openssl/crypto/ec/ecp_smpl.c
Nicola Tuveri 5d92b853f6 Replace GFp ladder implementation with ladd-2002-it-4 from EFD
The EFD database does not state that the "ladd-2002-it-3" algorithm
assumes X1 != 0.
Consequently the current implementation, based on it, fails to compute
correctly if the affine x coordinate of the scalar multiplication input
point is 0.

We replace this implementation using the alternative algorithm based on
Eq. (9) and (10) from the same paper, which being derived from the
additive relation of (6) does not incur in this problem, but costs one
extra field multiplication.

The EFD entry for this algorithm is at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
and the code to implement it was generated with tooling.

Regression tests add one positive test for each named curve that has
such a point. The `SharedSecret` was generated independently from the
OpenSSL codebase with sage.

This bug was originally reported by Dmitry Belyavsky on the
openssl-users maling list:
https://mta.openssl.org/pipermail/openssl-users/2018-August/008540.html

Co-authored-by: Billy Brumley <bbrumley@gmail.com>

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7000)
2018-08-21 09:51:18 +01:00

1644 lines
46 KiB
C

/*
* Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include <openssl/symhacks.h>
#include "ec_lcl.h"
const EC_METHOD *EC_GFp_simple_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_prime_field,
ec_GFp_simple_group_init,
ec_GFp_simple_group_finish,
ec_GFp_simple_group_clear_finish,
ec_GFp_simple_group_copy,
ec_GFp_simple_group_set_curve,
ec_GFp_simple_group_get_curve,
ec_GFp_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GFp_simple_group_check_discriminant,
ec_GFp_simple_point_init,
ec_GFp_simple_point_finish,
ec_GFp_simple_point_clear_finish,
ec_GFp_simple_point_copy,
ec_GFp_simple_point_set_to_infinity,
ec_GFp_simple_set_Jprojective_coordinates_GFp,
ec_GFp_simple_get_Jprojective_coordinates_GFp,
ec_GFp_simple_point_set_affine_coordinates,
ec_GFp_simple_point_get_affine_coordinates,
0, 0, 0,
ec_GFp_simple_add,
ec_GFp_simple_dbl,
ec_GFp_simple_invert,
ec_GFp_simple_is_at_infinity,
ec_GFp_simple_is_on_curve,
ec_GFp_simple_cmp,
ec_GFp_simple_make_affine,
ec_GFp_simple_points_make_affine,
0 /* mul */ ,
0 /* precompute_mult */ ,
0 /* have_precompute_mult */ ,
ec_GFp_simple_field_mul,
ec_GFp_simple_field_sqr,
0 /* field_div */ ,
0 /* field_encode */ ,
0 /* field_decode */ ,
0, /* field_set_to_one */
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates,
ec_GFp_simple_ladder_pre,
ec_GFp_simple_ladder_step,
ec_GFp_simple_ladder_post
};
return &ret;
}
/*
* Most method functions in this file are designed to work with
* non-trivial representations of field elements if necessary
* (see ecp_mont.c): while standard modular addition and subtraction
* are used, the field_mul and field_sqr methods will be used for
* multiplication, and field_encode and field_decode (if defined)
* will be used for converting between representations.
*
* Functions ec_GFp_simple_points_make_affine() and
* ec_GFp_simple_point_get_affine_coordinates() specifically assume
* that if a non-trivial representation is used, it is a Montgomery
* representation (i.e. 'encoding' means multiplying by some factor R).
*/
int ec_GFp_simple_group_init(EC_GROUP *group)
{
group->field = BN_new();
group->a = BN_new();
group->b = BN_new();
if (group->field == NULL || group->a == NULL || group->b == NULL) {
BN_free(group->field);
BN_free(group->a);
BN_free(group->b);
return 0;
}
group->a_is_minus3 = 0;
return 1;
}
void ec_GFp_simple_group_finish(EC_GROUP *group)
{
BN_free(group->field);
BN_free(group->a);
BN_free(group->b);
}
void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
{
BN_clear_free(group->field);
BN_clear_free(group->a);
BN_clear_free(group->b);
}
int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
if (!BN_copy(dest->field, src->field))
return 0;
if (!BN_copy(dest->a, src->a))
return 0;
if (!BN_copy(dest->b, src->b))
return 0;
dest->a_is_minus3 = src->a_is_minus3;
return 1;
}
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
BIGNUM *tmp_a;
/* p must be a prime > 3 */
if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
tmp_a = BN_CTX_get(ctx);
if (tmp_a == NULL)
goto err;
/* group->field */
if (!BN_copy(group->field, p))
goto err;
BN_set_negative(group->field, 0);
/* group->a */
if (!BN_nnmod(tmp_a, a, p, ctx))
goto err;
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
goto err;
} else if (!BN_copy(group->a, tmp_a))
goto err;
/* group->b */
if (!BN_nnmod(group->b, b, p, ctx))
goto err;
if (group->meth->field_encode)
if (!group->meth->field_encode(group, group->b, group->b, ctx))
goto err;
/* group->a_is_minus3 */
if (!BN_add_word(tmp_a, 3))
goto err;
group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
BN_CTX *new_ctx = NULL;
if (p != NULL) {
if (!BN_copy(p, group->field))
return 0;
}
if (a != NULL || b != NULL) {
if (group->meth->field_decode) {
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
if (a != NULL) {
if (!group->meth->field_decode(group, a, group->a, ctx))
goto err;
}
if (b != NULL) {
if (!group->meth->field_decode(group, b, group->b, ctx))
goto err;
}
} else {
if (a != NULL) {
if (!BN_copy(a, group->a))
goto err;
}
if (b != NULL) {
if (!BN_copy(b, group->b))
goto err;
}
}
}
ret = 1;
err:
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
{
return BN_num_bits(group->field);
}
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
const BIGNUM *p = group->field;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
ERR_R_MALLOC_FAILURE);
goto err;
}
}
BN_CTX_start(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
tmp_1 = BN_CTX_get(ctx);
tmp_2 = BN_CTX_get(ctx);
order = BN_CTX_get(ctx);
if (order == NULL)
goto err;
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, a, group->a, ctx))
goto err;
if (!group->meth->field_decode(group, b, group->b, ctx))
goto err;
} else {
if (!BN_copy(a, group->a))
goto err;
if (!BN_copy(b, group->b))
goto err;
}
/*-
* check the discriminant:
* y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
* 0 =< a, b < p
*/
if (BN_is_zero(a)) {
if (BN_is_zero(b))
goto err;
} else if (!BN_is_zero(b)) {
if (!BN_mod_sqr(tmp_1, a, p, ctx))
goto err;
if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
goto err;
if (!BN_lshift(tmp_1, tmp_2, 2))
goto err;
/* tmp_1 = 4*a^3 */
if (!BN_mod_sqr(tmp_2, b, p, ctx))
goto err;
if (!BN_mul_word(tmp_2, 27))
goto err;
/* tmp_2 = 27*b^2 */
if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
goto err;
if (BN_is_zero(a))
goto err;
}
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_point_init(EC_POINT *point)
{
point->X = BN_new();
point->Y = BN_new();
point->Z = BN_new();
point->Z_is_one = 0;
if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
BN_free(point->X);
BN_free(point->Y);
BN_free(point->Z);
return 0;
}
return 1;
}
void ec_GFp_simple_point_finish(EC_POINT *point)
{
BN_free(point->X);
BN_free(point->Y);
BN_free(point->Z);
}
void ec_GFp_simple_point_clear_finish(EC_POINT *point)
{
BN_clear_free(point->X);
BN_clear_free(point->Y);
BN_clear_free(point->Z);
point->Z_is_one = 0;
}
int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
{
if (!BN_copy(dest->X, src->X))
return 0;
if (!BN_copy(dest->Y, src->Y))
return 0;
if (!BN_copy(dest->Z, src->Z))
return 0;
dest->Z_is_one = src->Z_is_one;
dest->curve_name = src->curve_name;
return 1;
}
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
EC_POINT *point)
{
point->Z_is_one = 0;
BN_zero(point->Z);
return 1;
}
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y,
const BIGNUM *z,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
int ret = 0;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
if (x != NULL) {
if (!BN_nnmod(point->X, x, group->field, ctx))
goto err;
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, point->X, point->X, ctx))
goto err;
}
}
if (y != NULL) {
if (!BN_nnmod(point->Y, y, group->field, ctx))
goto err;
if (group->meth->field_encode) {
if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
goto err;
}
}
if (z != NULL) {
int Z_is_one;
if (!BN_nnmod(point->Z, z, group->field, ctx))
goto err;
Z_is_one = BN_is_one(point->Z);
if (group->meth->field_encode) {
if (Z_is_one && (group->meth->field_set_to_one != 0)) {
if (!group->meth->field_set_to_one(group, point->Z, ctx))
goto err;
} else {
if (!group->
meth->field_encode(group, point->Z, point->Z, ctx))
goto err;
}
}
point->Z_is_one = Z_is_one;
}
ret = 1;
err:
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BIGNUM *z, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
int ret = 0;
if (group->meth->field_decode != 0) {
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
if (x != NULL) {
if (!group->meth->field_decode(group, x, point->X, ctx))
goto err;
}
if (y != NULL) {
if (!group->meth->field_decode(group, y, point->Y, ctx))
goto err;
}
if (z != NULL) {
if (!group->meth->field_decode(group, z, point->Z, ctx))
goto err;
}
} else {
if (x != NULL) {
if (!BN_copy(x, point->X))
goto err;
}
if (y != NULL) {
if (!BN_copy(y, point->Y))
goto err;
}
if (z != NULL) {
if (!BN_copy(z, point->Z))
goto err;
}
}
ret = 1;
err:
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y, BN_CTX *ctx)
{
if (x == NULL || y == NULL) {
/*
* unlike for projective coordinates, we do not tolerate this
*/
ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
BN_value_one(), ctx);
}
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *Z, *Z_1, *Z_2, *Z_3;
const BIGNUM *Z_;
int ret = 0;
if (EC_POINT_is_at_infinity(group, point)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
EC_R_POINT_AT_INFINITY);
return 0;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
Z = BN_CTX_get(ctx);
Z_1 = BN_CTX_get(ctx);
Z_2 = BN_CTX_get(ctx);
Z_3 = BN_CTX_get(ctx);
if (Z_3 == NULL)
goto err;
/* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
if (group->meth->field_decode) {
if (!group->meth->field_decode(group, Z, point->Z, ctx))
goto err;
Z_ = Z;
} else {
Z_ = point->Z;
}
if (BN_is_one(Z_)) {
if (group->meth->field_decode) {
if (x != NULL) {
if (!group->meth->field_decode(group, x, point->X, ctx))
goto err;
}
if (y != NULL) {
if (!group->meth->field_decode(group, y, point->Y, ctx))
goto err;
}
} else {
if (x != NULL) {
if (!BN_copy(x, point->X))
goto err;
}
if (y != NULL) {
if (!BN_copy(y, point->Y))
goto err;
}
}
} else {
if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
ERR_R_BN_LIB);
goto err;
}
if (group->meth->field_encode == 0) {
/* field_sqr works on standard representation */
if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
goto err;
} else {
if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
goto err;
}
if (x != NULL) {
/*
* in the Montgomery case, field_mul will cancel out Montgomery
* factor in X:
*/
if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
goto err;
}
if (y != NULL) {
if (group->meth->field_encode == 0) {
/*
* field_mul works on standard representation
*/
if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
goto err;
} else {
if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
goto err;
}
/*
* in the Montgomery case, field_mul will cancel out Montgomery
* factor in Y:
*/
if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
goto err;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
int ret = 0;
if (a == b)
return EC_POINT_dbl(group, r, a, ctx);
if (EC_POINT_is_at_infinity(group, a))
return EC_POINT_copy(r, b);
if (EC_POINT_is_at_infinity(group, b))
return EC_POINT_copy(r, a);
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
n4 = BN_CTX_get(ctx);
n5 = BN_CTX_get(ctx);
n6 = BN_CTX_get(ctx);
if (n6 == NULL)
goto end;
/*
* Note that in this function we must not read components of 'a' or 'b'
* once we have written the corresponding components of 'r'. ('r' might
* be one of 'a' or 'b'.)
*/
/* n1, n2 */
if (b->Z_is_one) {
if (!BN_copy(n1, a->X))
goto end;
if (!BN_copy(n2, a->Y))
goto end;
/* n1 = X_a */
/* n2 = Y_a */
} else {
if (!field_sqr(group, n0, b->Z, ctx))
goto end;
if (!field_mul(group, n1, a->X, n0, ctx))
goto end;
/* n1 = X_a * Z_b^2 */
if (!field_mul(group, n0, n0, b->Z, ctx))
goto end;
if (!field_mul(group, n2, a->Y, n0, ctx))
goto end;
/* n2 = Y_a * Z_b^3 */
}
/* n3, n4 */
if (a->Z_is_one) {
if (!BN_copy(n3, b->X))
goto end;
if (!BN_copy(n4, b->Y))
goto end;
/* n3 = X_b */
/* n4 = Y_b */
} else {
if (!field_sqr(group, n0, a->Z, ctx))
goto end;
if (!field_mul(group, n3, b->X, n0, ctx))
goto end;
/* n3 = X_b * Z_a^2 */
if (!field_mul(group, n0, n0, a->Z, ctx))
goto end;
if (!field_mul(group, n4, b->Y, n0, ctx))
goto end;
/* n4 = Y_b * Z_a^3 */
}
/* n5, n6 */
if (!BN_mod_sub_quick(n5, n1, n3, p))
goto end;
if (!BN_mod_sub_quick(n6, n2, n4, p))
goto end;
/* n5 = n1 - n3 */
/* n6 = n2 - n4 */
if (BN_is_zero(n5)) {
if (BN_is_zero(n6)) {
/* a is the same point as b */
BN_CTX_end(ctx);
ret = EC_POINT_dbl(group, r, a, ctx);
ctx = NULL;
goto end;
} else {
/* a is the inverse of b */
BN_zero(r->Z);
r->Z_is_one = 0;
ret = 1;
goto end;
}
}
/* 'n7', 'n8' */
if (!BN_mod_add_quick(n1, n1, n3, p))
goto end;
if (!BN_mod_add_quick(n2, n2, n4, p))
goto end;
/* 'n7' = n1 + n3 */
/* 'n8' = n2 + n4 */
/* Z_r */
if (a->Z_is_one && b->Z_is_one) {
if (!BN_copy(r->Z, n5))
goto end;
} else {
if (a->Z_is_one) {
if (!BN_copy(n0, b->Z))
goto end;
} else if (b->Z_is_one) {
if (!BN_copy(n0, a->Z))
goto end;
} else {
if (!field_mul(group, n0, a->Z, b->Z, ctx))
goto end;
}
if (!field_mul(group, r->Z, n0, n5, ctx))
goto end;
}
r->Z_is_one = 0;
/* Z_r = Z_a * Z_b * n5 */
/* X_r */
if (!field_sqr(group, n0, n6, ctx))
goto end;
if (!field_sqr(group, n4, n5, ctx))
goto end;
if (!field_mul(group, n3, n1, n4, ctx))
goto end;
if (!BN_mod_sub_quick(r->X, n0, n3, p))
goto end;
/* X_r = n6^2 - n5^2 * 'n7' */
/* 'n9' */
if (!BN_mod_lshift1_quick(n0, r->X, p))
goto end;
if (!BN_mod_sub_quick(n0, n3, n0, p))
goto end;
/* n9 = n5^2 * 'n7' - 2 * X_r */
/* Y_r */
if (!field_mul(group, n0, n0, n6, ctx))
goto end;
if (!field_mul(group, n5, n4, n5, ctx))
goto end; /* now n5 is n5^3 */
if (!field_mul(group, n1, n2, n5, ctx))
goto end;
if (!BN_mod_sub_quick(n0, n0, n1, p))
goto end;
if (BN_is_odd(n0))
if (!BN_add(n0, n0, p))
goto end;
/* now 0 <= n0 < 2*p, and n0 is even */
if (!BN_rshift1(r->Y, n0))
goto end;
/* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
ret = 1;
end:
if (ctx) /* otherwise we already called BN_CTX_end */
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx)
{
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *n0, *n1, *n2, *n3;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
BN_zero(r->Z);
r->Z_is_one = 0;
return 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
n0 = BN_CTX_get(ctx);
n1 = BN_CTX_get(ctx);
n2 = BN_CTX_get(ctx);
n3 = BN_CTX_get(ctx);
if (n3 == NULL)
goto err;
/*
* Note that in this function we must not read components of 'a' once we
* have written the corresponding components of 'r'. ('r' might the same
* as 'a'.)
*/
/* n1 */
if (a->Z_is_one) {
if (!field_sqr(group, n0, a->X, ctx))
goto err;
if (!BN_mod_lshift1_quick(n1, n0, p))
goto err;
if (!BN_mod_add_quick(n0, n0, n1, p))
goto err;
if (!BN_mod_add_quick(n1, n0, group->a, p))
goto err;
/* n1 = 3 * X_a^2 + a_curve */
} else if (group->a_is_minus3) {
if (!field_sqr(group, n1, a->Z, ctx))
goto err;
if (!BN_mod_add_quick(n0, a->X, n1, p))
goto err;
if (!BN_mod_sub_quick(n2, a->X, n1, p))
goto err;
if (!field_mul(group, n1, n0, n2, ctx))
goto err;
if (!BN_mod_lshift1_quick(n0, n1, p))
goto err;
if (!BN_mod_add_quick(n1, n0, n1, p))
goto err;
/*-
* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
* = 3 * X_a^2 - 3 * Z_a^4
*/
} else {
if (!field_sqr(group, n0, a->X, ctx))
goto err;
if (!BN_mod_lshift1_quick(n1, n0, p))
goto err;
if (!BN_mod_add_quick(n0, n0, n1, p))
goto err;
if (!field_sqr(group, n1, a->Z, ctx))
goto err;
if (!field_sqr(group, n1, n1, ctx))
goto err;
if (!field_mul(group, n1, n1, group->a, ctx))
goto err;
if (!BN_mod_add_quick(n1, n1, n0, p))
goto err;
/* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
}
/* Z_r */
if (a->Z_is_one) {
if (!BN_copy(n0, a->Y))
goto err;
} else {
if (!field_mul(group, n0, a->Y, a->Z, ctx))
goto err;
}
if (!BN_mod_lshift1_quick(r->Z, n0, p))
goto err;
r->Z_is_one = 0;
/* Z_r = 2 * Y_a * Z_a */
/* n2 */
if (!field_sqr(group, n3, a->Y, ctx))
goto err;
if (!field_mul(group, n2, a->X, n3, ctx))
goto err;
if (!BN_mod_lshift_quick(n2, n2, 2, p))
goto err;
/* n2 = 4 * X_a * Y_a^2 */
/* X_r */
if (!BN_mod_lshift1_quick(n0, n2, p))
goto err;
if (!field_sqr(group, r->X, n1, ctx))
goto err;
if (!BN_mod_sub_quick(r->X, r->X, n0, p))
goto err;
/* X_r = n1^2 - 2 * n2 */
/* n3 */
if (!field_sqr(group, n0, n3, ctx))
goto err;
if (!BN_mod_lshift_quick(n3, n0, 3, p))
goto err;
/* n3 = 8 * Y_a^4 */
/* Y_r */
if (!BN_mod_sub_quick(n0, n2, r->X, p))
goto err;
if (!field_mul(group, n0, n1, n0, ctx))
goto err;
if (!BN_mod_sub_quick(r->Y, n0, n3, p))
goto err;
/* Y_r = n1 * (n2 - X_r) - n3 */
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
/* point is its own inverse */
return 1;
return BN_usub(point->Y, group->field, point->Y);
}
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
{
return BN_is_zero(point->Z);
}
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx)
{
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
const BIGNUM *p;
BN_CTX *new_ctx = NULL;
BIGNUM *rh, *tmp, *Z4, *Z6;
int ret = -1;
if (EC_POINT_is_at_infinity(group, point))
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
p = group->field;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
rh = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
Z4 = BN_CTX_get(ctx);
Z6 = BN_CTX_get(ctx);
if (Z6 == NULL)
goto err;
/*-
* We have a curve defined by a Weierstrass equation
* y^2 = x^3 + a*x + b.
* The point to consider is given in Jacobian projective coordinates
* where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
* Substituting this and multiplying by Z^6 transforms the above equation into
* Y^2 = X^3 + a*X*Z^4 + b*Z^6.
* To test this, we add up the right-hand side in 'rh'.
*/
/* rh := X^2 */
if (!field_sqr(group, rh, point->X, ctx))
goto err;
if (!point->Z_is_one) {
if (!field_sqr(group, tmp, point->Z, ctx))
goto err;
if (!field_sqr(group, Z4, tmp, ctx))
goto err;
if (!field_mul(group, Z6, Z4, tmp, ctx))
goto err;
/* rh := (rh + a*Z^4)*X */
if (group->a_is_minus3) {
if (!BN_mod_lshift1_quick(tmp, Z4, p))
goto err;
if (!BN_mod_add_quick(tmp, tmp, Z4, p))
goto err;
if (!BN_mod_sub_quick(rh, rh, tmp, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
} else {
if (!field_mul(group, tmp, Z4, group->a, ctx))
goto err;
if (!BN_mod_add_quick(rh, rh, tmp, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
}
/* rh := rh + b*Z^6 */
if (!field_mul(group, tmp, group->b, Z6, ctx))
goto err;
if (!BN_mod_add_quick(rh, rh, tmp, p))
goto err;
} else {
/* point->Z_is_one */
/* rh := (rh + a)*X */
if (!BN_mod_add_quick(rh, rh, group->a, p))
goto err;
if (!field_mul(group, rh, rh, point->X, ctx))
goto err;
/* rh := rh + b */
if (!BN_mod_add_quick(rh, rh, group->b, p))
goto err;
}
/* 'lh' := Y^2 */
if (!field_sqr(group, tmp, point->Y, ctx))
goto err;
ret = (0 == BN_ucmp(tmp, rh));
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
/*-
* return values:
* -1 error
* 0 equal (in affine coordinates)
* 1 not equal
*/
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
BN_CTX *new_ctx = NULL;
BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
const BIGNUM *tmp1_, *tmp2_;
int ret = -1;
if (EC_POINT_is_at_infinity(group, a)) {
return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
}
if (EC_POINT_is_at_infinity(group, b))
return 1;
if (a->Z_is_one && b->Z_is_one) {
return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
}
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
tmp1 = BN_CTX_get(ctx);
tmp2 = BN_CTX_get(ctx);
Za23 = BN_CTX_get(ctx);
Zb23 = BN_CTX_get(ctx);
if (Zb23 == NULL)
goto end;
/*-
* We have to decide whether
* (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
* or equivalently, whether
* (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
*/
if (!b->Z_is_one) {
if (!field_sqr(group, Zb23, b->Z, ctx))
goto end;
if (!field_mul(group, tmp1, a->X, Zb23, ctx))
goto end;
tmp1_ = tmp1;
} else
tmp1_ = a->X;
if (!a->Z_is_one) {
if (!field_sqr(group, Za23, a->Z, ctx))
goto end;
if (!field_mul(group, tmp2, b->X, Za23, ctx))
goto end;
tmp2_ = tmp2;
} else
tmp2_ = b->X;
/* compare X_a*Z_b^2 with X_b*Z_a^2 */
if (BN_cmp(tmp1_, tmp2_) != 0) {
ret = 1; /* points differ */
goto end;
}
if (!b->Z_is_one) {
if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
goto end;
if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
goto end;
/* tmp1_ = tmp1 */
} else
tmp1_ = a->Y;
if (!a->Z_is_one) {
if (!field_mul(group, Za23, Za23, a->Z, ctx))
goto end;
if (!field_mul(group, tmp2, b->Y, Za23, ctx))
goto end;
/* tmp2_ = tmp2 */
} else
tmp2_ = b->Y;
/* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
if (BN_cmp(tmp1_, tmp2_) != 0) {
ret = 1; /* points differ */
goto end;
}
/* points are equal */
ret = 0;
end:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
int ret = 0;
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
return 1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
goto err;
if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
goto err;
if (!point->Z_is_one) {
ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
EC_POINT *points[], BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *tmp, *tmp_Z;
BIGNUM **prod_Z = NULL;
size_t i;
int ret = 0;
if (num == 0)
return 1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
tmp = BN_CTX_get(ctx);
tmp_Z = BN_CTX_get(ctx);
if (tmp_Z == NULL)
goto err;
prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
if (prod_Z == NULL)
goto err;
for (i = 0; i < num; i++) {
prod_Z[i] = BN_new();
if (prod_Z[i] == NULL)
goto err;
}
/*
* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
* skipping any zero-valued inputs (pretend that they're 1).
*/
if (!BN_is_zero(points[0]->Z)) {
if (!BN_copy(prod_Z[0], points[0]->Z))
goto err;
} else {
if (group->meth->field_set_to_one != 0) {
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
goto err;
} else {
if (!BN_one(prod_Z[0]))
goto err;
}
}
for (i = 1; i < num; i++) {
if (!BN_is_zero(points[i]->Z)) {
if (!group->
meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
ctx))
goto err;
} else {
if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
goto err;
}
}
/*
* Now use a single explicit inversion to replace every non-zero
* points[i]->Z by its inverse.
*/
if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) {
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
goto err;
}
if (group->meth->field_encode != 0) {
/*
* In the Montgomery case, we just turned R*H (representing H) into
* 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
* multiply by the Montgomery factor twice.
*/
if (!group->meth->field_encode(group, tmp, tmp, ctx))
goto err;
if (!group->meth->field_encode(group, tmp, tmp, ctx))
goto err;
}
for (i = num - 1; i > 0; --i) {
/*
* Loop invariant: tmp is the product of the inverses of points[0]->Z
* .. points[i]->Z (zero-valued inputs skipped).
*/
if (!BN_is_zero(points[i]->Z)) {
/*
* Set tmp_Z to the inverse of points[i]->Z (as product of Z
* inverses 0 .. i, Z values 0 .. i - 1).
*/
if (!group->
meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
goto err;
/*
* Update tmp to satisfy the loop invariant for i - 1.
*/
if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
goto err;
/* Replace points[i]->Z by its inverse. */
if (!BN_copy(points[i]->Z, tmp_Z))
goto err;
}
}
if (!BN_is_zero(points[0]->Z)) {
/* Replace points[0]->Z by its inverse. */
if (!BN_copy(points[0]->Z, tmp))
goto err;
}
/* Finally, fix up the X and Y coordinates for all points. */
for (i = 0; i < num; i++) {
EC_POINT *p = points[i];
if (!BN_is_zero(p->Z)) {
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
goto err;
if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
goto err;
if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
goto err;
if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
goto err;
if (group->meth->field_set_to_one != 0) {
if (!group->meth->field_set_to_one(group, p->Z, ctx))
goto err;
} else {
if (!BN_one(p->Z))
goto err;
}
p->Z_is_one = 1;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
if (prod_Z != NULL) {
for (i = 0; i < num; i++) {
if (prod_Z[i] == NULL)
break;
BN_clear_free(prod_Z[i]);
}
OPENSSL_free(prod_Z);
}
return ret;
}
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
return BN_mod_mul(r, a, b, group->field, ctx);
}
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
{
return BN_mod_sqr(r, a, group->field, ctx);
}
/*-
* Apply randomization of EC point projective coordinates:
*
* (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
* lambda = [1,group->field)
*
*/
int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
BN_CTX *ctx)
{
int ret = 0;
BIGNUM *lambda = NULL;
BIGNUM *temp = NULL;
BN_CTX_start(ctx);
lambda = BN_CTX_get(ctx);
temp = BN_CTX_get(ctx);
if (temp == NULL) {
ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
goto err;
}
/* make sure lambda is not zero */
do {
if (!BN_priv_rand_range(lambda, group->field)) {
ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_BN_LIB);
goto err;
}
} while (BN_is_zero(lambda));
/* if field_encode defined convert between representations */
if (group->meth->field_encode != NULL
&& !group->meth->field_encode(group, lambda, lambda, ctx))
goto err;
if (!group->meth->field_mul(group, p->Z, p->Z, lambda, ctx))
goto err;
if (!group->meth->field_sqr(group, temp, lambda, ctx))
goto err;
if (!group->meth->field_mul(group, p->X, p->X, temp, ctx))
goto err;
if (!group->meth->field_mul(group, temp, temp, lambda, ctx))
goto err;
if (!group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
goto err;
p->Z_is_one = 0;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*-
* Set s := p, r := 2p.
*
* For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
* multiplication resistant against side channel attacks" appendix, as described
* at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
*
* The input point p will be in randomized Jacobian projective coords:
* x = X/Z**2, y=Y/Z**3
*
* The output points p, s, and r are converted to standard (homogeneous)
* projective coords:
* x = X/Z, y=Y/Z
*/
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
t1 = r->Z;
t2 = r->Y;
t3 = s->X;
t4 = r->X;
t5 = s->Y;
t6 = s->Z;
/* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */
if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx)
|| !group->meth->field_sqr(group, t1, p->Z, ctx)
|| !group->meth->field_mul(group, p->Z, p->Z, t1, ctx)
/* r := 2p */
|| !group->meth->field_sqr(group, t2, p->X, ctx)
|| !group->meth->field_sqr(group, t3, p->Z, ctx)
|| !group->meth->field_mul(group, t4, t3, group->a, ctx)
|| !BN_mod_sub_quick(t5, t2, t4, group->field)
|| !BN_mod_add_quick(t2, t2, t4, group->field)
|| !group->meth->field_sqr(group, t5, t5, ctx)
|| !group->meth->field_mul(group, t6, t3, group->b, ctx)
|| !group->meth->field_mul(group, t1, p->X, p->Z, ctx)
|| !group->meth->field_mul(group, t4, t1, t6, ctx)
|| !BN_mod_lshift_quick(t4, t4, 3, group->field)
/* r->X coord output */
|| !BN_mod_sub_quick(r->X, t5, t4, group->field)
|| !group->meth->field_mul(group, t1, t1, t2, ctx)
|| !group->meth->field_mul(group, t2, t3, t6, ctx)
|| !BN_mod_add_quick(t1, t1, t2, group->field)
/* r->Z coord output */
|| !BN_mod_lshift_quick(r->Z, t1, 2, group->field)
|| !EC_POINT_copy(s, p))
return 0;
r->Z_is_one = 0;
s->Z_is_one = 0;
p->Z_is_one = 0;
return 1;
}
/*-
* Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
* "A fast parallel elliptic curve multiplication resistant against side channel
* attacks", as described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
*/
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL;
BN_CTX_start(ctx);
t0 = BN_CTX_get(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
t6 = BN_CTX_get(ctx);
t7 = BN_CTX_get(ctx);
if (t7 == NULL
|| !group->meth->field_mul(group, t0, r->X, s->X, ctx)
|| !group->meth->field_mul(group, t1, r->Z, s->Z, ctx)
|| !group->meth->field_mul(group, t2, r->X, s->Z, ctx)
|| !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
|| !group->meth->field_mul(group, t4, group->a, t1, ctx)
|| !BN_mod_add_quick(t0, t0, t4, group->field)
|| !BN_mod_add_quick(t4, t3, t2, group->field)
|| !group->meth->field_mul(group, t0, t4, t0, ctx)
|| !group->meth->field_sqr(group, t1, t1, ctx)
|| !BN_mod_lshift_quick(t7, group->b, 2, group->field)
|| !group->meth->field_mul(group, t1, t7, t1, ctx)
|| !BN_mod_lshift1_quick(t0, t0, group->field)
|| !BN_mod_add_quick(t0, t1, t0, group->field)
|| !BN_mod_sub_quick(t1, t2, t3, group->field)
|| !group->meth->field_sqr(group, t1, t1, ctx)
|| !group->meth->field_mul(group, t3, t1, p->X, ctx)
|| !group->meth->field_mul(group, t0, p->Z, t0, ctx)
/* s->X coord output */
|| !BN_mod_sub_quick(s->X, t0, t3, group->field)
/* s->Z coord output */
|| !group->meth->field_mul(group, s->Z, p->Z, t1, ctx)
|| !group->meth->field_sqr(group, t3, r->X, ctx)
|| !group->meth->field_sqr(group, t2, r->Z, ctx)
|| !group->meth->field_mul(group, t4, t2, group->a, ctx)
|| !BN_mod_add_quick(t5, r->X, r->Z, group->field)
|| !group->meth->field_sqr(group, t5, t5, ctx)
|| !BN_mod_sub_quick(t5, t5, t3, group->field)
|| !BN_mod_sub_quick(t5, t5, t2, group->field)
|| !BN_mod_sub_quick(t6, t3, t4, group->field)
|| !group->meth->field_sqr(group, t6, t6, ctx)
|| !group->meth->field_mul(group, t0, t2, t5, ctx)
|| !group->meth->field_mul(group, t0, t7, t0, ctx)
/* r->X coord output */
|| !BN_mod_sub_quick(r->X, t6, t0, group->field)
|| !BN_mod_add_quick(t6, t3, t4, group->field)
|| !group->meth->field_sqr(group, t3, t2, ctx)
|| !group->meth->field_mul(group, t7, t3, t7, ctx)
|| !group->meth->field_mul(group, t5, t5, t6, ctx)
|| !BN_mod_lshift1_quick(t5, t5, group->field)
/* r->Z coord output */
|| !BN_mod_add_quick(r->Z, t7, t5, group->field))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/*-
* Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
* Elliptic Curves and Side-Channel Attacks", modified to work in projective
* coordinates and return r in Jacobian projective coordinates.
*
* X4 = two*Y1*X2*Z3*Z2*Z1;
* Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1);
* Z4 = two*Y1*Z3*SQR(Z2)*Z1;
*
* Z4 != 0 because:
* - Z1==0 implies p is at infinity, which would have caused an early exit in
* the caller;
* - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
* - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
* - Y1==0 implies p has order 2, so either r or s are infinity and handled by
* one of the BN_is_zero(...) branches.
*/
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
int ret = 0;
BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
if (BN_is_zero(r->Z))
return EC_POINT_set_to_infinity(group, r);
if (BN_is_zero(s->Z)) {
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx)
|| !group->meth->field_sqr(group, r->Z, p->Z, ctx)
|| !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx)
|| !BN_copy(r->Z, p->Z)
|| !EC_POINT_invert(group, r, ctx))
return 0;
return 1;
}
BN_CTX_start(ctx);
t0 = BN_CTX_get(ctx);
t1 = BN_CTX_get(ctx);
t2 = BN_CTX_get(ctx);
t3 = BN_CTX_get(ctx);
t4 = BN_CTX_get(ctx);
t5 = BN_CTX_get(ctx);
t6 = BN_CTX_get(ctx);
if (t6 == NULL
|| !BN_mod_lshift1_quick(t0, p->Y, group->field)
|| !group->meth->field_mul(group, t1, r->X, p->Z, ctx)
|| !group->meth->field_mul(group, t2, r->Z, s->Z, ctx)
|| !group->meth->field_mul(group, t2, t1, t2, ctx)
|| !group->meth->field_mul(group, t3, t2, t0, ctx)
|| !group->meth->field_mul(group, t2, r->Z, p->Z, ctx)
|| !group->meth->field_sqr(group, t4, t2, ctx)
|| !BN_mod_lshift1_quick(t5, group->b, group->field)
|| !group->meth->field_mul(group, t4, t4, t5, ctx)
|| !group->meth->field_mul(group, t6, t2, group->a, ctx)
|| !group->meth->field_mul(group, t5, r->X, p->X, ctx)
|| !BN_mod_add_quick(t5, t6, t5, group->field)
|| !group->meth->field_mul(group, t6, r->Z, p->X, ctx)
|| !BN_mod_add_quick(t2, t6, t1, group->field)
|| !group->meth->field_mul(group, t5, t5, t2, ctx)
|| !BN_mod_sub_quick(t6, t6, t1, group->field)
|| !group->meth->field_sqr(group, t6, t6, ctx)
|| !group->meth->field_mul(group, t6, t6, s->X, ctx)
|| !BN_mod_add_quick(t4, t5, t4, group->field)
|| !group->meth->field_mul(group, t4, t4, s->Z, ctx)
|| !BN_mod_sub_quick(t4, t4, t6, group->field)
|| !group->meth->field_sqr(group, t5, r->Z, ctx)
|| !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx)
|| !group->meth->field_mul(group, r->Z, t5, r->Z, ctx)
|| !group->meth->field_mul(group, r->Z, r->Z, t0, ctx)
/* t3 := X, t4 := Y */
/* (X,Y,Z) -> (XZ,YZ**2,Z) */
|| !group->meth->field_mul(group, r->X, t3, r->Z, ctx)
|| !group->meth->field_sqr(group, t3, r->Z, ctx)
|| !group->meth->field_mul(group, r->Y, t4, t3, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}