pref+=2)
{
const unsigned char *tsupp = supp;
for (j = 0; j < supplen; j++, tsupp+=2)
{
if (pref[0] == tsupp[0] && pref[1] == tsupp[1])
{
if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
continue;
if (nmatch == k)
{
int id = (pref[0] << 8) | pref[1];
return tls1_ec_curve_id2nid(id);
}
k++;
}
}
}
if (nmatch == -1)
return k;
return 0;
}
int tls1_set_curves(unsigned char **pext, size_t *pextlen,
int *curves, size_t ncurves)
{
unsigned char *clist, *p;
size_t i;
/* Bitmap of curves included to detect duplicates: only works
* while curve ids < 32
*/
unsigned long dup_list = 0;
clist = OPENSSL_malloc(ncurves * 2);
if (!clist)
return 0;
for (i = 0, p = clist; i < ncurves; i++)
{
unsigned long idmask;
int id;
id = tls1_ec_nid2curve_id(curves[i]);
idmask = 1L << id;
if (!id || (dup_list & idmask))
{
OPENSSL_free(clist);
return 0;
}
dup_list |= idmask;
s2n(id, p);
}
if (*pext)
OPENSSL_free(*pext);
*pext = clist;
*pextlen = ncurves * 2;
return 1;
}
#define MAX_CURVELIST 28
typedef struct
{
size_t nidcnt;
int nid_arr[MAX_CURVELIST];
} nid_cb_st;
static int nid_cb(const char *elem, int len, void *arg)
{
nid_cb_st *narg = arg;
size_t i;
int nid;
char etmp[20];
if (narg->nidcnt == MAX_CURVELIST)
return 0;
if (len > (int)(sizeof(etmp) - 1))
return 0;
memcpy(etmp, elem, len);
etmp[len] = 0;
nid = EC_curve_nist2nid(etmp);
if (nid == NID_undef)
nid = OBJ_sn2nid(etmp);
if (nid == NID_undef)
nid = OBJ_ln2nid(etmp);
if (nid == NID_undef)
return 0;
for (i = 0; i < narg->nidcnt; i++)
if (narg->nid_arr[i] == nid)
return 0;
narg->nid_arr[narg->nidcnt++] = nid;
return 1;
}
/* Set curves based on a colon separate list */
int tls1_set_curves_list(unsigned char **pext, size_t *pextlen,
const char *str)
{
nid_cb_st ncb;
ncb.nidcnt = 0;
if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
return 0;
if (pext == NULL)
return 1;
return tls1_set_curves(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
}
/* For an EC key set TLS id and required compression based on parameters */
static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
EC_KEY *ec)
{
int is_prime, id;
const EC_GROUP *grp;
const EC_METHOD *meth;
if (!ec)
return 0;
/* Determine if it is a prime field */
grp = EC_KEY_get0_group(ec);
if (!grp)
return 0;
meth = EC_GROUP_method_of(grp);
if (!meth)
return 0;
if (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field)
is_prime = 1;
else
is_prime = 0;
/* Determine curve ID */
id = EC_GROUP_get_curve_name(grp);
id = tls1_ec_nid2curve_id(id);
/* If we have an ID set it, otherwise set arbitrary explicit curve */
if (id)
{
curve_id[0] = 0;
curve_id[1] = (unsigned char)id;
}
else
{
curve_id[0] = 0xff;
if (is_prime)
curve_id[1] = 0x01;
else
curve_id[1] = 0x02;
}
if (comp_id)
{
if (EC_KEY_get0_public_key(ec) == NULL)
return 0;
if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED)
{
if (is_prime)
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
else
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
}
else
*comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
}
return 1;
}
/* Check an EC key is compatible with extensions */
static int tls1_check_ec_key(SSL *s,
unsigned char *curve_id, unsigned char *comp_id)
{
const unsigned char *p;
size_t plen, i;
int j;
/* If point formats extension present check it, otherwise everything
* is supported (see RFC4492).
*/
if (comp_id && s->session->tlsext_ecpointformatlist)
{
p = s->session->tlsext_ecpointformatlist;
plen = s->session->tlsext_ecpointformatlist_length;
for (i = 0; i < plen; i++, p++)
{
if (*comp_id == *p)
break;
}
if (i == plen)
return 0;
}
if (!curve_id)
return 1;
/* Check curve is consistent with client and server preferences */
for (j = 0; j <= 1; j++)
{
tls1_get_curvelist(s, j, &p, &plen);
for (i = 0; i < plen; i+=2, p+=2)
{
if (p[0] == curve_id[0] && p[1] == curve_id[1])
break;
}
if (i == plen)
return 0;
/* For clients can only check sent curve list */
if (!s->server)
break;
}
return 1;
}
static void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
size_t *pformatslen)
{
/* If we have a custom point format list use it otherwise
* use default */
if (s->tlsext_ecpointformatlist)
{
*pformats = s->tlsext_ecpointformatlist;
*pformatslen = s->tlsext_ecpointformatlist_length;
}
else
{
*pformats = ecformats_default;
/* For Suite B we don't support char2 fields */
if (tls1_suiteb(s))
*pformatslen = sizeof(ecformats_default) - 1;
else
*pformatslen = sizeof(ecformats_default);
}
}
/* Check cert parameters compatible with extensions: currently just checks
* EC certificates have compatible curves and compression.
*/
static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
{
unsigned char comp_id, curve_id[2];
EVP_PKEY *pkey;
int rv;
pkey = X509_get_pubkey(x);
if (!pkey)
return 0;
/* If not EC nothing to do */
if (pkey->type != EVP_PKEY_EC)
{
EVP_PKEY_free(pkey);
return 1;
}
rv = tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec);
EVP_PKEY_free(pkey);
if (!rv)
return 0;
/* Can't check curve_id for client certs as we don't have a
* supported curves extension.
*/
rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
if (!rv)
return 0;
/* Special case for suite B. We *MUST* sign using SHA256+P-256 or
* SHA384+P-384, adjust digest if necessary.
*/
if (set_ee_md && tls1_suiteb(s))
{
int check_md;
size_t i;
CERT *c = s->cert;
if (curve_id[0])
return 0;
/* Check to see we have necessary signing algorithm */
if (curve_id[1] == TLSEXT_curve_P_256)
check_md = NID_ecdsa_with_SHA256;
else if (curve_id[1] == TLSEXT_curve_P_384)
check_md = NID_ecdsa_with_SHA384;
else
return 0; /* Should never happen */
for (i = 0; i < c->shared_sigalgslen; i++)
if (check_md == c->shared_sigalgs[i].signandhash_nid)
break;
if (i == c->shared_sigalgslen)
return 0;
if (set_ee_md == 2)
{
if (check_md == NID_ecdsa_with_SHA256)
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha256();
else
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha384();
}
}
return rv;
}
/* Check EC temporary key is compatible with client extensions */
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
{
unsigned char curve_id[2];
EC_KEY *ec = s->cert->ecdh_tmp;
#ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
/* Allow any curve: not just those peer supports */
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
return 1;
#endif
/* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384,
* no other curves permitted.
*/
if (tls1_suiteb(s))
{
/* Curve to check determined by ciphersuite */
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
curve_id[1] = TLSEXT_curve_P_256;
else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
curve_id[1] = TLSEXT_curve_P_384;
else
return 0;
curve_id[0] = 0;
/* Check this curve is acceptable */
if (!tls1_check_ec_key(s, curve_id, NULL))
return 0;
/* If auto or setting curve from callback assume OK */
if (s->cert->ecdh_tmp_auto || s->cert->ecdh_tmp_cb)
return 1;
/* Otherwise check curve is acceptable */
else
{
unsigned char curve_tmp[2];
if (!ec)
return 0;
if (!tls1_set_ec_id(curve_tmp, NULL, ec))
return 0;
if (!curve_tmp[0] || curve_tmp[1] == curve_id[1])
return 1;
return 0;
}
}
if (s->cert->ecdh_tmp_auto)
{
/* Need a shared curve */
if (tls1_shared_curve(s, 0))
return 1;
else return 0;
}
if (!ec)
{
if (s->cert->ecdh_tmp_cb)
return 1;
else
return 0;
}
if (!tls1_set_ec_id(curve_id, NULL, ec))
return 0;
/* Set this to allow use of invalid curves for testing */
#if 0
return 1;
#else
return tls1_check_ec_key(s, curve_id, NULL);
#endif
}
#else
static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
{
return 1;
}
#endif /* OPENSSL_NO_EC */
#ifndef OPENSSL_NO_TLSEXT
/* List of supported signature algorithms and hashes. Should make this
* customisable at some point, for now include everything we support.
*/
#ifdef OPENSSL_NO_RSA
#define tlsext_sigalg_rsa(md) /* */
#else
#define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
#endif
#ifdef OPENSSL_NO_DSA
#define tlsext_sigalg_dsa(md) /* */
#else
#define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
#endif
#ifdef OPENSSL_NO_ECDSA
#define tlsext_sigalg_ecdsa(md) /* */
#else
#define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
#endif
#define tlsext_sigalg(md) \
tlsext_sigalg_rsa(md) \
tlsext_sigalg_dsa(md) \
tlsext_sigalg_ecdsa(md)
static unsigned char tls12_sigalgs[] = {
#ifndef OPENSSL_NO_SHA512
tlsext_sigalg(TLSEXT_hash_sha512)
tlsext_sigalg(TLSEXT_hash_sha384)
#endif
#ifndef OPENSSL_NO_SHA256
tlsext_sigalg(TLSEXT_hash_sha256)
tlsext_sigalg(TLSEXT_hash_sha224)
#endif
#ifndef OPENSSL_NO_SHA
tlsext_sigalg(TLSEXT_hash_sha1)
#endif
};
#ifndef OPENSSL_NO_ECDSA
static unsigned char suiteb_sigalgs[] = {
tlsext_sigalg_ecdsa(TLSEXT_hash_sha256)
tlsext_sigalg_ecdsa(TLSEXT_hash_sha384)
};
#endif
size_t tls12_get_psigalgs(SSL *s, const unsigned char **psigs)
{
/* If Suite B mode use Suite B sigalgs only, ignore any other
* preferences.
*/
#ifndef OPENSSL_NO_EC
switch (tls1_suiteb(s))
{
case SSL_CERT_FLAG_SUITEB_128_LOS:
*psigs = suiteb_sigalgs;
return sizeof(suiteb_sigalgs);
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*psigs = suiteb_sigalgs;
return 2;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*psigs = suiteb_sigalgs + 2;
return 2;
}
#endif
/* If server use client authentication sigalgs if not NULL */
if (s->server && s->cert->client_sigalgs)
{
*psigs = s->cert->client_sigalgs;
return s->cert->client_sigalgslen;
}
else if (s->cert->conf_sigalgs)
{
*psigs = s->cert->conf_sigalgs;
return s->cert->conf_sigalgslen;
}
else
{
*psigs = tls12_sigalgs;
return sizeof(tls12_sigalgs);
}
}
/* Check signature algorithm is consistent with sent supported signature
* algorithms and if so return relevant digest.
*/
int tls12_check_peer_sigalg(const EVP_MD **pmd, SSL *s,
const unsigned char *sig, EVP_PKEY *pkey)
{
const unsigned char *sent_sigs;
size_t sent_sigslen, i;
int sigalg = tls12_get_sigid(pkey);
/* Should never happen */
if (sigalg == -1)
return -1;
/* Check key type is consistent with signature */
if (sigalg != (int)sig[1])
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
#ifndef OPENSSL_NO_EC
if (pkey->type == EVP_PKEY_EC)
{
unsigned char curve_id[2], comp_id;
/* Check compression and curve matches extensions */
if (!tls1_set_ec_id(curve_id, &comp_id, pkey->pkey.ec))
return 0;
if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id))
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_CURVE);
return 0;
}
/* If Suite B only P-384+SHA384 or P-256+SHA-256 allowed */
if (tls1_suiteb(s))
{
if (curve_id[0])
return 0;
if (curve_id[1] == TLSEXT_curve_P_256)
{
if (sig[0] != TLSEXT_hash_sha256)
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
SSL_R_ILLEGAL_SUITEB_DIGEST);
return 0;
}
}
else if (curve_id[1] == TLSEXT_curve_P_384)
{
if (sig[0] != TLSEXT_hash_sha384)
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
SSL_R_ILLEGAL_SUITEB_DIGEST);
return 0;
}
}
else
return 0;
}
}
else if (tls1_suiteb(s))
return 0;
#endif
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
for (i = 0; i < sent_sigslen; i+=2, sent_sigs+=2)
{
if (sig[0] == sent_sigs[0] && sig[1] == sent_sigs[1])
break;
}
/* Allow fallback to SHA1 if not strict mode */
if (i == sent_sigslen && (sig[0] != TLSEXT_hash_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT))
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
*pmd = tls12_get_hash(sig[0]);
if (*pmd == NULL)
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_UNKNOWN_DIGEST);
return 0;
}
/* Make sure security callback allows algorithm */
if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
EVP_MD_size(*pmd) * 4, EVP_MD_type(*pmd),
(void *)sig))
{
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Store the digest used so applications can retrieve it if they
* wish.
*/
if (s->session && s->session->sess_cert)
s->session->sess_cert->peer_key->digest = *pmd;
return 1;
}
/* Get a mask of disabled algorithms: an algorithm is disabled
* if it isn't supported or doesn't appear in supported signature
* algorithms. Unlike ssl_cipher_get_disabled this applies to a specific
* session and not global settings.
*
*/
void ssl_set_client_disabled(SSL *s)
{
CERT *c = s->cert;
c->mask_a = 0;
c->mask_k = 0;
/* Don't allow TLS 1.2 only ciphers if we don't suppport them */
if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s))
c->mask_ssl = SSL_TLSV1_2;
else
c->mask_ssl = 0;
ssl_set_sig_mask(&c->mask_a, s, SSL_SECOP_SIGALG_MASK);
/* Disable static DH if we don't include any appropriate
* signature algorithms.
*/
if (c->mask_a & SSL_aRSA)
c->mask_k |= SSL_kDHr|SSL_kECDHr;
if (c->mask_a & SSL_aDSS)
c->mask_k |= SSL_kDHd;
if (c->mask_a & SSL_aECDSA)
c->mask_k |= SSL_kECDHe;
#ifndef OPENSSL_NO_KRB5
if (!kssl_tgt_is_available(s->kssl_ctx))
{
c->mask_a |= SSL_aKRB5;
c->mask_k |= SSL_kKRB5;
}
#endif
#ifndef OPENSSL_NO_PSK
/* with PSK there must be client callback set */
if (!s->psk_client_callback)
{
c->mask_a |= SSL_aPSK;
c->mask_k |= SSL_kPSK;
}
#endif /* OPENSSL_NO_PSK */
#ifndef OPENSSL_NO_SRP
if (!(s->srp_ctx.srp_Mask & SSL_kSRP))
{
c->mask_a |= SSL_aSRP;
c->mask_k |= SSL_kSRP;
}
#endif
c->valid = 1;
}
int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op)
{
CERT *ct = s->cert;
if (c->algorithm_ssl & ct->mask_ssl || c->algorithm_mkey & ct->mask_k || c->algorithm_auth & ct->mask_a)
return 1;
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
}
static int tls_use_ticket(SSL *s)
{
if (s->options & SSL_OP_NO_TICKET)
return 0;
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
}
unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al)
{
int extdatalen=0;
unsigned char *orig = buf;
unsigned char *ret = buf;
#ifndef OPENSSL_NO_EC
/* See if we support any ECC ciphersuites */
int using_ecc = 0;
if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s))
{
int i;
unsigned long alg_k, alg_a;
STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++)
{
SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
alg_k = c->algorithm_mkey;
alg_a = c->algorithm_auth;
if ((alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)
|| (alg_a & SSL_aECDSA)))
{
using_ecc = 1;
break;
}
}
}
#endif
/* don't add extensions for SSLv3 unless doing secure renegotiation */
if (s->client_version == SSL3_VERSION
&& !s->s3->send_connection_binding)
return orig;
ret+=2;
if (ret>=limit) return NULL; /* this really never occurs, but ... */
if (s->tlsext_hostname != NULL)
{
/* Add TLS extension servername to the Client Hello message */
unsigned long size_str;
long lenmax;
/* check for enough space.
4 for the servername type and entension length
2 for servernamelist length
1 for the hostname type
2 for hostname length
+ hostname length
*/
if ((lenmax = limit - ret - 9) < 0
|| (size_str = strlen(s->tlsext_hostname)) > (unsigned long)lenmax)
return NULL;
/* extension type and length */
s2n(TLSEXT_TYPE_server_name,ret);
s2n(size_str+5,ret);
/* length of servername list */
s2n(size_str+3,ret);
/* hostname type, length and hostname */
*(ret++) = (unsigned char) TLSEXT_NAMETYPE_host_name;
s2n(size_str,ret);
memcpy(ret, s->tlsext_hostname, size_str);
ret+=size_str;
}
/* Add RI if renegotiating */
if (s->renegotiate)
{
int el;
if(!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0))
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
if((limit - ret - 4 - el) < 0) return NULL;
s2n(TLSEXT_TYPE_renegotiate,ret);
s2n(el,ret);
if(!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el))
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
#ifndef OPENSSL_NO_SRP
/* Add SRP username if there is one */
if (s->srp_ctx.login != NULL)
{ /* Add TLS extension SRP username to the Client Hello message */
int login_len = strlen(s->srp_ctx.login);
if (login_len > 255 || login_len == 0)
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
/* check for enough space.
4 for the srp type type and entension length
1 for the srp user identity
+ srp user identity length
*/
if ((limit - ret - 5 - login_len) < 0) return NULL;
/* fill in the extension */
s2n(TLSEXT_TYPE_srp,ret);
s2n(login_len+1,ret);
(*ret++) = (unsigned char) login_len;
memcpy(ret, s->srp_ctx.login, login_len);
ret+=login_len;
}
#endif
#ifndef OPENSSL_NO_EC
if (using_ecc)
{
/* Add TLS extension ECPointFormats to the ClientHello message */
long lenmax;
const unsigned char *plist;
size_t plistlen;
size_t i;
unsigned char *etmp;
tls1_get_formatlist(s, &plist, &plistlen);
if ((lenmax = limit - ret - 5) < 0) return NULL;
if (plistlen > (size_t)lenmax) return NULL;
if (plistlen > 255)
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_ec_point_formats,ret);
s2n(plistlen + 1,ret);
*(ret++) = (unsigned char)plistlen ;
memcpy(ret, plist, plistlen);
ret+=plistlen;
/* Add TLS extension EllipticCurves to the ClientHello message */
plist = s->tlsext_ellipticcurvelist;
tls1_get_curvelist(s, 0, &plist, &plistlen);
if ((lenmax = limit - ret - 6) < 0) return NULL;
if (plistlen > (size_t)lenmax) return NULL;
if (plistlen > 65532)
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_elliptic_curves,ret);
etmp = ret + 4;
/* Copy curve ID if supported */
for (i = 0; i < plistlen; i += 2, plist += 2)
{
if (tls_curve_allowed(s, plist, SSL_SECOP_CURVE_SUPPORTED))
{
*etmp++ = plist[0];
*etmp++ = plist[1];
}
}
plistlen = etmp - ret - 4;
/* NB: draft-ietf-tls-ecc-12.txt uses a one-byte prefix for
* elliptic_curve_list, but the examples use two bytes.
* http://www1.ietf.org/mail-archive/web/tls/current/msg00538.html
* resolves this to two bytes.
*/
s2n(plistlen + 2, ret);
s2n(plistlen, ret);
ret+=plistlen;
}
#endif /* OPENSSL_NO_EC */
if (tls_use_ticket(s))
{
int ticklen;
if (!s->new_session && s->session && s->session->tlsext_tick)
ticklen = s->session->tlsext_ticklen;
else if (s->session && s->tlsext_session_ticket &&
s->tlsext_session_ticket->data)
{
ticklen = s->tlsext_session_ticket->length;
s->session->tlsext_tick = OPENSSL_malloc(ticklen);
if (!s->session->tlsext_tick)
return NULL;
memcpy(s->session->tlsext_tick,
s->tlsext_session_ticket->data,
ticklen);
s->session->tlsext_ticklen = ticklen;
}
else
ticklen = 0;
if (ticklen == 0 && s->tlsext_session_ticket &&
s->tlsext_session_ticket->data == NULL)
goto skip_ext;
/* Check for enough room 2 for extension type, 2 for len
* rest for ticket
*/
if ((long)(limit - ret - 4 - ticklen) < 0) return NULL;
s2n(TLSEXT_TYPE_session_ticket,ret);
s2n(ticklen,ret);
if (ticklen)
{
memcpy(ret, s->session->tlsext_tick, ticklen);
ret += ticklen;
}
}
skip_ext:
if (SSL_USE_SIGALGS(s))
{
size_t salglen;
const unsigned char *salg;
unsigned char *etmp;
salglen = tls12_get_psigalgs(s, &salg);
if ((size_t)(limit - ret) < salglen + 6)
return NULL;
s2n(TLSEXT_TYPE_signature_algorithms,ret);
etmp = ret;
/* Skip over lengths for now */
ret += 4;
salglen = tls12_copy_sigalgs(s, ret, salg, salglen);
/* Fill in lengths */
s2n(salglen + 2, etmp);
s2n(salglen, etmp);
ret += salglen;
}
#ifdef TLSEXT_TYPE_opaque_prf_input
if (s->s3->client_opaque_prf_input != NULL)
{
size_t col = s->s3->client_opaque_prf_input_len;
if ((long)(limit - ret - 6 - col) < 0)
return NULL;
if (col > 0xFFFD) /* can't happen */
return NULL;
s2n(TLSEXT_TYPE_opaque_prf_input, ret);
s2n(col + 2, ret);
s2n(col, ret);
memcpy(ret, s->s3->client_opaque_prf_input, col);
ret += col;
}
#endif
if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp)
{
int i;
long extlen, idlen, itmp;
OCSP_RESPID *id;
idlen = 0;
for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
{
id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
itmp = i2d_OCSP_RESPID(id, NULL);
if (itmp <= 0)
return NULL;
idlen += itmp + 2;
}
if (s->tlsext_ocsp_exts)
{
extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
if (extlen < 0)
return NULL;
}
else
extlen = 0;
if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL;
s2n(TLSEXT_TYPE_status_request, ret);
if (extlen + idlen > 0xFFF0)
return NULL;
s2n(extlen + idlen + 5, ret);
*(ret++) = TLSEXT_STATUSTYPE_ocsp;
s2n(idlen, ret);
for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
{
/* save position of id len */
unsigned char *q = ret;
id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
/* skip over id len */
ret += 2;
itmp = i2d_OCSP_RESPID(id, &ret);
/* write id len */
s2n(itmp, q);
}
s2n(extlen, ret);
if (extlen > 0)
i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
}
#ifndef OPENSSL_NO_HEARTBEATS
/* Add Heartbeat extension */
if ((limit - ret - 4 - 1) < 0)
return NULL;
s2n(TLSEXT_TYPE_heartbeat,ret);
s2n(1,ret);
/* Set mode:
* 1: peer may send requests
* 2: peer not allowed to send requests
*/
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
*(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
else
*(ret++) = SSL_TLSEXT_HB_ENABLED;
#endif
#ifndef OPENSSL_NO_NEXTPROTONEG
if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len)
{
/* The client advertises an emtpy extension to indicate its
* support for Next Protocol Negotiation */
if (limit - ret - 4 < 0)
return NULL;
s2n(TLSEXT_TYPE_next_proto_neg,ret);
s2n(0,ret);
}
#endif
if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len)
{
if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len)
return NULL;
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret);
s2n(2 + s->alpn_client_proto_list_len,ret);
s2n(s->alpn_client_proto_list_len,ret);
memcpy(ret, s->alpn_client_proto_list,
s->alpn_client_proto_list_len);
ret += s->alpn_client_proto_list_len;
}
if(SSL_get_srtp_profiles(s))
{
int el;
ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
if((limit - ret - 4 - el) < 0) return NULL;
s2n(TLSEXT_TYPE_use_srtp,ret);
s2n(el,ret);
if(ssl_add_clienthello_use_srtp_ext(s, ret, &el, el))
{
SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
custom_ext_init(&s->cert->cli_ext);
/* Add custom TLS Extensions to ClientHello */
if (!custom_ext_add(s, 0, &ret, limit, al))
return NULL;
#ifdef TLSEXT_TYPE_encrypt_then_mac
s2n(TLSEXT_TYPE_encrypt_then_mac,ret);
s2n(0,ret);
#endif
/* Add padding to workaround bugs in F5 terminators.
* See https://tools.ietf.org/html/draft-agl-tls-padding-03
*
* NB: because this code works out the length of all existing
* extensions it MUST always appear last.
*/
if (s->options & SSL_OP_TLSEXT_PADDING)
{
int hlen = ret - (unsigned char *)s->init_buf->data;
/* The code in s23_clnt.c to build ClientHello messages
* includes the 5-byte record header in the buffer, while
* the code in s3_clnt.c does not.
*/
if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
hlen -= 5;
if (hlen > 0xff && hlen < 0x200)
{
hlen = 0x200 - hlen;
if (hlen >= 4)
hlen -= 4;
else
hlen = 0;
s2n(TLSEXT_TYPE_padding, ret);
s2n(hlen, ret);
memset(ret, 0, hlen);
ret += hlen;
}
}
if ((extdatalen = ret-orig-2)== 0)
return orig;
s2n(extdatalen, orig);
return ret;
}
unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *buf, unsigned char *limit, int *al)
{
int extdatalen=0;
unsigned char *orig = buf;
unsigned char *ret = buf;
#ifndef OPENSSL_NO_NEXTPROTONEG
int next_proto_neg_seen;
#endif
#ifndef OPENSSL_NO_EC
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
int using_ecc = (alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA);
using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
#endif
/* don't add extensions for SSLv3, unless doing secure renegotiation */
if (s->version == SSL3_VERSION && !s->s3->send_connection_binding)
return orig;
ret+=2;
if (ret>=limit) return NULL; /* this really never occurs, but ... */
if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname != NULL)
{
if ((long)(limit - ret - 4) < 0) return NULL;
s2n(TLSEXT_TYPE_server_name,ret);
s2n(0,ret);
}
if(s->s3->send_connection_binding)
{
int el;
if(!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0))
{
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
if((limit - ret - 4 - el) < 0) return NULL;
s2n(TLSEXT_TYPE_renegotiate,ret);
s2n(el,ret);
if(!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el))
{
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
#ifndef OPENSSL_NO_EC
if (using_ecc)
{
const unsigned char *plist;
size_t plistlen;
/* Add TLS extension ECPointFormats to the ServerHello message */
long lenmax;
tls1_get_formatlist(s, &plist, &plistlen);
if ((lenmax = limit - ret - 5) < 0) return NULL;
if (plistlen > (size_t)lenmax) return NULL;
if (plistlen > 255)
{
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_ec_point_formats,ret);
s2n(plistlen + 1,ret);
*(ret++) = (unsigned char) plistlen;
memcpy(ret, plist, plistlen);
ret+=plistlen;
}
/* Currently the server should not respond with a SupportedCurves extension */
#endif /* OPENSSL_NO_EC */
if (s->tlsext_ticket_expected && tls_use_ticket(s))
{
if ((long)(limit - ret - 4) < 0) return NULL;
s2n(TLSEXT_TYPE_session_ticket,ret);
s2n(0,ret);
}
if (s->tlsext_status_expected)
{
if ((long)(limit - ret - 4) < 0) return NULL;
s2n(TLSEXT_TYPE_status_request,ret);
s2n(0,ret);
}
#ifdef TLSEXT_TYPE_opaque_prf_input
if (s->s3->server_opaque_prf_input != NULL)
{
size_t sol = s->s3->server_opaque_prf_input_len;
if ((long)(limit - ret - 6 - sol) < 0)
return NULL;
if (sol > 0xFFFD) /* can't happen */
return NULL;
s2n(TLSEXT_TYPE_opaque_prf_input, ret);
s2n(sol + 2, ret);
s2n(sol, ret);
memcpy(ret, s->s3->server_opaque_prf_input, sol);
ret += sol;
}
#endif
if(s->srtp_profile)
{
int el;
ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
if((limit - ret - 4 - el) < 0) return NULL;
s2n(TLSEXT_TYPE_use_srtp,ret);
s2n(el,ret);
if(ssl_add_serverhello_use_srtp_ext(s, ret, &el, el))
{
SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret+=el;
}
if (((s->s3->tmp.new_cipher->id & 0xFFFF)==0x80 || (s->s3->tmp.new_cipher->id & 0xFFFF)==0x81)
&& (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG))
{ const unsigned char cryptopro_ext[36] = {
0xfd, 0xe8, /*65000*/
0x00, 0x20, /*32 bytes length*/
0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17};
if (limit-ret<36) return NULL;
memcpy(ret,cryptopro_ext,36);
ret+=36;
}
#ifndef OPENSSL_NO_HEARTBEATS
/* Add Heartbeat extension if we've received one */
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED)
{
if ((limit - ret - 4 - 1) < 0)
return NULL;
s2n(TLSEXT_TYPE_heartbeat,ret);
s2n(1,ret);
/* Set mode:
* 1: peer may send requests
* 2: peer not allowed to send requests
*/
if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
*(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
else
*(ret++) = SSL_TLSEXT_HB_ENABLED;
}
#endif
#ifndef OPENSSL_NO_NEXTPROTONEG
next_proto_neg_seen = s->s3->next_proto_neg_seen;
s->s3->next_proto_neg_seen = 0;
if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb)
{
const unsigned char *npa;
unsigned int npalen;
int r;
r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg);
if (r == SSL_TLSEXT_ERR_OK)
{
if ((long)(limit - ret - 4 - npalen) < 0) return NULL;
s2n(TLSEXT_TYPE_next_proto_neg,ret);
s2n(npalen,ret);
memcpy(ret, npa, npalen);
ret += npalen;
s->s3->next_proto_neg_seen = 1;
}
}
#endif
if (!custom_ext_add(s, 1, &ret, limit, al))
return NULL;
#ifdef TLSEXT_TYPE_encrypt_then_mac
if (s->s3->flags & TLS1_FLAGS_ENCRYPT_THEN_MAC)
{
/* Don't use encrypt_then_mac if AEAD: might want
* to disable for other ciphersuites too.
*/
if (s->s3->tmp.new_cipher->algorithm_mac == SSL_AEAD)
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
else
{
s2n(TLSEXT_TYPE_encrypt_then_mac,ret);
s2n(0,ret);
}
}
#endif
if (s->s3->alpn_selected)
{
const unsigned char *selected = s->s3->alpn_selected;
unsigned len = s->s3->alpn_selected_len;
if ((long)(limit - ret - 4 - 2 - 1 - len) < 0)
return NULL;
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation,ret);
s2n(3 + len,ret);
s2n(1 + len,ret);
*ret++ = len;
memcpy(ret, selected, len);
ret += len;
}
if ((extdatalen = ret-orig-2)== 0)
return orig;
s2n(extdatalen, orig);
return ret;
}
/* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
* ClientHello.
* data: the contents of the extension, not including the type and length.
* data_len: the number of bytes in |data|
* al: a pointer to the alert value to send in the event of a non-zero
* return.
*
* returns: 0 on success. */
static int tls1_alpn_handle_client_hello(SSL *s, const unsigned char *data,
unsigned data_len, int *al)
{
unsigned i;
unsigned proto_len;
const unsigned char *selected;
unsigned char selected_len;
int r;
if (s->ctx->alpn_select_cb == NULL)
return 0;
if (data_len < 2)
goto parse_error;
/* data should contain a uint16 length followed by a series of 8-bit,
* length-prefixed strings. */
i = ((unsigned) data[0]) << 8 |
((unsigned) data[1]);
data_len -= 2;
data += 2;
if (data_len != i)
goto parse_error;
if (data_len < 2)
goto parse_error;
for (i = 0; i < data_len;)
{
proto_len = data[i];
i++;
if (proto_len == 0)
goto parse_error;
if (i + proto_len < i || i + proto_len > data_len)
goto parse_error;
i += proto_len;
}
r = s->ctx->alpn_select_cb(s, &selected, &selected_len, data, data_len,
s->ctx->alpn_select_cb_arg);
if (r == SSL_TLSEXT_ERR_OK) {
if (s->s3->alpn_selected)
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = OPENSSL_malloc(selected_len);
if (!s->s3->alpn_selected)
{
*al = SSL_AD_INTERNAL_ERROR;
return -1;
}
memcpy(s->s3->alpn_selected, selected, selected_len);
s->s3->alpn_selected_len = selected_len;
}
return 0;
parse_error:
*al = SSL_AD_DECODE_ERROR;
return -1;
}
#ifndef OPENSSL_NO_EC
/* ssl_check_for_safari attempts to fingerprint Safari using OS X
* SecureTransport using the TLS extension block in |d|, of length |n|.
* Safari, since 10.6, sends exactly these extensions, in this order:
* SNI,
* elliptic_curves
* ec_point_formats
*
* We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
* but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
* Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
* 10.8..10.8.3 (which don't work).
*/
static void ssl_check_for_safari(SSL *s, const unsigned char *data, const unsigned char *d, int n) {
unsigned short type, size;
static const unsigned char kSafariExtensionsBlock[] = {
0x00, 0x0a, /* elliptic_curves extension */
0x00, 0x08, /* 8 bytes */
0x00, 0x06, /* 6 bytes of curve ids */
0x00, 0x17, /* P-256 */
0x00, 0x18, /* P-384 */
0x00, 0x19, /* P-521 */
0x00, 0x0b, /* ec_point_formats */
0x00, 0x02, /* 2 bytes */
0x01, /* 1 point format */
0x00, /* uncompressed */
};
/* The following is only present in TLS 1.2 */
static const unsigned char kSafariTLS12ExtensionsBlock[] = {
0x00, 0x0d, /* signature_algorithms */
0x00, 0x0c, /* 12 bytes */
0x00, 0x0a, /* 10 bytes */
0x05, 0x01, /* SHA-384/RSA */
0x04, 0x01, /* SHA-256/RSA */
0x02, 0x01, /* SHA-1/RSA */
0x04, 0x03, /* SHA-256/ECDSA */
0x02, 0x03, /* SHA-1/ECDSA */
};
if (data >= (d+n-2))
return;
data += 2;
if (data > (d+n-4))
return;
n2s(data,type);
n2s(data,size);
if (type != TLSEXT_TYPE_server_name)
return;
if (data+size > d+n)
return;
data += size;
if (TLS1_get_client_version(s) >= TLS1_2_VERSION)
{
const size_t len1 = sizeof(kSafariExtensionsBlock);
const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);
if (data + len1 + len2 != d+n)
return;
if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
return;
if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
return;
}
else
{
const size_t len = sizeof(kSafariExtensionsBlock);
if (data + len != d+n)
return;
if (memcmp(data, kSafariExtensionsBlock, len) != 0)
return;
}
s->s3->is_probably_safari = 1;
}
#endif /* !OPENSSL_NO_EC */
static int ssl_scan_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al)
{
unsigned short type;
unsigned short size;
unsigned short len;
unsigned char *data = *p;
int renegotiate_seen = 0;
size_t i;
s->servername_done = 0;
s->tlsext_status_type = -1;
#ifndef OPENSSL_NO_NEXTPROTONEG
s->s3->next_proto_neg_seen = 0;
#endif
if (s->s3->alpn_selected)
{
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = NULL;
}
#ifndef OPENSSL_NO_HEARTBEATS
s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
#endif
#ifndef OPENSSL_NO_EC
if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
ssl_check_for_safari(s, data, d, n);
#endif /* !OPENSSL_NO_EC */
/* Clear any signature algorithms extension received */
if (s->cert->peer_sigalgs)
{
OPENSSL_free(s->cert->peer_sigalgs);
s->cert->peer_sigalgs = NULL;
}
/* Clear any shared sigtnature algorithms */
if (s->cert->shared_sigalgs)
{
OPENSSL_free(s->cert->shared_sigalgs);
s->cert->shared_sigalgs = NULL;
}
/* Clear certificate digests and validity flags */
for (i = 0; i < SSL_PKEY_NUM; i++)
{
s->cert->pkeys[i].digest = NULL;
s->cert->pkeys[i].valid_flags = 0;
}
#ifdef TLSEXT_TYPE_encrypt_then_mac
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
#endif
if (data >= (d+n-2))
goto ri_check;
n2s(data,len);
if (data > (d+n-len))
goto ri_check;
while (data <= (d+n-4))
{
n2s(data,type);
n2s(data,size);
if (data+size > (d+n))
goto ri_check;
#if 0
fprintf(stderr,"Received extension type %d size %d\n",type,size);
#endif
if (s->tlsext_debug_cb)
s->tlsext_debug_cb(s, 0, type, data, size,
s->tlsext_debug_arg);
/* The servername extension is treated as follows:
- Only the hostname type is supported with a maximum length of 255.
- The servername is rejected if too long or if it contains zeros,
in which case an fatal alert is generated.
- The servername field is maintained together with the session cache.
- When a session is resumed, the servername call back invoked in order
to allow the application to position itself to the right context.
- The servername is acknowledged if it is new for a session or when
it is identical to a previously used for the same session.
Applications can control the behaviour. They can at any time
set a 'desirable' servername for a new SSL object. This can be the
case for example with HTTPS when a Host: header field is received and
a renegotiation is requested. In this case, a possible servername
presented in the new client hello is only acknowledged if it matches
the value of the Host: field.
- Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
if they provide for changing an explicit servername context for the session,
i.e. when the session has been established with a servername extension.
- On session reconnect, the servername extension may be absent.
*/
if (type == TLSEXT_TYPE_server_name)
{
unsigned char *sdata;
int servname_type;
int dsize;
if (size < 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(data,dsize);
size -= 2;
if (dsize > size )
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
sdata = data;
while (dsize > 3)
{
servname_type = *(sdata++);
n2s(sdata,len);
dsize -= 3;
if (len > dsize)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->servername_done == 0)
switch (servname_type)
{
case TLSEXT_NAMETYPE_host_name:
if (!s->hit)
{
if(s->session->tlsext_hostname)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (len > TLSEXT_MAXLEN_host_name)
{
*al = TLS1_AD_UNRECOGNIZED_NAME;
return 0;
}
if ((s->session->tlsext_hostname = OPENSSL_malloc(len+1)) == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
memcpy(s->session->tlsext_hostname, sdata, len);
s->session->tlsext_hostname[len]='\0';
if (strlen(s->session->tlsext_hostname) != len) {
OPENSSL_free(s->session->tlsext_hostname);
s->session->tlsext_hostname = NULL;
*al = TLS1_AD_UNRECOGNIZED_NAME;
return 0;
}
s->servername_done = 1;
}
else
s->servername_done = s->session->tlsext_hostname
&& strlen(s->session->tlsext_hostname) == len
&& strncmp(s->session->tlsext_hostname, (char *)sdata, len) == 0;
break;
default:
break;
}
dsize -= len;
}
if (dsize != 0)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
}
#ifndef OPENSSL_NO_SRP
else if (type == TLSEXT_TYPE_srp)
{
if (size <= 0 || ((len = data[0])) != (size -1))
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->srp_ctx.login != NULL)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if ((s->srp_ctx.login = OPENSSL_malloc(len+1)) == NULL)
return -1;
memcpy(s->srp_ctx.login, &data[1], len);
s->srp_ctx.login[len]='\0';
if (strlen(s->srp_ctx.login) != len)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
}
#endif
#ifndef OPENSSL_NO_EC
else if (type == TLSEXT_TYPE_ec_point_formats)
{
unsigned char *sdata = data;
int ecpointformatlist_length = *(sdata++);
if (ecpointformatlist_length != size - 1 ||
ecpointformatlist_length < 1)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
if (!s->hit)
{
if(s->session->tlsext_ecpointformatlist)
{
OPENSSL_free(s->session->tlsext_ecpointformatlist);
s->session->tlsext_ecpointformatlist = NULL;
}
s->session->tlsext_ecpointformatlist_length = 0;
if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length;
memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length);
}
#if 0
fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ecpointformatlist (length=%i) ", s->session->tlsext_ecpointformatlist_length);
sdata = s->session->tlsext_ecpointformatlist;
for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
fprintf(stderr,"%i ",*(sdata++));
fprintf(stderr,"\n");
#endif
}
else if (type == TLSEXT_TYPE_elliptic_curves)
{
unsigned char *sdata = data;
int ellipticcurvelist_length = (*(sdata++) << 8);
ellipticcurvelist_length += (*(sdata++));
if (ellipticcurvelist_length != size - 2 ||
ellipticcurvelist_length < 1)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
if (!s->hit)
{
if(s->session->tlsext_ellipticcurvelist)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
s->session->tlsext_ellipticcurvelist_length = 0;
if ((s->session->tlsext_ellipticcurvelist = OPENSSL_malloc(ellipticcurvelist_length)) == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
s->session->tlsext_ellipticcurvelist_length = ellipticcurvelist_length;
memcpy(s->session->tlsext_ellipticcurvelist, sdata, ellipticcurvelist_length);
}
#if 0
fprintf(stderr,"ssl_parse_clienthello_tlsext s->session->tlsext_ellipticcurvelist (length=%i) ", s->session->tlsext_ellipticcurvelist_length);
sdata = s->session->tlsext_ellipticcurvelist;
for (i = 0; i < s->session->tlsext_ellipticcurvelist_length; i++)
fprintf(stderr,"%i ",*(sdata++));
fprintf(stderr,"\n");
#endif
}
#endif /* OPENSSL_NO_EC */
#ifdef TLSEXT_TYPE_opaque_prf_input
else if (type == TLSEXT_TYPE_opaque_prf_input)
{
unsigned char *sdata = data;
if (size < 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(sdata, s->s3->client_opaque_prf_input_len);
if (s->s3->client_opaque_prf_input_len != size - 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */
OPENSSL_free(s->s3->client_opaque_prf_input);
if (s->s3->client_opaque_prf_input_len == 0)
s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
else
s->s3->client_opaque_prf_input = BUF_memdup(sdata, s->s3->client_opaque_prf_input_len);
if (s->s3->client_opaque_prf_input == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
}
#endif
else if (type == TLSEXT_TYPE_session_ticket)
{
if (s->tls_session_ticket_ext_cb &&
!s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg))
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
}
else if (type == TLSEXT_TYPE_renegotiate)
{
if(!ssl_parse_clienthello_renegotiate_ext(s, data, size, al))
return 0;
renegotiate_seen = 1;
}
else if (type == TLSEXT_TYPE_signature_algorithms)
{
int dsize;
if (s->cert->peer_sigalgs || size < 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(data,dsize);
size -= 2;
if (dsize != size || dsize & 1 || !dsize)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (!tls1_process_sigalgs(s, data, dsize))
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
/* If sigalgs received and no shared algorithms fatal
* error.
*/
if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs)
{
SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
*al = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
else if (type == TLSEXT_TYPE_status_request)
{
if (size < 5)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
s->tlsext_status_type = *data++;
size--;
if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp)
{
const unsigned char *sdata;
int dsize;
/* Read in responder_id_list */
n2s(data,dsize);
size -= 2;
if (dsize > size )
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
while (dsize > 0)
{
OCSP_RESPID *id;
int idsize;
if (dsize < 4)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(data, idsize);
dsize -= 2 + idsize;
size -= 2 + idsize;
if (dsize < 0)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
sdata = data;
data += idsize;
id = d2i_OCSP_RESPID(NULL,
&sdata, idsize);
if (!id)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (data != sdata)
{
OCSP_RESPID_free(id);
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (!s->tlsext_ocsp_ids
&& !(s->tlsext_ocsp_ids =
sk_OCSP_RESPID_new_null()))
{
OCSP_RESPID_free(id);
*al = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (!sk_OCSP_RESPID_push(
s->tlsext_ocsp_ids, id))
{
OCSP_RESPID_free(id);
*al = SSL_AD_INTERNAL_ERROR;
return 0;
}
}
/* Read in request_extensions */
if (size < 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(data,dsize);
size -= 2;
if (dsize != size)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
sdata = data;
if (dsize > 0)
{
if (s->tlsext_ocsp_exts)
{
sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
X509_EXTENSION_free);
}
s->tlsext_ocsp_exts =
d2i_X509_EXTENSIONS(NULL,
&sdata, dsize);
if (!s->tlsext_ocsp_exts
|| (data + dsize != sdata))
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
}
}
/* We don't know what to do with any other type
* so ignore it.
*/
else
s->tlsext_status_type = -1;
}
#ifndef OPENSSL_NO_HEARTBEATS
else if (type == TLSEXT_TYPE_heartbeat)
{
switch(data[0])
{
case 0x01: /* Client allows us to send HB requests */
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
break;
case 0x02: /* Client doesn't accept HB requests */
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
break;
default: *al = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
#endif
#ifndef OPENSSL_NO_NEXTPROTONEG
else if (type == TLSEXT_TYPE_next_proto_neg &&
s->s3->tmp.finish_md_len == 0 &&
s->s3->alpn_selected == NULL)
{
/* We shouldn't accept this extension on a
* renegotiation.
*
* s->new_session will be set on renegotiation, but we
* probably shouldn't rely that it couldn't be set on
* the initial renegotation too in certain cases (when
* there's some other reason to disallow resuming an
* earlier session -- the current code won't be doing
* anything like that, but this might change).
* A valid sign that there's been a previous handshake
* in this connection is if s->s3->tmp.finish_md_len >
* 0. (We are talking about a check that will happen
* in the Hello protocol round, well before a new
* Finished message could have been computed.) */
s->s3->next_proto_neg_seen = 1;
}
#endif
else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
s->ctx->alpn_select_cb &&
s->s3->tmp.finish_md_len == 0)
{
if (tls1_alpn_handle_client_hello(s, data, size, al) != 0)
return 0;
#ifndef OPENSSL_NO_NEXTPROTONEG
/* ALPN takes precedence over NPN. */
s->s3->next_proto_neg_seen = 0;
#endif
}
/* session ticket processed earlier */
else if (type == TLSEXT_TYPE_use_srtp)
{
if(ssl_parse_clienthello_use_srtp_ext(s, data, size,
al))
return 0;
}
/* If this ClientHello extension was unhandled and this is
* a nonresumed connection, check whether the extension is a
* custom TLS Extension (has a custom_srv_ext_record), and if
* so call the callback and record the extension number so that
* an appropriate ServerHello may be later returned.
*/
else if (!s->hit)
{
if (custom_ext_parse(s, 1, type, data, size, al) <= 0)
return 0;
}
#ifdef TLSEXT_TYPE_encrypt_then_mac
else if (type == TLSEXT_TYPE_encrypt_then_mac)
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
#endif
data+=size;
}
*p = data;
ri_check:
/* Need RI if renegotiating */
if (!renegotiate_seen && s->renegotiate &&
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
{
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_SSL_SCAN_CLIENTHELLO_TLSEXT,
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
return 0;
}
/* If no signature algorithms extension set default values */
if (!s->cert->peer_sigalgs)
ssl_cert_set_default_md(s->cert);
return 1;
}
int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n)
{
int al = -1;
custom_ext_init(&s->cert->srv_ext);
if (ssl_scan_clienthello_tlsext(s, p, d, n, &al) <= 0)
{
ssl3_send_alert(s,SSL3_AL_FATAL,al);
return 0;
}
if (ssl_check_clienthello_tlsext_early(s) <= 0)
{
SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT,SSL_R_CLIENTHELLO_TLSEXT);
return 0;
}
return 1;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
/* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
* elements of zero length are allowed and the set of elements must exactly fill
* the length of the block. */
static char ssl_next_proto_validate(unsigned char *d, unsigned len)
{
unsigned int off = 0;
while (off < len)
{
if (d[off] == 0)
return 0;
off += d[off];
off++;
}
return off == len;
}
#endif
static int ssl_scan_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n, int *al)
{
unsigned short length;
unsigned short type;
unsigned short size;
unsigned char *data = *p;
int tlsext_servername = 0;
int renegotiate_seen = 0;
#ifndef OPENSSL_NO_NEXTPROTONEG
s->s3->next_proto_neg_seen = 0;
#endif
if (s->s3->alpn_selected)
{
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = NULL;
}
#ifndef OPENSSL_NO_HEARTBEATS
s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
#endif
#ifdef TLSEXT_TYPE_encrypt_then_mac
s->s3->flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC;
#endif
if (data >= (d+n-2))
goto ri_check;
n2s(data,length);
if (data+length != d+n)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
while(data <= (d+n-4))
{
n2s(data,type);
n2s(data,size);
if (data+size > (d+n))
goto ri_check;
if (s->tlsext_debug_cb)
s->tlsext_debug_cb(s, 1, type, data, size,
s->tlsext_debug_arg);
if (type == TLSEXT_TYPE_server_name)
{
if (s->tlsext_hostname == NULL || size > 0)
{
*al = TLS1_AD_UNRECOGNIZED_NAME;
return 0;
}
tlsext_servername = 1;
}
#ifndef OPENSSL_NO_EC
else if (type == TLSEXT_TYPE_ec_point_formats)
{
unsigned char *sdata = data;
int ecpointformatlist_length = *(sdata++);
if (ecpointformatlist_length != size - 1)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
if (!s->hit)
{
s->session->tlsext_ecpointformatlist_length = 0;
if (s->session->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->session->tlsext_ecpointformatlist);
if ((s->session->tlsext_ecpointformatlist = OPENSSL_malloc(ecpointformatlist_length)) == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
s->session->tlsext_ecpointformatlist_length = ecpointformatlist_length;
memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpointformatlist_length);
}
#if 0
fprintf(stderr,"ssl_parse_serverhello_tlsext s->session->tlsext_ecpointformatlist ");
sdata = s->session->tlsext_ecpointformatlist;
for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
fprintf(stderr,"%i ",*(sdata++));
fprintf(stderr,"\n");
#endif
}
#endif /* OPENSSL_NO_EC */
else if (type == TLSEXT_TYPE_session_ticket)
{
if (s->tls_session_ticket_ext_cb &&
!s->tls_session_ticket_ext_cb(s, data, size, s->tls_session_ticket_ext_cb_arg))
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
if (!tls_use_ticket(s) || (size > 0))
{
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
return 0;
}
s->tlsext_ticket_expected = 1;
}
#ifdef TLSEXT_TYPE_opaque_prf_input
else if (type == TLSEXT_TYPE_opaque_prf_input)
{
unsigned char *sdata = data;
if (size < 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
n2s(sdata, s->s3->server_opaque_prf_input_len);
if (s->s3->server_opaque_prf_input_len != size - 2)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */
OPENSSL_free(s->s3->server_opaque_prf_input);
if (s->s3->server_opaque_prf_input_len == 0)
s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
else
s->s3->server_opaque_prf_input = BUF_memdup(sdata, s->s3->server_opaque_prf_input_len);
if (s->s3->server_opaque_prf_input == NULL)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
}
#endif
else if (type == TLSEXT_TYPE_status_request)
{
/* MUST be empty and only sent if we've requested
* a status request message.
*/
if ((s->tlsext_status_type == -1) || (size > 0))
{
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
return 0;
}
/* Set flag to expect CertificateStatus message */
s->tlsext_status_expected = 1;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
else if (type == TLSEXT_TYPE_next_proto_neg &&
s->s3->tmp.finish_md_len == 0)
{
unsigned char *selected;
unsigned char selected_len;
/* We must have requested it. */
if (s->ctx->next_proto_select_cb == NULL)
{
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
return 0;
}
/* The data must be valid */
if (!ssl_next_proto_validate(data, size))
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
if (s->ctx->next_proto_select_cb(s, &selected, &selected_len, data, size, s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
s->next_proto_negotiated = OPENSSL_malloc(selected_len);
if (!s->next_proto_negotiated)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
memcpy(s->next_proto_negotiated, selected, selected_len);
s->next_proto_negotiated_len = selected_len;
s->s3->next_proto_neg_seen = 1;
}
#endif
else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation)
{
unsigned len;
/* We must have requested it. */
if (s->alpn_client_proto_list == NULL)
{
*al = TLS1_AD_UNSUPPORTED_EXTENSION;
return 0;
}
if (size < 4)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
/* The extension data consists of:
* uint16 list_length
* uint8 proto_length;
* uint8 proto[proto_length]; */
len = data[0];
len <<= 8;
len |= data[1];
if (len != (unsigned) size - 2)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
len = data[2];
if (len != (unsigned) size - 3)
{
*al = TLS1_AD_DECODE_ERROR;
return 0;
}
if (s->s3->alpn_selected)
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = OPENSSL_malloc(len);
if (!s->s3->alpn_selected)
{
*al = TLS1_AD_INTERNAL_ERROR;
return 0;
}
memcpy(s->s3->alpn_selected, data + 3, len);
s->s3->alpn_selected_len = len;
}
else if (type == TLSEXT_TYPE_renegotiate)
{
if(!ssl_parse_serverhello_renegotiate_ext(s, data, size, al))
return 0;
renegotiate_seen = 1;
}
#ifndef OPENSSL_NO_HEARTBEATS
else if (type == TLSEXT_TYPE_heartbeat)
{
switch(data[0])
{
case 0x01: /* Server allows us to send HB requests */
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
break;
case 0x02: /* Server doesn't accept HB requests */
s->tlsext_heartbeat |= SSL_TLSEXT_HB_ENABLED;
s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
break;
default: *al = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
#endif
else if (type == TLSEXT_TYPE_use_srtp)
{
if(ssl_parse_serverhello_use_srtp_ext(s, data, size,
al))
return 0;
}
/* If this extension type was not otherwise handled, but
* matches a custom_cli_ext_record, then send it to the c
* callback */
else if (custom_ext_parse(s, 0, type, data, size, al) <= 0)
return 0;
#ifdef TLSEXT_TYPE_encrypt_then_mac
else if (type == TLSEXT_TYPE_encrypt_then_mac)
{
/* Ignore if inappropriate ciphersuite */
if (s->s3->tmp.new_cipher->algorithm_mac != SSL_AEAD)
s->s3->flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC;
}
#endif
data += size;
}
if (data != d+n)
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
if (!s->hit && tlsext_servername == 1)
{
if (s->tlsext_hostname)
{
if (s->session->tlsext_hostname == NULL)
{
s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
if (!s->session->tlsext_hostname)
{
*al = SSL_AD_UNRECOGNIZED_NAME;
return 0;
}
}
else
{
*al = SSL_AD_DECODE_ERROR;
return 0;
}
}
}
*p = data;
ri_check:
/* Determine if we need to see RI. Strictly speaking if we want to
* avoid an attack we should *always* see RI even on initial server
* hello because the client doesn't see any renegotiation during an
* attack. However this would mean we could not connect to any server
* which doesn't support RI so for the immediate future tolerate RI
* absence on initial connect only.
*/
if (!renegotiate_seen
&& !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
&& !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
{
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_SSL_SCAN_SERVERHELLO_TLSEXT,
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
return 0;
}
return 1;
}
int ssl_prepare_clienthello_tlsext(SSL *s)
{
#ifdef TLSEXT_TYPE_opaque_prf_input
{
int r = 1;
if (s->ctx->tlsext_opaque_prf_input_callback != 0)
{
r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg);
if (!r)
return -1;
}
if (s->tlsext_opaque_prf_input != NULL)
{
if (s->s3->client_opaque_prf_input != NULL) /* shouldn't really happen */
OPENSSL_free(s->s3->client_opaque_prf_input);
if (s->tlsext_opaque_prf_input_len == 0)
s->s3->client_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
else
s->s3->client_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len);
if (s->s3->client_opaque_prf_input == NULL)
{
SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_R_MALLOC_FAILURE);
return -1;
}
s->s3->client_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
}
if (r == 2)
/* at callback's request, insist on receiving an appropriate server opaque PRF input */
s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
}
#endif
return 1;
}
int ssl_prepare_serverhello_tlsext(SSL *s)
{
return 1;
}
static int ssl_check_clienthello_tlsext_early(SSL *s)
{
int ret=SSL_TLSEXT_ERR_NOACK;
int al = SSL_AD_UNRECOGNIZED_NAME;
#ifndef OPENSSL_NO_EC
/* The handling of the ECPointFormats extension is done elsewhere, namely in
* ssl3_choose_cipher in s3_lib.c.
*/
/* The handling of the EllipticCurves extension is done elsewhere, namely in
* ssl3_choose_cipher in s3_lib.c.
*/
#endif
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg);
else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0)
ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg);
#ifdef TLSEXT_TYPE_opaque_prf_input
{
/* This sort of belongs into ssl_prepare_serverhello_tlsext(),
* but we might be sending an alert in response to the client hello,
* so this has to happen here in
* ssl_check_clienthello_tlsext_early(). */
int r = 1;
if (s->ctx->tlsext_opaque_prf_input_callback != 0)
{
r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0, s->ctx->tlsext_opaque_prf_input_callback_arg);
if (!r)
{
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_INTERNAL_ERROR;
goto err;
}
}
if (s->s3->server_opaque_prf_input != NULL) /* shouldn't really happen */
OPENSSL_free(s->s3->server_opaque_prf_input);
s->s3->server_opaque_prf_input = NULL;
if (s->tlsext_opaque_prf_input != NULL)
{
if (s->s3->client_opaque_prf_input != NULL &&
s->s3->client_opaque_prf_input_len == s->tlsext_opaque_prf_input_len)
{
/* can only use this extension if we have a server opaque PRF input
* of the same length as the client opaque PRF input! */
if (s->tlsext_opaque_prf_input_len == 0)
s->s3->server_opaque_prf_input = OPENSSL_malloc(1); /* dummy byte just to get non-NULL */
else
s->s3->server_opaque_prf_input = BUF_memdup(s->tlsext_opaque_prf_input, s->tlsext_opaque_prf_input_len);
if (s->s3->server_opaque_prf_input == NULL)
{
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_INTERNAL_ERROR;
goto err;
}
s->s3->server_opaque_prf_input_len = s->tlsext_opaque_prf_input_len;
}
}
if (r == 2 && s->s3->server_opaque_prf_input == NULL)
{
/* The callback wants to enforce use of the extension,
* but we can't do that with the client opaque PRF input;
* abort the handshake.
*/
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_HANDSHAKE_FAILURE;
}
}
err:
#endif
switch (ret)
{
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
return -1;
case SSL_TLSEXT_ERR_ALERT_WARNING:
ssl3_send_alert(s,SSL3_AL_WARNING,al);
return 1;
case SSL_TLSEXT_ERR_NOACK:
s->servername_done=0;
default:
return 1;
}
}
int ssl_check_clienthello_tlsext_late(SSL *s)
{
int ret = SSL_TLSEXT_ERR_OK;
int al;
/* If status request then ask callback what to do.
* Note: this must be called after servername callbacks in case
* the certificate has changed, and must be called after the cipher
* has been chosen because this may influence which certificate is sent
*/
if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb)
{
int r;
CERT_PKEY *certpkey;
certpkey = ssl_get_server_send_pkey(s);
/* If no certificate can't return certificate status */
if (certpkey == NULL)
{
s->tlsext_status_expected = 0;
return 1;
}
/* Set current certificate to one we will use so
* SSL_get_certificate et al can pick it up.
*/
s->cert->key = certpkey;
r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
switch (r)
{
/* We don't want to send a status request response */
case SSL_TLSEXT_ERR_NOACK:
s->tlsext_status_expected = 0;
break;
/* status request response should be sent */
case SSL_TLSEXT_ERR_OK:
if (s->tlsext_ocsp_resp)
s->tlsext_status_expected = 1;
else
s->tlsext_status_expected = 0;
break;
/* something bad happened */
case SSL_TLSEXT_ERR_ALERT_FATAL:
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_INTERNAL_ERROR;
goto err;
}
}
else
s->tlsext_status_expected = 0;
err:
switch (ret)
{
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return -1;
case SSL_TLSEXT_ERR_ALERT_WARNING:
ssl3_send_alert(s, SSL3_AL_WARNING, al);
return 1;
default:
return 1;
}
}
int ssl_check_serverhello_tlsext(SSL *s)
{
int ret=SSL_TLSEXT_ERR_NOACK;
int al = SSL_AD_UNRECOGNIZED_NAME;
#ifndef OPENSSL_NO_EC
/* If we are client and using an elliptic curve cryptography cipher
* suite, then if server returns an EC point formats lists extension
* it must contain uncompressed.
*/
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlist_length > 0) &&
(s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsext_ecpointformatlist_length > 0) &&
((alg_k & (SSL_kECDHE|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA)))
{
/* we are using an ECC cipher */
size_t i;
unsigned char *list;
int found_uncompressed = 0;
list = s->session->tlsext_ecpointformatlist;
for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++)
{
if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed)
{
found_uncompressed = 1;
break;
}
}
if (!found_uncompressed)
{
SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
return -1;
}
}
ret = SSL_TLSEXT_ERR_OK;
#endif /* OPENSSL_NO_EC */
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_servername_arg);
else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_callback != 0)
ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->initial_ctx->tlsext_servername_arg);
#ifdef TLSEXT_TYPE_opaque_prf_input
if (s->s3->server_opaque_prf_input_len > 0)
{
/* This case may indicate that we, as a client, want to insist on using opaque PRF inputs.
* So first verify that we really have a value from the server too. */
if (s->s3->server_opaque_prf_input == NULL)
{
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_HANDSHAKE_FAILURE;
}
/* Anytime the server *has* sent an opaque PRF input, we need to check
* that we have a client opaque PRF input of the same size. */
if (s->s3->client_opaque_prf_input == NULL ||
s->s3->client_opaque_prf_input_len != s->s3->server_opaque_prf_input_len)
{
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
al = SSL_AD_ILLEGAL_PARAMETER;
}
}
#endif
/* If we've requested certificate status and we wont get one
* tell the callback
*/
if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
&& s->ctx && s->ctx->tlsext_status_cb)
{
int r;
/* Set resp to NULL, resplen to -1 so callback knows
* there is no response.
*/
if (s->tlsext_ocsp_resp)
{
OPENSSL_free(s->tlsext_ocsp_resp);
s->tlsext_ocsp_resp = NULL;
}
s->tlsext_ocsp_resplen = -1;
r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
if (r == 0)
{
al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (r < 0)
{
al = SSL_AD_INTERNAL_ERROR;
ret = SSL_TLSEXT_ERR_ALERT_FATAL;
}
}
switch (ret)
{
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
return -1;
case SSL_TLSEXT_ERR_ALERT_WARNING:
ssl3_send_alert(s,SSL3_AL_WARNING,al);
return 1;
case SSL_TLSEXT_ERR_NOACK:
s->servername_done=0;
default:
return 1;
}
}
int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, int n)
{
int al = -1;
if (s->version < SSL3_VERSION)
return 1;
if (ssl_scan_serverhello_tlsext(s, p, d, n, &al) <= 0)
{
ssl3_send_alert(s,SSL3_AL_FATAL,al);
return 0;
}
if (ssl_check_serverhello_tlsext(s) <= 0)
{
SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT,SSL_R_SERVERHELLO_TLSEXT);
return 0;
}
return 1;
}
/* Since the server cache lookup is done early on in the processing of the
* ClientHello, and other operations depend on the result, we need to handle
* any TLS session ticket extension at the same time.
*
* session_id: points at the session ID in the ClientHello. This code will
* read past the end of this in order to parse out the session ticket
* extension, if any.
* len: the length of the session ID.
* limit: a pointer to the first byte after the ClientHello.
* ret: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*
* If s->tls_session_secret_cb is set then we are expecting a pre-shared key
* ciphersuite, in which case we have no use for session tickets and one will
* never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
*
* Returns:
* -1: fatal error, either from parsing or decrypting the ticket.
* 0: no ticket was found (or was ignored, based on settings).
* 1: a zero length extension was found, indicating that the client supports
* session tickets but doesn't currently have one to offer.
* 2: either s->tls_session_secret_cb was set, or a ticket was offered but
* couldn't be decrypted because of a non-fatal error.
* 3: a ticket was successfully decrypted and *ret was set.
*
* Side effects:
* Sets s->tlsext_ticket_expected to 1 if the server will have to issue
* a new session ticket to the client because the client indicated support
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
* a session ticket or we couldn't use the one it gave us, or if
* s->ctx->tlsext_ticket_key_cb asked to renew the client's ticket.
* Otherwise, s->tlsext_ticket_expected is set to 0.
*/
int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
const unsigned char *limit, SSL_SESSION **ret)
{
/* Point after session ID in client hello */
const unsigned char *p = session_id + len;
unsigned short i;
*ret = NULL;
s->tlsext_ticket_expected = 0;
/* If tickets disabled behave as if no ticket present
* to permit stateful resumption.
*/
if (!tls_use_ticket(s))
return 0;
if ((s->version <= SSL3_VERSION) || !limit)
return 0;
if (p >= limit)
return -1;
/* Skip past DTLS cookie */
if (SSL_IS_DTLS(s))
{
i = *(p++);
p+= i;
if (p >= limit)
return -1;
}
/* Skip past cipher list */
n2s(p, i);
p+= i;
if (p >= limit)
return -1;
/* Skip past compression algorithm list */
i = *(p++);
p += i;
if (p > limit)
return -1;
/* Now at start of extensions */
if ((p + 2) >= limit)
return 0;
n2s(p, i);
while ((p + 4) <= limit)
{
unsigned short type, size;
n2s(p, type);
n2s(p, size);
if (p + size > limit)
return 0;
if (type == TLSEXT_TYPE_session_ticket)
{
int r;
if (size == 0)
{
/* The client will accept a ticket but doesn't
* currently have one. */
s->tlsext_ticket_expected = 1;
return 1;
}
if (s->tls_session_secret_cb)
{
/* Indicate that the ticket couldn't be
* decrypted rather than generating the session
* from ticket now, trigger abbreviated
* handshake based on external mechanism to
* calculate the master secret later. */
return 2;
}
r = tls_decrypt_ticket(s, p, size, session_id, len, ret);
switch (r)
{
case 2: /* ticket couldn't be decrypted */
s->tlsext_ticket_expected = 1;
return 2;
case 3: /* ticket was decrypted */
return r;
case 4: /* ticket decrypted but need to renew */
s->tlsext_ticket_expected = 1;
return 3;
default: /* fatal error */
return -1;
}
}
p += size;
}
return 0;
}
/* tls_decrypt_ticket attempts to decrypt a session ticket.
*
* etick: points to the body of the session ticket extension.
* eticklen: the length of the session tickets extenion.
* sess_id: points at the session ID.
* sesslen: the length of the session ID.
* psess: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*
* Returns:
* -1: fatal error, either from parsing or decrypting the ticket.
* 2: the ticket couldn't be decrypted.
* 3: a ticket was successfully decrypted and *psess was set.
* 4: same as 3, but the ticket needs to be renewed.
*/
static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen,
const unsigned char *sess_id, int sesslen,
SSL_SESSION **psess)
{
SSL_SESSION *sess;
unsigned char *sdec;
const unsigned char *p;
int slen, mlen, renew_ticket = 0;
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
HMAC_CTX hctx;
EVP_CIPHER_CTX ctx;
SSL_CTX *tctx = s->initial_ctx;
/* Need at least keyname + iv + some encrypted data */
if (eticklen < 48)
return 2;
/* Initialize session ticket encryption and HMAC contexts */
HMAC_CTX_init(&hctx);
EVP_CIPHER_CTX_init(&ctx);
if (tctx->tlsext_ticket_key_cb)
{
unsigned char *nctick = (unsigned char *)etick;
int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
&ctx, &hctx, 0);
if (rv < 0)
return -1;
if (rv == 0)
return 2;
if (rv == 2)
renew_ticket = 1;
}
else
{
/* Check key name matches */
if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
return 2;
HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
tlsext_tick_md(), NULL);
EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
tctx->tlsext_tick_aes_key, etick + 16);
}
/* Attempt to process session ticket, first conduct sanity and
* integrity checks on ticket.
*/
mlen = HMAC_size(&hctx);
if (mlen < 0)
{
EVP_CIPHER_CTX_cleanup(&ctx);
return -1;
}
eticklen -= mlen;
/* Check HMAC of encrypted ticket */
HMAC_Update(&hctx, etick, eticklen);
HMAC_Final(&hctx, tick_hmac, NULL);
HMAC_CTX_cleanup(&hctx);
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen))
return 2;
/* Attempt to decrypt session data */
/* Move p after IV to start of encrypted ticket, update length */
p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
sdec = OPENSSL_malloc(eticklen);
if (!sdec)
{
EVP_CIPHER_CTX_cleanup(&ctx);
return -1;
}
EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0)
{
EVP_CIPHER_CTX_cleanup(&ctx);
OPENSSL_free(sdec);
return 2;
}
slen += mlen;
EVP_CIPHER_CTX_cleanup(&ctx);
p = sdec;
sess = d2i_SSL_SESSION(NULL, &p, slen);
OPENSSL_free(sdec);
if (sess)
{
/* The session ID, if non-empty, is used by some clients to
* detect that the ticket has been accepted. So we copy it to
* the session structure. If it is empty set length to zero
* as required by standard.
*/
if (sesslen)
memcpy(sess->session_id, sess_id, sesslen);
sess->session_id_length = sesslen;
*psess = sess;
if (renew_ticket)
return 4;
else
return 3;
}
ERR_clear_error();
/* For session parse failure, indicate that we need to send a new
* ticket. */
return 2;
}
/* Tables to translate from NIDs to TLS v1.2 ids */
typedef struct
{
int nid;
int id;
} tls12_lookup;
static tls12_lookup tls12_md[] = {
{NID_md5, TLSEXT_hash_md5},
{NID_sha1, TLSEXT_hash_sha1},
{NID_sha224, TLSEXT_hash_sha224},
{NID_sha256, TLSEXT_hash_sha256},
{NID_sha384, TLSEXT_hash_sha384},
{NID_sha512, TLSEXT_hash_sha512}
};
static tls12_lookup tls12_sig[] = {
{EVP_PKEY_RSA, TLSEXT_signature_rsa},
{EVP_PKEY_DSA, TLSEXT_signature_dsa},
{EVP_PKEY_EC, TLSEXT_signature_ecdsa}
};
static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen)
{
size_t i;
for (i = 0; i < tlen; i++)
{
if (table[i].nid == nid)
return table[i].id;
}
return -1;
}
static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen)
{
size_t i;
for (i = 0; i < tlen; i++)
{
if ((table[i].id) == id)
return table[i].nid;
}
return NID_undef;
}
int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md)
{
int sig_id, md_id;
if (!md)
return 0;
md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
sizeof(tls12_md)/sizeof(tls12_lookup));
if (md_id == -1)
return 0;
sig_id = tls12_get_sigid(pk);
if (sig_id == -1)
return 0;
p[0] = (unsigned char)md_id;
p[1] = (unsigned char)sig_id;
return 1;
}
int tls12_get_sigid(const EVP_PKEY *pk)
{
return tls12_find_id(pk->type, tls12_sig,
sizeof(tls12_sig)/sizeof(tls12_lookup));
}
typedef struct
{
int nid;
int secbits;
const EVP_MD *(*mfunc)(void);
} tls12_hash_info;
static const tls12_hash_info tls12_md_info[] = {
#ifdef OPENSSL_NO_MD5
{NID_md5, 64, 0},
#else
{NID_md5, 64, EVP_md5},
#endif
#ifdef OPENSSL_NO_SHA
{NID_sha1, 80, 0},
#else
{NID_sha1, 80, EVP_sha1},
#endif
#ifdef OPENSSL_NO_SHA256
{NID_sha224, 112, 0},
{NID_sha256, 128, 0},
#else
{NID_sha224, 112, EVP_sha224},
{NID_sha256, 128, EVP_sha256},
#endif
#ifdef OPENSSL_NO_SHA512
{NID_sha384, 192, 0},
{NID_sha512, 256, 0}
#else
{NID_sha384, 192, EVP_sha384},
{NID_sha512, 256, EVP_sha512}
#endif
};
static const tls12_hash_info *tls12_get_hash_info(unsigned char hash_alg)
{
if (hash_alg == 0)
return NULL;
if (hash_alg > sizeof(tls12_md_info)/sizeof(tls12_md_info[0]))
return NULL;
return tls12_md_info + hash_alg - 1;
}
const EVP_MD *tls12_get_hash(unsigned char hash_alg)
{
const tls12_hash_info *inf;
#ifndef OPENSSL_FIPS
if (hash_alg == TLSEXT_hash_md5 && FIPS_mode())
return NULL;
#endif
inf = tls12_get_hash_info(hash_alg);
if (!inf || !inf->mfunc)
return NULL;
return inf->mfunc();
}
static int tls12_get_pkey_idx(unsigned char sig_alg)
{
switch(sig_alg)
{
#ifndef OPENSSL_NO_RSA
case TLSEXT_signature_rsa:
return SSL_PKEY_RSA_SIGN;
#endif
#ifndef OPENSSL_NO_DSA
case TLSEXT_signature_dsa:
return SSL_PKEY_DSA_SIGN;
#endif
#ifndef OPENSSL_NO_ECDSA
case TLSEXT_signature_ecdsa:
return SSL_PKEY_ECC;
#endif
}
return -1;
}
/* Convert TLS 1.2 signature algorithm extension values into NIDs */
static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
int *psignhash_nid, const unsigned char *data)
{
int sign_nid = 0, hash_nid = 0;
if (!phash_nid && !psign_nid && !psignhash_nid)
return;
if (phash_nid || psignhash_nid)
{
hash_nid = tls12_find_nid(data[0], tls12_md,
sizeof(tls12_md)/sizeof(tls12_lookup));
if (phash_nid)
*phash_nid = hash_nid;
}
if (psign_nid || psignhash_nid)
{
sign_nid = tls12_find_nid(data[1], tls12_sig,
sizeof(tls12_sig)/sizeof(tls12_lookup));
if (psign_nid)
*psign_nid = sign_nid;
}
if (psignhash_nid)
{
if (sign_nid && hash_nid)
OBJ_find_sigid_by_algs(psignhash_nid,
hash_nid, sign_nid);
else
*psignhash_nid = NID_undef;
}
}
/* Check to see if a signature algorithm is allowed */
static int tls12_sigalg_allowed(SSL *s, int op, const unsigned char *ptmp)
{
/* See if we have an entry in the hash table and it is enabled */
const tls12_hash_info *hinf = tls12_get_hash_info(ptmp[0]);
if (!hinf || !hinf->mfunc)
return 0;
/* See if public key algorithm allowed */
if (tls12_get_pkey_idx(ptmp[1]) == -1)
return 0;
/* Finally see if security callback allows it */
return ssl_security(s, op, hinf->secbits, hinf->nid, (void *)ptmp);
}
/* Get a mask of disabled public key algorithms based on supported
* signature algorithms. For example if no signature algorithm supports RSA
* then RSA is disabled.
*/
void ssl_set_sig_mask(unsigned long *pmask_a, SSL *s, int op)
{
const unsigned char *sigalgs;
size_t i, sigalgslen;
int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
/* Now go through all signature algorithms seeing if we support
* any for RSA, DSA, ECDSA. Do this for all versions not just
* TLS 1.2. To keep down calls to security callback only check
* if we have to.
*/
sigalgslen = tls12_get_psigalgs(s, &sigalgs);
for (i = 0; i < sigalgslen; i += 2, sigalgs += 2)
{
switch(sigalgs[1])
{
#ifndef OPENSSL_NO_RSA
case TLSEXT_signature_rsa:
if (!have_rsa && tls12_sigalg_allowed(s, op, sigalgs))
have_rsa = 1;
break;
#endif
#ifndef OPENSSL_NO_DSA
case TLSEXT_signature_dsa:
if (!have_dsa && tls12_sigalg_allowed(s, op, sigalgs))
have_dsa = 1;
break;
#endif
#ifndef OPENSSL_NO_ECDSA
case TLSEXT_signature_ecdsa:
if (!have_ecdsa && tls12_sigalg_allowed(s, op, sigalgs))
have_ecdsa = 1;
break;
#endif
}
}
if (!have_rsa)
*pmask_a |= SSL_aRSA;
if (!have_dsa)
*pmask_a |= SSL_aDSS;
if (!have_ecdsa)
*pmask_a |= SSL_aECDSA;
}
size_t tls12_copy_sigalgs(SSL *s, unsigned char *out,
const unsigned char *psig, size_t psiglen)
{
unsigned char *tmpout = out;
size_t i;
for (i = 0; i < psiglen; i += 2, psig += 2)
{
if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, psig))
{
*tmpout++ = psig[0];
*tmpout++ = psig[1];
}
}
return tmpout - out;
}
/* Given preference and allowed sigalgs set shared sigalgs */
static int tls12_shared_sigalgs(SSL *s, TLS_SIGALGS *shsig,
const unsigned char *pref, size_t preflen,
const unsigned char *allow, size_t allowlen)
{
const unsigned char *ptmp, *atmp;
size_t i, j, nmatch = 0;
for (i = 0, ptmp = pref; i < preflen; i+=2, ptmp+=2)
{
/* Skip disabled hashes or signature algorithms */
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, ptmp))
continue;
for (j = 0, atmp = allow; j < allowlen; j+=2, atmp+=2)
{
if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1])
{
nmatch++;
if (shsig)
{
shsig->rhash = ptmp[0];
shsig->rsign = ptmp[1];
tls1_lookup_sigalg(&shsig->hash_nid,
&shsig->sign_nid,
&shsig->signandhash_nid,
ptmp);
shsig++;
}
break;
}
}
}
return nmatch;
}
/* Set shared signature algorithms for SSL structures */
static int tls1_set_shared_sigalgs(SSL *s)
{
const unsigned char *pref, *allow, *conf;
size_t preflen, allowlen, conflen;
size_t nmatch;
TLS_SIGALGS *salgs = NULL;
CERT *c = s->cert;
unsigned int is_suiteb = tls1_suiteb(s);
if (c->shared_sigalgs)
{
OPENSSL_free(c->shared_sigalgs);
c->shared_sigalgs = NULL;
}
/* If client use client signature algorithms if not NULL */
if (!s->server && c->client_sigalgs && !is_suiteb)
{
conf = c->client_sigalgs;
conflen = c->client_sigalgslen;
}
else if (c->conf_sigalgs && !is_suiteb)
{
conf = c->conf_sigalgs;
conflen = c->conf_sigalgslen;
}
else
conflen = tls12_get_psigalgs(s, &conf);
if(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb)
{
pref = conf;
preflen = conflen;
allow = c->peer_sigalgs;
allowlen = c->peer_sigalgslen;
}
else
{
allow = conf;
allowlen = conflen;
pref = c->peer_sigalgs;
preflen = c->peer_sigalgslen;
}
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
if (!nmatch)
return 1;
salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
if (!salgs)
return 0;
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
c->shared_sigalgs = salgs;
c->shared_sigalgslen = nmatch;
return 1;
}
/* Set preferred digest for each key type */
int tls1_process_sigalgs(SSL *s, const unsigned char *data, int dsize)
{
int idx;
size_t i;
const EVP_MD *md;
CERT *c = s->cert;
TLS_SIGALGS *sigptr;
/* Extension ignored for inappropriate versions */
if (!SSL_USE_SIGALGS(s))
return 1;
/* Should never happen */
if (!c)
return 0;
if (c->peer_sigalgs)
OPENSSL_free(c->peer_sigalgs);
c->peer_sigalgs = OPENSSL_malloc(dsize);
if (!c->peer_sigalgs)
return 0;
c->peer_sigalgslen = dsize;
memcpy(c->peer_sigalgs, data, dsize);
tls1_set_shared_sigalgs(s);
#ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
{
/* Use first set signature preference to force message
* digest, ignoring any peer preferences.
*/
const unsigned char *sigs = NULL;
if (s->server)
sigs = c->conf_sigalgs;
else
sigs = c->client_sigalgs;
if (sigs)
{
idx = tls12_get_pkey_idx(sigs[1]);
md = tls12_get_hash(sigs[0]);
c->pkeys[idx].digest = md;
c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
if (idx == SSL_PKEY_RSA_SIGN)
{
c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
}
}
}
#endif
for (i = 0, sigptr = c->shared_sigalgs;
i < c->shared_sigalgslen; i++, sigptr++)
{
idx = tls12_get_pkey_idx(sigptr->rsign);
if (idx > 0 && c->pkeys[idx].digest == NULL)
{
md = tls12_get_hash(sigptr->rhash);
c->pkeys[idx].digest = md;
c->pkeys[idx].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
if (idx == SSL_PKEY_RSA_SIGN)
{
c->pkeys[SSL_PKEY_RSA_ENC].valid_flags = CERT_PKEY_EXPLICIT_SIGN;
c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
}
}
}
/* In strict mode leave unset digests as NULL to indicate we can't
* use the certificate for signing.
*/
if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT))
{
/* Set any remaining keys to default values. NOTE: if alg is
* not supported it stays as NULL.
*/
#ifndef OPENSSL_NO_DSA
if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
#endif
#ifndef OPENSSL_NO_RSA
if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest)
{
c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
}
#endif
#ifndef OPENSSL_NO_ECDSA
if (!c->pkeys[SSL_PKEY_ECC].digest)
c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
#endif
}
return 1;
}
int SSL_get_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
const unsigned char *psig = s->cert->peer_sigalgs;
if (psig == NULL)
return 0;
if (idx >= 0)
{
idx <<= 1;
if (idx >= (int)s->cert->peer_sigalgslen)
return 0;
psig += idx;
if (rhash)
*rhash = psig[0];
if (rsig)
*rsig = psig[1];
tls1_lookup_sigalg(phash, psign, psignhash, psig);
}
return s->cert->peer_sigalgslen / 2;
}
int SSL_get_shared_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen)
return 0;
shsigalgs += idx;
if (phash)
*phash = shsigalgs->hash_nid;
if (psign)
*psign = shsigalgs->sign_nid;
if (psignhash)
*psignhash = shsigalgs->signandhash_nid;
if (rsig)
*rsig = shsigalgs->rsign;
if (rhash)
*rhash = shsigalgs->rhash;
return s->cert->shared_sigalgslen;
}
#ifndef OPENSSL_NO_HEARTBEATS
int
tls1_process_heartbeat(SSL *s)
{
unsigned char *p = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;
unsigned int padding = 16; /* Use minimum padding */
if (s->msg_callback)
s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
&s->s3->rrec.data[0], s->s3->rrec.length,
s, s->msg_callback_arg);
/* Read type and payload length first */
if (1 + 2 + 16 > s->s3->rrec.length)
return 0; /* silently discard */
hbtype = *p++;
n2s(p, payload);
if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */
pl = p;
if (hbtype == TLS1_HB_REQUEST)
{
unsigned char *buffer, *bp;
int r;
/* Allocate memory for the response, size is 1 bytes
* message type, plus 2 bytes payload length, plus
* payload, plus padding
*/
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;
/* Enter response type, length and copy payload */
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);
bp += payload;
/* Random padding */
RAND_pseudo_bytes(bp, padding);
r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);
if (r >= 0 && s->msg_callback)
s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
buffer, 3 + payload + padding,
s, s->msg_callback_arg);
OPENSSL_free(buffer);
if (r < 0)
return r;
}
else if (hbtype == TLS1_HB_RESPONSE)
{
unsigned int seq;
/* We only send sequence numbers (2 bytes unsigned int),
* and 16 random bytes, so we just try to read the
* sequence number */
n2s(pl, seq);
if (payload == 18 && seq == s->tlsext_hb_seq)
{
s->tlsext_hb_seq++;
s->tlsext_hb_pending = 0;
}
}
return 0;
}
int
tls1_heartbeat(SSL *s)
{
unsigned char *buf, *p;
int ret;
unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */
/* Only send if peer supports and accepts HB requests... */
if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS)
{
SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT);
return -1;
}
/* ...and there is none in flight yet... */
if (s->tlsext_hb_pending)
{
SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PENDING);
return -1;
}
/* ...and no handshake in progress. */
if (SSL_in_init(s) || s->in_handshake)
{
SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
/* Check if padding is too long, payload and padding
* must not exceed 2^14 - 3 = 16381 bytes in total.
*/
OPENSSL_assert(payload + padding <= 16381);
/* Create HeartBeat message, we just use a sequence number
* as payload to distuingish different messages and add
* some random stuff.
* - Message Type, 1 byte
* - Payload Length, 2 bytes (unsigned int)
* - Payload, the sequence number (2 bytes uint)
* - Payload, random bytes (16 bytes uint)
* - Padding
*/
buf = OPENSSL_malloc(1 + 2 + payload + padding);
p = buf;
/* Message Type */
*p++ = TLS1_HB_REQUEST;
/* Payload length (18 bytes here) */
s2n(payload, p);
/* Sequence number */
s2n(s->tlsext_hb_seq, p);
/* 16 random bytes */
RAND_pseudo_bytes(p, 16);
p += 16;
/* Random padding */
RAND_pseudo_bytes(p, padding);
ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);
if (ret >= 0)
{
if (s->msg_callback)
s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
buf, 3 + payload + padding,
s, s->msg_callback_arg);
s->tlsext_hb_pending = 1;
}
OPENSSL_free(buf);
return ret;
}
#endif
#define MAX_SIGALGLEN (TLSEXT_hash_num * TLSEXT_signature_num * 2)
typedef struct
{
size_t sigalgcnt;
int sigalgs[MAX_SIGALGLEN];
} sig_cb_st;
static int sig_cb(const char *elem, int len, void *arg)
{
sig_cb_st *sarg = arg;
size_t i;
char etmp[20], *p;
int sig_alg, hash_alg;
if (sarg->sigalgcnt == MAX_SIGALGLEN)
return 0;
if (len > (int)(sizeof(etmp) - 1))
return 0;
memcpy(etmp, elem, len);
etmp[len] = 0;
p = strchr(etmp, '+');
if (!p)
return 0;
*p = 0;
p++;
if (!*p)
return 0;
if (!strcmp(etmp, "RSA"))
sig_alg = EVP_PKEY_RSA;
else if (!strcmp(etmp, "DSA"))
sig_alg = EVP_PKEY_DSA;
else if (!strcmp(etmp, "ECDSA"))
sig_alg = EVP_PKEY_EC;
else return 0;
hash_alg = OBJ_sn2nid(p);
if (hash_alg == NID_undef)
hash_alg = OBJ_ln2nid(p);
if (hash_alg == NID_undef)
return 0;
for (i = 0; i < sarg->sigalgcnt; i+=2)
{
if (sarg->sigalgs[i] == sig_alg
&& sarg->sigalgs[i + 1] == hash_alg)
return 0;
}
sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
return 1;
}
/* Set suppored signature algorithms based on a colon separated list
* of the form sig+hash e.g. RSA+SHA512:DSA+SHA512 */
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
{
sig_cb_st sig;
sig.sigalgcnt = 0;
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
return 0;
if (c == NULL)
return 1;
return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
}
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
{
unsigned char *sigalgs, *sptr;
int rhash, rsign;
size_t i;
if (salglen & 1)
return 0;
sigalgs = OPENSSL_malloc(salglen);
if (sigalgs == NULL)
return 0;
for (i = 0, sptr = sigalgs; i < salglen; i+=2)
{
rhash = tls12_find_id(*psig_nids++, tls12_md,
sizeof(tls12_md)/sizeof(tls12_lookup));
rsign = tls12_find_id(*psig_nids++, tls12_sig,
sizeof(tls12_sig)/sizeof(tls12_lookup));
if (rhash == -1 || rsign == -1)
goto err;
*sptr++ = rhash;
*sptr++ = rsign;
}
if (client)
{
if (c->client_sigalgs)
OPENSSL_free(c->client_sigalgs);
c->client_sigalgs = sigalgs;
c->client_sigalgslen = salglen;
}
else
{
if (c->conf_sigalgs)
OPENSSL_free(c->conf_sigalgs);
c->conf_sigalgs = sigalgs;
c->conf_sigalgslen = salglen;
}
return 1;
err:
OPENSSL_free(sigalgs);
return 0;
}
static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
{
int sig_nid;
size_t i;
if (default_nid == -1)
return 1;
sig_nid = X509_get_signature_nid(x);
if (default_nid)
return sig_nid == default_nid ? 1 : 0;
for (i = 0; i < c->shared_sigalgslen; i++)
if (sig_nid == c->shared_sigalgs[i].signandhash_nid)
return 1;
return 0;
}
/* Check to see if a certificate issuer name matches list of CA names */
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
{
X509_NAME *nm;
int i;
nm = X509_get_issuer_name(x);
for (i = 0; i < sk_X509_NAME_num(names); i++)
{
if(!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
return 1;
}
return 0;
}
/* Check certificate chain is consistent with TLS extensions and is
* usable by server. This servers two purposes: it allows users to
* check chains before passing them to the server and it allows the
* server to check chains before attempting to use them.
*/
/* Flags which need to be set for a certificate when stict mode not set */
#define CERT_PKEY_VALID_FLAGS \
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
/* Strict mode flags */
#define CERT_PKEY_STRICT_FLAGS \
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
int idx)
{
int i;
int rv = 0;
int check_flags = 0, strict_mode;
CERT_PKEY *cpk = NULL;
CERT *c = s->cert;
unsigned int suiteb_flags = tls1_suiteb(s);
/* idx == -1 means checking server chains */
if (idx != -1)
{
/* idx == -2 means checking client certificate chains */
if (idx == -2)
{
cpk = c->key;
idx = cpk - c->pkeys;
}
else
cpk = c->pkeys + idx;
x = cpk->x509;
pk = cpk->privatekey;
chain = cpk->chain;
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
/* If no cert or key, forget it */
if (!x || !pk)
goto end;
#ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL
/* Allow any certificate to pass test */
if (s->cert->cert_flags & SSL_CERT_FLAG_BROKEN_PROTOCOL)
{
rv = CERT_PKEY_STRICT_FLAGS|CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_VALID|CERT_PKEY_SIGN;
cpk->valid_flags = rv;
return rv;
}
#endif
}
else
{
if (!x || !pk)
goto end;
idx = ssl_cert_type(x, pk);
if (idx == -1)
goto end;
cpk = c->pkeys + idx;
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
check_flags = CERT_PKEY_STRICT_FLAGS;
else
check_flags = CERT_PKEY_VALID_FLAGS;
strict_mode = 1;
}
if (suiteb_flags)
{
int ok;
if (check_flags)
check_flags |= CERT_PKEY_SUITEB;
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
if (ok != X509_V_OK)
{
if (check_flags)
rv |= CERT_PKEY_SUITEB;
else
goto end;
}
}
/* Check all signature algorithms are consistent with
* signature algorithms extension if TLS 1.2 or later
* and strict mode.
*/
if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode)
{
int default_nid;
unsigned char rsign = 0;
if (c->peer_sigalgs)
default_nid = 0;
/* If no sigalgs extension use defaults from RFC5246 */
else
{
switch(idx)
{
case SSL_PKEY_RSA_ENC:
case SSL_PKEY_RSA_SIGN:
case SSL_PKEY_DH_RSA:
rsign = TLSEXT_signature_rsa;
default_nid = NID_sha1WithRSAEncryption;
break;
case SSL_PKEY_DSA_SIGN:
case SSL_PKEY_DH_DSA:
rsign = TLSEXT_signature_dsa;
default_nid = NID_dsaWithSHA1;
break;
case SSL_PKEY_ECC:
rsign = TLSEXT_signature_ecdsa;
default_nid = NID_ecdsa_with_SHA1;
break;
default:
default_nid = -1;
break;
}
}
/* If peer sent no signature algorithms extension and we
* have set preferred signature algorithms check we support
* sha1.
*/
if (default_nid > 0 && c->conf_sigalgs)
{
size_t j;
const unsigned char *p = c->conf_sigalgs;
for (j = 0; j < c->conf_sigalgslen; j += 2, p += 2)
{
if (p[0] == TLSEXT_hash_sha1 && p[1] == rsign)
break;
}
if (j == c->conf_sigalgslen)
{
if (check_flags)
goto skip_sigs;
else
goto end;
}
}
/* Check signature algorithm of each cert in chain */
if (!tls1_check_sig_alg(c, x, default_nid))
{
if (!check_flags) goto end;
}
else
rv |= CERT_PKEY_EE_SIGNATURE;
rv |= CERT_PKEY_CA_SIGNATURE;
for (i = 0; i < sk_X509_num(chain); i++)
{
if (!tls1_check_sig_alg(c, sk_X509_value(chain, i),
default_nid))
{
if (check_flags)
{
rv &= ~CERT_PKEY_CA_SIGNATURE;
break;
}
else
goto end;
}
}
}
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
else if(check_flags)
rv |= CERT_PKEY_EE_SIGNATURE|CERT_PKEY_CA_SIGNATURE;
skip_sigs:
/* Check cert parameters are consistent */
if (tls1_check_cert_param(s, x, check_flags ? 1 : 2))
rv |= CERT_PKEY_EE_PARAM;
else if (!check_flags)
goto end;
if (!s->server)
rv |= CERT_PKEY_CA_PARAM;
/* In strict mode check rest of chain too */
else if (strict_mode)
{
rv |= CERT_PKEY_CA_PARAM;
for (i = 0; i < sk_X509_num(chain); i++)
{
X509 *ca = sk_X509_value(chain, i);
if (!tls1_check_cert_param(s, ca, 0))
{
if (check_flags)
{
rv &= ~CERT_PKEY_CA_PARAM;
break;
}
else
goto end;
}
}
}
if (!s->server && strict_mode)
{
STACK_OF(X509_NAME) *ca_dn;
int check_type = 0;
switch (pk->type)
{
case EVP_PKEY_RSA:
check_type = TLS_CT_RSA_SIGN;
break;
case EVP_PKEY_DSA:
check_type = TLS_CT_DSS_SIGN;
break;
case EVP_PKEY_EC:
check_type = TLS_CT_ECDSA_SIGN;
break;
case EVP_PKEY_DH:
case EVP_PKEY_DHX:
{
int cert_type = X509_certificate_type(x, pk);
if (cert_type & EVP_PKS_RSA)
check_type = TLS_CT_RSA_FIXED_DH;
if (cert_type & EVP_PKS_DSA)
check_type = TLS_CT_DSS_FIXED_DH;
}
}
if (check_type)
{
const unsigned char *ctypes;
int ctypelen;
if (c->ctypes)
{
ctypes = c->ctypes;
ctypelen = (int)c->ctype_num;
}
else
{
ctypes = (unsigned char *)s->s3->tmp.ctype;
ctypelen = s->s3->tmp.ctype_num;
}
for (i = 0; i < ctypelen; i++)
{
if (ctypes[i] == check_type)
{
rv |= CERT_PKEY_CERT_TYPE;
break;
}
}
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
goto end;
}
else
rv |= CERT_PKEY_CERT_TYPE;
ca_dn = s->s3->tmp.ca_names;
if (!sk_X509_NAME_num(ca_dn))
rv |= CERT_PKEY_ISSUER_NAME;
if (!(rv & CERT_PKEY_ISSUER_NAME))
{
if (ssl_check_ca_name(ca_dn, x))
rv |= CERT_PKEY_ISSUER_NAME;
}
if (!(rv & CERT_PKEY_ISSUER_NAME))
{
for (i = 0; i < sk_X509_num(chain); i++)
{
X509 *xtmp = sk_X509_value(chain, i);
if (ssl_check_ca_name(ca_dn, xtmp))
{
rv |= CERT_PKEY_ISSUER_NAME;
break;
}
}
}
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
goto end;
}
else
rv |= CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE;
if (!check_flags || (rv & check_flags) == check_flags)
rv |= CERT_PKEY_VALID;
end:
if (TLS1_get_version(s) >= TLS1_2_VERSION)
{
if (cpk->valid_flags & CERT_PKEY_EXPLICIT_SIGN)
rv |= CERT_PKEY_EXPLICIT_SIGN|CERT_PKEY_SIGN;
else if (cpk->digest)
rv |= CERT_PKEY_SIGN;
}
else
rv |= CERT_PKEY_SIGN|CERT_PKEY_EXPLICIT_SIGN;
/* When checking a CERT_PKEY structure all flags are irrelevant
* if the chain is invalid.
*/
if (!check_flags)
{
if (rv & CERT_PKEY_VALID)
cpk->valid_flags = rv;
else
{
/* Preserve explicit sign flag, clear rest */
cpk->valid_flags &= CERT_PKEY_EXPLICIT_SIGN;
return 0;
}
}
return rv;
}
/* Set validity of certificates in an SSL structure */
void tls1_set_cert_validity(SSL *s)
{
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_ENC);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_RSA);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DH_DSA);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
}
/* User level utiity function to check a chain is suitable */
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
{
return tls1_check_chain(s, x, pk, chain, -1);
}
#endif
#ifndef OPENSSL_NO_DH
DH *ssl_get_auto_dh(SSL *s)
{
int dh_secbits = 80;
if (s->cert->dh_tmp_auto == 2)
return DH_get_1024_160();
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
{
if (s->s3->tmp.new_cipher->strength_bits == 256)
dh_secbits = 128;
else
dh_secbits = 80;
}
else
{
CERT_PKEY *cpk = ssl_get_server_send_pkey(s);
dh_secbits = EVP_PKEY_security_bits(cpk->privatekey);
}
if (dh_secbits >= 128)
{
DH *dhp = DH_new();
if (!dhp)
return NULL;
dhp->g = BN_new();
if (dhp->g)
BN_set_word(dhp->g, 2);
if (dh_secbits >= 192)
dhp->p = get_rfc3526_prime_8192(NULL);
else
dhp->p = get_rfc3526_prime_3072(NULL);
if (!dhp->p || !dhp->g)
{
DH_free(dhp);
return NULL;
}
return dhp;
}
if (dh_secbits >= 112)
return DH_get_2048_224();
return DH_get_1024_160();
}
#endif
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
{
int secbits;
EVP_PKEY *pkey = X509_get_pubkey(x);
if (pkey)
{
secbits = EVP_PKEY_security_bits(pkey);
EVP_PKEY_free(pkey);
}
else
secbits = -1;
if (s)
return ssl_security(s, op, secbits, 0, x);
else
return ssl_ctx_security(ctx, op, secbits, 0, x);
}
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
{
/* Lookup signature algorithm digest */
int secbits = -1, md_nid = NID_undef, sig_nid;
sig_nid = X509_get_signature_nid(x);
if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL))
{
const EVP_MD *md;
if (md_nid && (md = EVP_get_digestbynid(md_nid)))
secbits = EVP_MD_size(md) * 4;
}
if (s)
return ssl_security(s, op, secbits, md_nid, x);
else
return ssl_ctx_security(ctx, op, secbits, md_nid, x);
}
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
{
if (vfy)
vfy = SSL_SECOP_PEER;
if (is_ee)
{
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
return SSL_R_EE_KEY_TOO_SMALL;
}
else
{
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
return SSL_R_CA_KEY_TOO_SMALL;
}
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
return SSL_R_CA_MD_TOO_WEAK;
return 1;
}
/* Check security of a chain, if sk includes the end entity certificate
* then x is NULL. If vfy is 1 then we are verifying a peer chain and
* not sending one to the peer.
* Return values: 1 if ok otherwise error code to use
*/
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
{
int rv, start_idx, i;
if (x == NULL)
{
x = sk_X509_value(sk, 0);
start_idx = 1;
}
else
start_idx = 0;
rv = ssl_security_cert(s, NULL, x, vfy, 1);
if (rv != 1)
return rv;
for (i = start_idx; i < sk_X509_num(sk); i++)
{
x = sk_X509_value(sk, i);
rv = ssl_security_cert(s, NULL, x, vfy, 0);
if (rv != 1)
return rv;
}
return 1;
}