dab2cd68e7
Everything in apps includes apps.h, because that one declares apps internal library routines. However, progs.h doesn't declare library routines, but rather the main commands and their options, and there's no reason why the library modules should include it. So, remove the inclusion of progs.h from apps.h and add that inclusion in all command source files. Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5222)
3358 lines
107 KiB
C
3358 lines
107 KiB
C
/*
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#undef SECONDS
|
|
#define SECONDS 3
|
|
#define RSA_SECONDS 10
|
|
#define DSA_SECONDS 10
|
|
#define ECDSA_SECONDS 10
|
|
#define ECDH_SECONDS 10
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "apps.h"
|
|
#include "progs.h"
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/objects.h>
|
|
#include <openssl/async.h>
|
|
#if !defined(OPENSSL_SYS_MSDOS)
|
|
# include OPENSSL_UNISTD
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
#endif
|
|
|
|
#include <openssl/bn.h>
|
|
#ifndef OPENSSL_NO_DES
|
|
# include <openssl/des.h>
|
|
#endif
|
|
#include <openssl/aes.h>
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
# include <openssl/camellia.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD2
|
|
# include <openssl/md2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
# include <openssl/mdc2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
# include <openssl/md4.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
# include <openssl/md5.h>
|
|
#endif
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/sha.h>
|
|
#ifndef OPENSSL_NO_RMD160
|
|
# include <openssl/ripemd.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
# include <openssl/whrlpool.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
# include <openssl/rc4.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
# include <openssl/rc5.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
# include <openssl/rc2.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
# include <openssl/idea.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
# include <openssl/seed.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
# include <openssl/blowfish.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
# include <openssl/cast.h>
|
|
#endif
|
|
#ifndef OPENSSL_NO_RSA
|
|
# include <openssl/rsa.h>
|
|
# include "./testrsa.h"
|
|
#endif
|
|
#include <openssl/x509.h>
|
|
#ifndef OPENSSL_NO_DSA
|
|
# include <openssl/dsa.h>
|
|
# include "./testdsa.h"
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
# include <openssl/ec.h>
|
|
#endif
|
|
#include <openssl/modes.h>
|
|
|
|
#ifndef HAVE_FORK
|
|
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
|
|
# define HAVE_FORK 0
|
|
# else
|
|
# define HAVE_FORK 1
|
|
# endif
|
|
#endif
|
|
|
|
#if HAVE_FORK
|
|
# undef NO_FORK
|
|
#else
|
|
# define NO_FORK
|
|
#endif
|
|
|
|
#define MAX_MISALIGNMENT 63
|
|
|
|
#define ALGOR_NUM 31
|
|
#define RSA_NUM 7
|
|
#define DSA_NUM 3
|
|
|
|
#define EC_NUM 17
|
|
#define MAX_ECDH_SIZE 256
|
|
#define MISALIGN 64
|
|
|
|
typedef struct openssl_speed_sec_st {
|
|
int sym;
|
|
int rsa;
|
|
int dsa;
|
|
int ecdsa;
|
|
int ecdh;
|
|
} openssl_speed_sec_t;
|
|
|
|
static volatile int run = 0;
|
|
|
|
static int mr = 0;
|
|
static int usertime = 1;
|
|
|
|
typedef struct loopargs_st {
|
|
ASYNC_JOB *inprogress_job;
|
|
ASYNC_WAIT_CTX *wait_ctx;
|
|
unsigned char *buf;
|
|
unsigned char *buf2;
|
|
unsigned char *buf_malloc;
|
|
unsigned char *buf2_malloc;
|
|
unsigned char *key;
|
|
unsigned int siglen;
|
|
#ifndef OPENSSL_NO_RSA
|
|
RSA *rsa_key[RSA_NUM];
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
DSA *dsa_key[DSA_NUM];
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
EC_KEY *ecdsa[EC_NUM];
|
|
EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
|
|
unsigned char *secret_a;
|
|
unsigned char *secret_b;
|
|
size_t outlen[EC_NUM];
|
|
#endif
|
|
EVP_CIPHER_CTX *ctx;
|
|
HMAC_CTX *hctx;
|
|
GCM128_CONTEXT *gcm_ctx;
|
|
} loopargs_t;
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
static int EVP_Digest_MD2_loop(void *args);
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MDC2
|
|
static int EVP_Digest_MDC2_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
static int EVP_Digest_MD4_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
static int MD5_loop(void *args);
|
|
static int HMAC_loop(void *args);
|
|
#endif
|
|
static int SHA1_loop(void *args);
|
|
static int SHA256_loop(void *args);
|
|
static int SHA512_loop(void *args);
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
static int WHIRLPOOL_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RMD160
|
|
static int EVP_Digest_RMD160_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
static int RC4_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
static int DES_ncbc_encrypt_loop(void *args);
|
|
static int DES_ede3_cbc_encrypt_loop(void *args);
|
|
#endif
|
|
static int AES_cbc_128_encrypt_loop(void *args);
|
|
static int AES_cbc_192_encrypt_loop(void *args);
|
|
static int AES_ige_128_encrypt_loop(void *args);
|
|
static int AES_cbc_256_encrypt_loop(void *args);
|
|
static int AES_ige_192_encrypt_loop(void *args);
|
|
static int AES_ige_256_encrypt_loop(void *args);
|
|
static int CRYPTO_gcm128_aad_loop(void *args);
|
|
static int RAND_bytes_loop(void *args);
|
|
static int EVP_Update_loop(void *args);
|
|
static int EVP_Update_loop_ccm(void *args);
|
|
static int EVP_Digest_loop(void *args);
|
|
#ifndef OPENSSL_NO_RSA
|
|
static int RSA_sign_loop(void *args);
|
|
static int RSA_verify_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static int DSA_sign_loop(void *args);
|
|
static int DSA_verify_loop(void *args);
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
static int ECDSA_sign_loop(void *args);
|
|
static int ECDSA_verify_loop(void *args);
|
|
#endif
|
|
static int run_benchmark(int async_jobs, int (*loop_function) (void *),
|
|
loopargs_t * loopargs);
|
|
|
|
static double Time_F(int s);
|
|
static void print_message(const char *s, long num, int length, int tm);
|
|
static void pkey_print_message(const char *str, const char *str2,
|
|
long num, int bits, int sec);
|
|
static void print_result(int alg, int run_no, int count, double time_used);
|
|
#ifndef NO_FORK
|
|
static int do_multi(int multi, int size_num);
|
|
#endif
|
|
|
|
static const int lengths_list[] = {
|
|
16, 64, 256, 1024, 8 * 1024, 16 * 1024
|
|
};
|
|
static int lengths_single = 0;
|
|
|
|
static const int *lengths = lengths_list;
|
|
|
|
static const char *names[ALGOR_NUM] = {
|
|
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
|
|
"des cbc", "des ede3", "idea cbc", "seed cbc",
|
|
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
|
|
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
|
|
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
|
|
"evp", "sha256", "sha512", "whirlpool",
|
|
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
|
|
"rand"
|
|
};
|
|
|
|
static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)];
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
static double rsa_results[RSA_NUM][2];
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static double dsa_results[DSA_NUM][2];
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
static double ecdsa_results[EC_NUM][2];
|
|
static double ecdh_results[EC_NUM][1];
|
|
#endif
|
|
|
|
#ifdef SIGALRM
|
|
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
|
|
# define SIGRETTYPE void
|
|
# else
|
|
# define SIGRETTYPE int
|
|
# endif
|
|
|
|
static SIGRETTYPE sig_done(int sig);
|
|
static SIGRETTYPE sig_done(int sig)
|
|
{
|
|
signal(SIGALRM, sig_done);
|
|
run = 0;
|
|
}
|
|
#endif
|
|
|
|
#define START 0
|
|
#define STOP 1
|
|
|
|
#if defined(_WIN32)
|
|
|
|
# if !defined(SIGALRM)
|
|
# define SIGALRM
|
|
# endif
|
|
static unsigned int lapse;
|
|
static volatile unsigned int schlock;
|
|
static void alarm_win32(unsigned int secs)
|
|
{
|
|
lapse = secs * 1000;
|
|
}
|
|
|
|
# define alarm alarm_win32
|
|
|
|
static DWORD WINAPI sleepy(VOID * arg)
|
|
{
|
|
schlock = 1;
|
|
Sleep(lapse);
|
|
run = 0;
|
|
return 0;
|
|
}
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret;
|
|
static HANDLE thr;
|
|
|
|
if (s == START) {
|
|
schlock = 0;
|
|
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
|
|
if (thr == NULL) {
|
|
DWORD err = GetLastError();
|
|
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
|
|
ExitProcess(err);
|
|
}
|
|
while (!schlock)
|
|
Sleep(0); /* scheduler spinlock */
|
|
ret = app_tminterval(s, usertime);
|
|
} else {
|
|
ret = app_tminterval(s, usertime);
|
|
if (run)
|
|
TerminateThread(thr, 0);
|
|
CloseHandle(thr);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
|
|
static double Time_F(int s)
|
|
{
|
|
double ret = app_tminterval(s, usertime);
|
|
if (s == STOP)
|
|
alarm(0);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher,
|
|
const openssl_speed_sec_t *seconds);
|
|
|
|
static int found(const char *name, const OPT_PAIR *pairs, int *result)
|
|
{
|
|
for (; pairs->name; pairs++)
|
|
if (strcmp(name, pairs->name) == 0) {
|
|
*result = pairs->retval;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef enum OPTION_choice {
|
|
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
|
|
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
|
|
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM,
|
|
OPT_PRIMES, OPT_SECONDS, OPT_BYTES
|
|
} OPTION_CHOICE;
|
|
|
|
const OPTIONS speed_options[] = {
|
|
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
|
|
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
|
|
{"help", OPT_HELP, '-', "Display this summary"},
|
|
{"evp", OPT_EVP, 's', "Use specified EVP cipher"},
|
|
{"decrypt", OPT_DECRYPT, '-',
|
|
"Time decryption instead of encryption (only EVP)"},
|
|
{"mr", OPT_MR, '-', "Produce machine readable output"},
|
|
{"mb", OPT_MB, '-',
|
|
"Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"},
|
|
{"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
|
|
{"elapsed", OPT_ELAPSED, '-',
|
|
"Measure time in real time instead of CPU user time"},
|
|
#ifndef NO_FORK
|
|
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
|
|
#endif
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
{"async_jobs", OPT_ASYNCJOBS, 'p',
|
|
"Enable async mode and start pnum jobs"},
|
|
#endif
|
|
OPT_R_OPTIONS,
|
|
#ifndef OPENSSL_NO_ENGINE
|
|
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
|
|
#endif
|
|
{"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
|
|
{"seconds", OPT_SECONDS, 'p',
|
|
"Run benchmarks for pnum seconds"},
|
|
{"bytes", OPT_BYTES, 'p',
|
|
"Run cipher, digest and rand benchmarks on pnum bytes"},
|
|
{NULL},
|
|
};
|
|
|
|
#define D_MD2 0
|
|
#define D_MDC2 1
|
|
#define D_MD4 2
|
|
#define D_MD5 3
|
|
#define D_HMAC 4
|
|
#define D_SHA1 5
|
|
#define D_RMD160 6
|
|
#define D_RC4 7
|
|
#define D_CBC_DES 8
|
|
#define D_EDE3_DES 9
|
|
#define D_CBC_IDEA 10
|
|
#define D_CBC_SEED 11
|
|
#define D_CBC_RC2 12
|
|
#define D_CBC_RC5 13
|
|
#define D_CBC_BF 14
|
|
#define D_CBC_CAST 15
|
|
#define D_CBC_128_AES 16
|
|
#define D_CBC_192_AES 17
|
|
#define D_CBC_256_AES 18
|
|
#define D_CBC_128_CML 19
|
|
#define D_CBC_192_CML 20
|
|
#define D_CBC_256_CML 21
|
|
#define D_EVP 22
|
|
#define D_SHA256 23
|
|
#define D_SHA512 24
|
|
#define D_WHIRLPOOL 25
|
|
#define D_IGE_128_AES 26
|
|
#define D_IGE_192_AES 27
|
|
#define D_IGE_256_AES 28
|
|
#define D_GHASH 29
|
|
#define D_RAND 30
|
|
static OPT_PAIR doit_choices[] = {
|
|
#ifndef OPENSSL_NO_MD2
|
|
{"md2", D_MD2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
{"mdc2", D_MDC2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD4
|
|
{"md4", D_MD4},
|
|
#endif
|
|
#ifndef OPENSSL_NO_MD5
|
|
{"md5", D_MD5},
|
|
{"hmac", D_HMAC},
|
|
#endif
|
|
{"sha1", D_SHA1},
|
|
{"sha256", D_SHA256},
|
|
{"sha512", D_SHA512},
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
{"whirlpool", D_WHIRLPOOL},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RMD160
|
|
{"ripemd", D_RMD160},
|
|
{"rmd160", D_RMD160},
|
|
{"ripemd160", D_RMD160},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
{"rc4", D_RC4},
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
{"des-cbc", D_CBC_DES},
|
|
{"des-ede3", D_EDE3_DES},
|
|
#endif
|
|
{"aes-128-cbc", D_CBC_128_AES},
|
|
{"aes-192-cbc", D_CBC_192_AES},
|
|
{"aes-256-cbc", D_CBC_256_AES},
|
|
{"aes-128-ige", D_IGE_128_AES},
|
|
{"aes-192-ige", D_IGE_192_AES},
|
|
{"aes-256-ige", D_IGE_256_AES},
|
|
#ifndef OPENSSL_NO_RC2
|
|
{"rc2-cbc", D_CBC_RC2},
|
|
{"rc2", D_CBC_RC2},
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
{"rc5-cbc", D_CBC_RC5},
|
|
{"rc5", D_CBC_RC5},
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
{"idea-cbc", D_CBC_IDEA},
|
|
{"idea", D_CBC_IDEA},
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
{"seed-cbc", D_CBC_SEED},
|
|
{"seed", D_CBC_SEED},
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
{"bf-cbc", D_CBC_BF},
|
|
{"blowfish", D_CBC_BF},
|
|
{"bf", D_CBC_BF},
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
{"cast-cbc", D_CBC_CAST},
|
|
{"cast", D_CBC_CAST},
|
|
{"cast5", D_CBC_CAST},
|
|
#endif
|
|
{"ghash", D_GHASH},
|
|
{"rand", D_RAND},
|
|
{NULL}
|
|
};
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
# define R_DSA_512 0
|
|
# define R_DSA_1024 1
|
|
# define R_DSA_2048 2
|
|
static OPT_PAIR dsa_choices[] = {
|
|
{"dsa512", R_DSA_512},
|
|
{"dsa1024", R_DSA_1024},
|
|
{"dsa2048", R_DSA_2048},
|
|
{NULL},
|
|
};
|
|
#endif
|
|
|
|
#define R_RSA_512 0
|
|
#define R_RSA_1024 1
|
|
#define R_RSA_2048 2
|
|
#define R_RSA_3072 3
|
|
#define R_RSA_4096 4
|
|
#define R_RSA_7680 5
|
|
#define R_RSA_15360 6
|
|
static OPT_PAIR rsa_choices[] = {
|
|
{"rsa512", R_RSA_512},
|
|
{"rsa1024", R_RSA_1024},
|
|
{"rsa2048", R_RSA_2048},
|
|
{"rsa3072", R_RSA_3072},
|
|
{"rsa4096", R_RSA_4096},
|
|
{"rsa7680", R_RSA_7680},
|
|
{"rsa15360", R_RSA_15360},
|
|
{NULL}
|
|
};
|
|
|
|
#define R_EC_P160 0
|
|
#define R_EC_P192 1
|
|
#define R_EC_P224 2
|
|
#define R_EC_P256 3
|
|
#define R_EC_P384 4
|
|
#define R_EC_P521 5
|
|
#define R_EC_K163 6
|
|
#define R_EC_K233 7
|
|
#define R_EC_K283 8
|
|
#define R_EC_K409 9
|
|
#define R_EC_K571 10
|
|
#define R_EC_B163 11
|
|
#define R_EC_B233 12
|
|
#define R_EC_B283 13
|
|
#define R_EC_B409 14
|
|
#define R_EC_B571 15
|
|
#define R_EC_X25519 16
|
|
#ifndef OPENSSL_NO_EC
|
|
static OPT_PAIR ecdsa_choices[] = {
|
|
{"ecdsap160", R_EC_P160},
|
|
{"ecdsap192", R_EC_P192},
|
|
{"ecdsap224", R_EC_P224},
|
|
{"ecdsap256", R_EC_P256},
|
|
{"ecdsap384", R_EC_P384},
|
|
{"ecdsap521", R_EC_P521},
|
|
{"ecdsak163", R_EC_K163},
|
|
{"ecdsak233", R_EC_K233},
|
|
{"ecdsak283", R_EC_K283},
|
|
{"ecdsak409", R_EC_K409},
|
|
{"ecdsak571", R_EC_K571},
|
|
{"ecdsab163", R_EC_B163},
|
|
{"ecdsab233", R_EC_B233},
|
|
{"ecdsab283", R_EC_B283},
|
|
{"ecdsab409", R_EC_B409},
|
|
{"ecdsab571", R_EC_B571},
|
|
{NULL}
|
|
};
|
|
|
|
static OPT_PAIR ecdh_choices[] = {
|
|
{"ecdhp160", R_EC_P160},
|
|
{"ecdhp192", R_EC_P192},
|
|
{"ecdhp224", R_EC_P224},
|
|
{"ecdhp256", R_EC_P256},
|
|
{"ecdhp384", R_EC_P384},
|
|
{"ecdhp521", R_EC_P521},
|
|
{"ecdhk163", R_EC_K163},
|
|
{"ecdhk233", R_EC_K233},
|
|
{"ecdhk283", R_EC_K283},
|
|
{"ecdhk409", R_EC_K409},
|
|
{"ecdhk571", R_EC_K571},
|
|
{"ecdhb163", R_EC_B163},
|
|
{"ecdhb233", R_EC_B233},
|
|
{"ecdhb283", R_EC_B283},
|
|
{"ecdhb409", R_EC_B409},
|
|
{"ecdhb571", R_EC_B571},
|
|
{"ecdhx25519", R_EC_X25519},
|
|
{NULL}
|
|
};
|
|
#endif
|
|
|
|
#ifndef SIGALRM
|
|
# define COND(d) (count < (d))
|
|
# define COUNT(d) (d)
|
|
#else
|
|
# define COND(unused_cond) (run && count<0x7fffffff)
|
|
# define COUNT(d) (count)
|
|
#endif /* SIGALRM */
|
|
|
|
static int testnum;
|
|
|
|
/* Nb of iterations to do per algorithm and key-size */
|
|
static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)];
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
static int EVP_Digest_MD2_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md2[MD2_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MD2][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MDC2
|
|
static int EVP_Digest_MDC2_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char mdc2[MDC2_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MDC2][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD4
|
|
static int EVP_Digest_MD4_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md4[MD4_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_MD4][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
|
|
NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD5
|
|
static int MD5_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md5[MD5_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_MD5][testnum]); count++)
|
|
MD5(buf, lengths[testnum], md5);
|
|
return count;
|
|
}
|
|
|
|
static int HMAC_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
HMAC_CTX *hctx = tempargs->hctx;
|
|
unsigned char hmac[MD5_DIGEST_LENGTH];
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_HMAC][testnum]); count++) {
|
|
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
|
|
HMAC_Update(hctx, buf, lengths[testnum]);
|
|
HMAC_Final(hctx, hmac, NULL);
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
static int SHA1_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha[SHA_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA1][testnum]); count++)
|
|
SHA1(buf, lengths[testnum], sha);
|
|
return count;
|
|
}
|
|
|
|
static int SHA256_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha256[SHA256_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA256][testnum]); count++)
|
|
SHA256(buf, lengths[testnum], sha256);
|
|
return count;
|
|
}
|
|
|
|
static int SHA512_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char sha512[SHA512_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_SHA512][testnum]); count++)
|
|
SHA512(buf, lengths[testnum], sha512);
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
static int WHIRLPOOL_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
|
|
WHIRLPOOL(buf, lengths[testnum], whirlpool);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RMD160
|
|
static int EVP_Digest_RMD160_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
|
|
int count;
|
|
for (count = 0; COND(c[D_RMD160][testnum]); count++) {
|
|
if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
|
|
NULL, EVP_ripemd160(), NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RC4
|
|
static RC4_KEY rc4_ks;
|
|
static int RC4_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_RC4][testnum]); count++)
|
|
RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DES
|
|
static unsigned char DES_iv[8];
|
|
static DES_key_schedule sch;
|
|
static DES_key_schedule sch2;
|
|
static DES_key_schedule sch3;
|
|
static int DES_ncbc_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
|
|
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
|
|
&DES_iv, DES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int DES_ede3_cbc_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
|
|
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
|
|
&sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#define MAX_BLOCK_SIZE 128
|
|
|
|
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
|
|
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
|
|
static int AES_cbc_128_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_cbc_192_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_cbc_256_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
|
|
AES_cbc_encrypt(buf, buf,
|
|
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_128_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_192_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int AES_ige_256_encrypt_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
int count;
|
|
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
|
|
AES_ige_encrypt(buf, buf2,
|
|
(size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
|
|
return count;
|
|
}
|
|
|
|
static int CRYPTO_gcm128_aad_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
|
|
int count;
|
|
for (count = 0; COND(c[D_GHASH][testnum]); count++)
|
|
CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
|
|
return count;
|
|
}
|
|
|
|
static int RAND_bytes_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
int count;
|
|
|
|
for (count = 0; COND(c[D_RAND][testnum]); count++)
|
|
RAND_bytes(buf, lengths[testnum]);
|
|
return count;
|
|
}
|
|
|
|
static long save_count = 0;
|
|
static int decrypt = 0;
|
|
static int EVP_Update_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count, rc;
|
|
#ifndef SIGALRM
|
|
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
|
|
#endif
|
|
if (decrypt) {
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
if (rc != 1)
|
|
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
|
}
|
|
} else {
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
if (rc != 1)
|
|
EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
|
}
|
|
}
|
|
if (decrypt)
|
|
EVP_DecryptFinal_ex(ctx, buf, &outl);
|
|
else
|
|
EVP_EncryptFinal_ex(ctx, buf, &outl);
|
|
return count;
|
|
}
|
|
/*
|
|
* CCM does not support streaming. For the purpose of performance measurement,
|
|
* each message is encrypted using the same (key,iv)-pair. Do not use this
|
|
* code in your application.
|
|
*/
|
|
static int EVP_Update_loop_ccm(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
|
int outl, count;
|
|
unsigned char tag[12];
|
|
#ifndef SIGALRM
|
|
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
|
|
#endif
|
|
if (decrypt) {
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
|
|
EVP_DecryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
|
|
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
EVP_DecryptFinal_ex(ctx, buf, &outl);
|
|
}
|
|
} else {
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
|
|
EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
|
|
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
|
EVP_EncryptFinal_ex(ctx, buf, &outl);
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static const EVP_MD *evp_md = NULL;
|
|
static int EVP_Digest_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char md[EVP_MAX_MD_SIZE];
|
|
int count;
|
|
#ifndef SIGALRM
|
|
int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
|
|
#endif
|
|
|
|
for (count = 0; COND(nb_iter); count++) {
|
|
if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
|
|
return -1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
|
|
|
|
static int RSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
unsigned int *rsa_num = &tempargs->siglen;
|
|
RSA **rsa_key = tempargs->rsa_key;
|
|
int ret, count;
|
|
for (count = 0; COND(rsa_c[testnum][0]); count++) {
|
|
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "RSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int RSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
unsigned int rsa_num = tempargs->siglen;
|
|
RSA **rsa_key = tempargs->rsa_key;
|
|
int ret, count;
|
|
for (count = 0; COND(rsa_c[testnum][1]); count++) {
|
|
ret =
|
|
RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "RSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
static long dsa_c[DSA_NUM][2];
|
|
static int DSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
DSA **dsa_key = tempargs->dsa_key;
|
|
unsigned int *siglen = &tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(dsa_c[testnum][0]); count++) {
|
|
ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "DSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int DSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
unsigned char *buf2 = tempargs->buf2;
|
|
DSA **dsa_key = tempargs->dsa_key;
|
|
unsigned int siglen = tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(dsa_c[testnum][1]); count++) {
|
|
ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
|
|
if (ret <= 0) {
|
|
BIO_printf(bio_err, "DSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
static long ecdsa_c[EC_NUM][2];
|
|
static int ECDSA_sign_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EC_KEY **ecdsa = tempargs->ecdsa;
|
|
unsigned char *ecdsasig = tempargs->buf2;
|
|
unsigned int *ecdsasiglen = &tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
|
|
ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
|
|
if (ret == 0) {
|
|
BIO_printf(bio_err, "ECDSA sign failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int ECDSA_verify_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
unsigned char *buf = tempargs->buf;
|
|
EC_KEY **ecdsa = tempargs->ecdsa;
|
|
unsigned char *ecdsasig = tempargs->buf2;
|
|
unsigned int ecdsasiglen = tempargs->siglen;
|
|
int ret, count;
|
|
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
|
|
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
|
|
if (ret != 1) {
|
|
BIO_printf(bio_err, "ECDSA verify failure\n");
|
|
ERR_print_errors(bio_err);
|
|
count = -1;
|
|
break;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* ******************************************************************** */
|
|
static long ecdh_c[EC_NUM][1];
|
|
|
|
static int ECDH_EVP_derive_key_loop(void *args)
|
|
{
|
|
loopargs_t *tempargs = *(loopargs_t **) args;
|
|
EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
|
|
unsigned char *derived_secret = tempargs->secret_a;
|
|
int count;
|
|
size_t *outlen = &(tempargs->outlen[testnum]);
|
|
|
|
for (count = 0; COND(ecdh_c[testnum][0]); count++)
|
|
EVP_PKEY_derive(ctx, derived_secret, outlen);
|
|
|
|
return count;
|
|
}
|
|
|
|
#endif /* OPENSSL_NO_EC */
|
|
|
|
static int run_benchmark(int async_jobs,
|
|
int (*loop_function) (void *), loopargs_t * loopargs)
|
|
{
|
|
int job_op_count = 0;
|
|
int total_op_count = 0;
|
|
int num_inprogress = 0;
|
|
int error = 0, i = 0, ret = 0;
|
|
OSSL_ASYNC_FD job_fd = 0;
|
|
size_t num_job_fds = 0;
|
|
|
|
run = 1;
|
|
|
|
if (async_jobs == 0) {
|
|
return loop_function((void *)&loopargs);
|
|
}
|
|
|
|
for (i = 0; i < async_jobs && !error; i++) {
|
|
loopargs_t *looparg_item = loopargs + i;
|
|
|
|
/* Copy pointer content (looparg_t item address) into async context */
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
|
|
&job_op_count, loop_function,
|
|
(void *)&looparg_item, sizeof(looparg_item));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
++num_inprogress;
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
while (num_inprogress > 0) {
|
|
#if defined(OPENSSL_SYS_WINDOWS)
|
|
DWORD avail = 0;
|
|
#elif defined(OPENSSL_SYS_UNIX)
|
|
int select_result = 0;
|
|
OSSL_ASYNC_FD max_fd = 0;
|
|
fd_set waitfdset;
|
|
|
|
FD_ZERO(&waitfdset);
|
|
|
|
for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
FD_SET(job_fd, &waitfdset);
|
|
if (job_fd > max_fd)
|
|
max_fd = job_fd;
|
|
}
|
|
|
|
if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
|
|
BIO_printf(bio_err,
|
|
"Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
|
|
"Decrease the value of async_jobs\n",
|
|
max_fd, FD_SETSIZE);
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
|
|
if (select_result == -1 && errno == EINTR)
|
|
continue;
|
|
|
|
if (select_result == -1) {
|
|
BIO_printf(bio_err, "Failure in the select\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
|
|
if (select_result == 0)
|
|
continue;
|
|
#endif
|
|
|
|
for (i = 0; i < async_jobs; i++) {
|
|
if (loopargs[i].inprogress_job == NULL)
|
|
continue;
|
|
|
|
if (!ASYNC_WAIT_CTX_get_all_fds
|
|
(loopargs[i].wait_ctx, NULL, &num_job_fds)
|
|
|| num_job_fds > 1) {
|
|
BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
|
&num_job_fds);
|
|
|
|
#if defined(OPENSSL_SYS_UNIX)
|
|
if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
|
|
continue;
|
|
#elif defined(OPENSSL_SYS_WINDOWS)
|
|
if (num_job_fds == 1
|
|
&& !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
|
|
&& avail > 0)
|
|
continue;
|
|
#endif
|
|
|
|
ret = ASYNC_start_job(&loopargs[i].inprogress_job,
|
|
loopargs[i].wait_ctx, &job_op_count,
|
|
loop_function, (void *)(loopargs + i),
|
|
sizeof(loopargs_t));
|
|
switch (ret) {
|
|
case ASYNC_PAUSE:
|
|
break;
|
|
case ASYNC_FINISH:
|
|
if (job_op_count == -1) {
|
|
error = 1;
|
|
} else {
|
|
total_op_count += job_op_count;
|
|
}
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
break;
|
|
case ASYNC_NO_JOBS:
|
|
case ASYNC_ERR:
|
|
--num_inprogress;
|
|
loopargs[i].inprogress_job = NULL;
|
|
BIO_printf(bio_err, "Failure in the job\n");
|
|
ERR_print_errors(bio_err);
|
|
error = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error ? -1 : total_op_count;
|
|
}
|
|
|
|
int speed_main(int argc, char **argv)
|
|
{
|
|
ENGINE *e = NULL;
|
|
int (*loopfunc)(void *args);
|
|
loopargs_t *loopargs = NULL;
|
|
int async_init = 0;
|
|
int loopargs_len = 0;
|
|
char *prog;
|
|
const char *engine_id = NULL;
|
|
const EVP_CIPHER *evp_cipher = NULL;
|
|
double d = 0.0;
|
|
OPTION_CHOICE o;
|
|
int multiblock = 0, pr_header = 0;
|
|
int doit[ALGOR_NUM] = { 0 };
|
|
int ret = 1, i, k, misalign = 0;
|
|
long count = 0;
|
|
int size_num = OSSL_NELEM(lengths_list);
|
|
int keylen;
|
|
int buflen;
|
|
#ifndef NO_FORK
|
|
int multi = 0;
|
|
#endif
|
|
unsigned int async_jobs = 0;
|
|
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
|
|
|| !defined(OPENSSL_NO_EC)
|
|
long rsa_count = 1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
size_t loop;
|
|
#endif
|
|
|
|
/* What follows are the buffers and key material. */
|
|
#ifndef OPENSSL_NO_RC5
|
|
RC5_32_KEY rc5_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
RC2_KEY rc2_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
IDEA_KEY_SCHEDULE idea_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
SEED_KEY_SCHEDULE seed_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
BF_KEY bf_ks;
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
CAST_KEY cast_ks;
|
|
#endif
|
|
static const unsigned char key16[16] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
|
|
};
|
|
static const unsigned char key24[24] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
static const unsigned char key32[32] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
|
};
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
static const unsigned char ckey24[24] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
static const unsigned char ckey32[32] = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
|
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
|
};
|
|
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
static DES_cblock key = {
|
|
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
|
|
};
|
|
static DES_cblock key2 = {
|
|
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
|
|
};
|
|
static DES_cblock key3 = {
|
|
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
|
|
};
|
|
#endif
|
|
#ifndef OPENSSL_NO_RSA
|
|
static const unsigned int rsa_bits[RSA_NUM] = {
|
|
512, 1024, 2048, 3072, 4096, 7680, 15360
|
|
};
|
|
static const unsigned char *rsa_data[RSA_NUM] = {
|
|
test512, test1024, test2048, test3072, test4096, test7680, test15360
|
|
};
|
|
static const int rsa_data_length[RSA_NUM] = {
|
|
sizeof(test512), sizeof(test1024),
|
|
sizeof(test2048), sizeof(test3072),
|
|
sizeof(test4096), sizeof(test7680),
|
|
sizeof(test15360)
|
|
};
|
|
int rsa_doit[RSA_NUM] = { 0 };
|
|
int primes = RSA_DEFAULT_PRIME_NUM;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
|
|
int dsa_doit[DSA_NUM] = { 0 };
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
/*
|
|
* We only test over the following curves as they are representative, To
|
|
* add tests over more curves, simply add the curve NID and curve name to
|
|
* the following arrays and increase the EC_NUM value accordingly.
|
|
*/
|
|
static const unsigned int test_curves[EC_NUM] = {
|
|
/* Prime Curves */
|
|
NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
|
|
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
|
|
/* Binary Curves */
|
|
NID_sect163k1, NID_sect233k1, NID_sect283k1,
|
|
NID_sect409k1, NID_sect571k1, NID_sect163r2,
|
|
NID_sect233r1, NID_sect283r1, NID_sect409r1,
|
|
NID_sect571r1,
|
|
/* Other */
|
|
NID_X25519
|
|
};
|
|
static const char *test_curves_names[EC_NUM] = {
|
|
/* Prime Curves */
|
|
"secp160r1", "nistp192", "nistp224",
|
|
"nistp256", "nistp384", "nistp521",
|
|
/* Binary Curves */
|
|
"nistk163", "nistk233", "nistk283",
|
|
"nistk409", "nistk571", "nistb163",
|
|
"nistb233", "nistb283", "nistb409",
|
|
"nistb571",
|
|
/* Other */
|
|
"X25519"
|
|
};
|
|
static const int test_curves_bits[EC_NUM] = {
|
|
160, 192, 224,
|
|
256, 384, 521,
|
|
163, 233, 283,
|
|
409, 571, 163,
|
|
233, 283, 409,
|
|
571, 253 /* X25519 */
|
|
};
|
|
|
|
int ecdsa_doit[EC_NUM] = { 0 };
|
|
int ecdh_doit[EC_NUM] = { 0 };
|
|
#endif /* ndef OPENSSL_NO_EC */
|
|
|
|
openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
|
|
ECDSA_SECONDS, ECDH_SECONDS };
|
|
|
|
prog = opt_init(argc, argv, speed_options);
|
|
while ((o = opt_next()) != OPT_EOF) {
|
|
switch (o) {
|
|
case OPT_EOF:
|
|
case OPT_ERR:
|
|
opterr:
|
|
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
|
|
goto end;
|
|
case OPT_HELP:
|
|
opt_help(speed_options);
|
|
ret = 0;
|
|
goto end;
|
|
case OPT_ELAPSED:
|
|
usertime = 0;
|
|
break;
|
|
case OPT_EVP:
|
|
evp_md = NULL;
|
|
evp_cipher = EVP_get_cipherbyname(opt_arg());
|
|
if (evp_cipher == NULL)
|
|
evp_md = EVP_get_digestbyname(opt_arg());
|
|
if (evp_cipher == NULL && evp_md == NULL) {
|
|
BIO_printf(bio_err,
|
|
"%s: %s is an unknown cipher or digest\n",
|
|
prog, opt_arg());
|
|
goto end;
|
|
}
|
|
doit[D_EVP] = 1;
|
|
break;
|
|
case OPT_DECRYPT:
|
|
decrypt = 1;
|
|
break;
|
|
case OPT_ENGINE:
|
|
/*
|
|
* In a forked execution, an engine might need to be
|
|
* initialised by each child process, not by the parent.
|
|
* So store the name here and run setup_engine() later on.
|
|
*/
|
|
engine_id = opt_arg();
|
|
break;
|
|
case OPT_MULTI:
|
|
#ifndef NO_FORK
|
|
multi = atoi(opt_arg());
|
|
#endif
|
|
break;
|
|
case OPT_ASYNCJOBS:
|
|
#ifndef OPENSSL_NO_ASYNC
|
|
async_jobs = atoi(opt_arg());
|
|
if (!ASYNC_is_capable()) {
|
|
BIO_printf(bio_err,
|
|
"%s: async_jobs specified but async not supported\n",
|
|
prog);
|
|
goto opterr;
|
|
}
|
|
if (async_jobs > 99999) {
|
|
BIO_printf(bio_err,
|
|
"%s: too many async_jobs\n",
|
|
prog);
|
|
goto opterr;
|
|
}
|
|
#endif
|
|
break;
|
|
case OPT_MISALIGN:
|
|
if (!opt_int(opt_arg(), &misalign))
|
|
goto end;
|
|
if (misalign > MISALIGN) {
|
|
BIO_printf(bio_err,
|
|
"%s: Maximum offset is %d\n", prog, MISALIGN);
|
|
goto opterr;
|
|
}
|
|
break;
|
|
case OPT_MR:
|
|
mr = 1;
|
|
break;
|
|
case OPT_MB:
|
|
multiblock = 1;
|
|
#ifdef OPENSSL_NO_MULTIBLOCK
|
|
BIO_printf(bio_err,
|
|
"%s: -mb specified but multi-block support is disabled\n",
|
|
prog);
|
|
goto end;
|
|
#endif
|
|
break;
|
|
case OPT_R_CASES:
|
|
if (!opt_rand(o))
|
|
goto end;
|
|
break;
|
|
case OPT_PRIMES:
|
|
if (!opt_int(opt_arg(), &primes))
|
|
goto end;
|
|
break;
|
|
case OPT_SECONDS:
|
|
seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
|
|
= seconds.ecdh = atoi(opt_arg());
|
|
break;
|
|
case OPT_BYTES:
|
|
lengths_single = atoi(opt_arg());
|
|
lengths = &lengths_single;
|
|
size_num = 1;
|
|
break;
|
|
}
|
|
}
|
|
argc = opt_num_rest();
|
|
argv = opt_rest();
|
|
|
|
/* Remaining arguments are algorithms. */
|
|
for (; *argv; argv++) {
|
|
if (found(*argv, doit_choices, &i)) {
|
|
doit[i] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_DES
|
|
if (strcmp(*argv, "des") == 0) {
|
|
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
if (strcmp(*argv, "sha") == 0) {
|
|
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_RSA
|
|
if (strcmp(*argv, "openssl") == 0)
|
|
continue;
|
|
if (strcmp(*argv, "rsa") == 0) {
|
|
rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
|
|
rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
|
|
rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
|
|
rsa_doit[R_RSA_15360] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, rsa_choices, &i)) {
|
|
rsa_doit[i] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
if (strcmp(*argv, "dsa") == 0) {
|
|
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
|
|
dsa_doit[R_DSA_2048] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, dsa_choices, &i)) {
|
|
dsa_doit[i] = 2;
|
|
continue;
|
|
}
|
|
#endif
|
|
if (strcmp(*argv, "aes") == 0) {
|
|
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
|
|
continue;
|
|
}
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
if (strcmp(*argv, "camellia") == 0) {
|
|
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
if (strcmp(*argv, "ecdsa") == 0) {
|
|
for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
|
|
ecdsa_doit[ecdsa_choices[loop].retval] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, ecdsa_choices, &i)) {
|
|
ecdsa_doit[i] = 2;
|
|
continue;
|
|
}
|
|
if (strcmp(*argv, "ecdh") == 0) {
|
|
for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
|
|
ecdh_doit[ecdh_choices[loop].retval] = 1;
|
|
continue;
|
|
}
|
|
if (found(*argv, ecdh_choices, &i)) {
|
|
ecdh_doit[i] = 2;
|
|
continue;
|
|
}
|
|
#endif
|
|
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
|
|
goto end;
|
|
}
|
|
|
|
/* Initialize the job pool if async mode is enabled */
|
|
if (async_jobs > 0) {
|
|
async_init = ASYNC_init_thread(async_jobs, async_jobs);
|
|
if (!async_init) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
|
|
loopargs =
|
|
app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
|
|
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (async_jobs > 0) {
|
|
loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
|
|
if (loopargs[i].wait_ctx == NULL) {
|
|
BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
buflen = lengths[size_num - 1] + MAX_MISALIGNMENT + 1;
|
|
loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
|
|
loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
|
|
memset(loopargs[i].buf_malloc, 0, buflen);
|
|
memset(loopargs[i].buf2_malloc, 0, buflen);
|
|
|
|
/* Align the start of buffers on a 64 byte boundary */
|
|
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
|
|
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
|
|
#ifndef OPENSSL_NO_EC
|
|
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
|
|
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
|
|
#endif
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
if (multi && do_multi(multi, size_num))
|
|
goto show_res;
|
|
#endif
|
|
|
|
/* Initialize the engine after the fork */
|
|
e = setup_engine(engine_id, 0);
|
|
|
|
/* No parameters; turn on everything. */
|
|
if ((argc == 0) && !doit[D_EVP]) {
|
|
for (i = 0; i < ALGOR_NUM; i++)
|
|
if (i != D_EVP)
|
|
doit[i] = 1;
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (i = 0; i < RSA_NUM; i++)
|
|
rsa_doit[i] = 1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (i = 0; i < DSA_NUM; i++)
|
|
dsa_doit[i] = 1;
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
|
|
ecdsa_doit[ecdsa_choices[loop].retval] = 1;
|
|
for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
|
|
ecdh_doit[ecdh_choices[loop].retval] = 1;
|
|
#endif
|
|
}
|
|
for (i = 0; i < ALGOR_NUM; i++)
|
|
if (doit[i])
|
|
pr_header++;
|
|
|
|
if (usertime == 0 && !mr)
|
|
BIO_printf(bio_err,
|
|
"You have chosen to measure elapsed time "
|
|
"instead of user CPU time.\n");
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (primes > RSA_DEFAULT_PRIME_NUM) {
|
|
/* for multi-prime RSA, skip this */
|
|
break;
|
|
}
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
const unsigned char *p;
|
|
|
|
p = rsa_data[k];
|
|
loopargs[i].rsa_key[k] =
|
|
d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
|
|
if (loopargs[i].rsa_key[k] == NULL) {
|
|
BIO_printf(bio_err,
|
|
"internal error loading RSA key number %d\n", k);
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].dsa_key[0] = get_dsa(512);
|
|
loopargs[i].dsa_key[1] = get_dsa(1024);
|
|
loopargs[i].dsa_key[2] = get_dsa(2048);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
DES_set_key_unchecked(&key, &sch);
|
|
DES_set_key_unchecked(&key2, &sch2);
|
|
DES_set_key_unchecked(&key3, &sch3);
|
|
#endif
|
|
AES_set_encrypt_key(key16, 128, &aes_ks1);
|
|
AES_set_encrypt_key(key24, 192, &aes_ks2);
|
|
AES_set_encrypt_key(key32, 256, &aes_ks3);
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
Camellia_set_key(key16, 128, &camellia_ks1);
|
|
Camellia_set_key(ckey24, 192, &camellia_ks2);
|
|
Camellia_set_key(ckey32, 256, &camellia_ks3);
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
IDEA_set_encrypt_key(key16, &idea_ks);
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
SEED_set_key(key16, &seed_ks);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
RC4_set_key(&rc4_ks, 16, key16);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
RC2_set_key(&rc2_ks, 16, key16, 128);
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
RC5_32_set_key(&rc5_ks, 16, key16, 12);
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
BF_set_key(&bf_ks, 16, key16);
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
CAST_set_key(&cast_ks, 16, key16);
|
|
#endif
|
|
#ifndef SIGALRM
|
|
# ifndef OPENSSL_NO_DES
|
|
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
|
|
count = 10;
|
|
do {
|
|
long it;
|
|
count *= 2;
|
|
Time_F(START);
|
|
for (it = count; it; it--)
|
|
DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
|
|
(DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
} while (d < 3);
|
|
save_count = count;
|
|
c[D_MD2][0] = count / 10;
|
|
c[D_MDC2][0] = count / 10;
|
|
c[D_MD4][0] = count;
|
|
c[D_MD5][0] = count;
|
|
c[D_HMAC][0] = count;
|
|
c[D_SHA1][0] = count;
|
|
c[D_RMD160][0] = count;
|
|
c[D_RC4][0] = count * 5;
|
|
c[D_CBC_DES][0] = count;
|
|
c[D_EDE3_DES][0] = count / 3;
|
|
c[D_CBC_IDEA][0] = count;
|
|
c[D_CBC_SEED][0] = count;
|
|
c[D_CBC_RC2][0] = count;
|
|
c[D_CBC_RC5][0] = count;
|
|
c[D_CBC_BF][0] = count;
|
|
c[D_CBC_CAST][0] = count;
|
|
c[D_CBC_128_AES][0] = count;
|
|
c[D_CBC_192_AES][0] = count;
|
|
c[D_CBC_256_AES][0] = count;
|
|
c[D_CBC_128_CML][0] = count;
|
|
c[D_CBC_192_CML][0] = count;
|
|
c[D_CBC_256_CML][0] = count;
|
|
c[D_SHA256][0] = count;
|
|
c[D_SHA512][0] = count;
|
|
c[D_WHIRLPOOL][0] = count;
|
|
c[D_IGE_128_AES][0] = count;
|
|
c[D_IGE_192_AES][0] = count;
|
|
c[D_IGE_256_AES][0] = count;
|
|
c[D_GHASH][0] = count;
|
|
c[D_RAND][0] = count;
|
|
|
|
for (i = 1; i < size_num; i++) {
|
|
long l0, l1;
|
|
|
|
l0 = (long)lengths[0];
|
|
l1 = (long)lengths[i];
|
|
|
|
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
|
|
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
|
|
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
|
|
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
|
|
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
|
|
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
|
|
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
|
|
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
|
|
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
|
|
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
|
|
c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
|
|
c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
|
|
|
|
l0 = (long)lengths[i - 1];
|
|
|
|
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
|
|
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
|
|
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
|
|
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
|
|
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
|
|
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
|
|
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
|
|
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
|
|
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
|
|
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
|
|
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
|
|
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
|
|
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
|
|
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
|
|
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
|
|
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
|
|
}
|
|
|
|
# ifndef OPENSSL_NO_RSA
|
|
rsa_c[R_RSA_512][0] = count / 2000;
|
|
rsa_c[R_RSA_512][1] = count / 400;
|
|
for (i = 1; i < RSA_NUM; i++) {
|
|
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
|
|
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
|
|
if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
|
|
rsa_doit[i] = 0;
|
|
else {
|
|
if (rsa_c[i][0] == 0) {
|
|
rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
|
|
rsa_c[i][1] = 20;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DSA
|
|
dsa_c[R_DSA_512][0] = count / 1000;
|
|
dsa_c[R_DSA_512][1] = count / 1000 / 2;
|
|
for (i = 1; i < DSA_NUM; i++) {
|
|
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
|
|
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
|
|
if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
|
|
dsa_doit[i] = 0;
|
|
else {
|
|
if (dsa_c[i][0] == 0) {
|
|
dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
|
|
dsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_EC
|
|
ecdsa_c[R_EC_P160][0] = count / 1000;
|
|
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
|
|
for (i = R_EC_P192; i <= R_EC_P521; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdsa_c[R_EC_K163][0] = count / 1000;
|
|
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
|
|
for (i = R_EC_K233; i <= R_EC_K571; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdsa_c[R_EC_B163][0] = count / 1000;
|
|
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
|
|
for (i = R_EC_B233; i <= R_EC_B571; i++) {
|
|
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
|
|
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
|
|
if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
|
|
ecdsa_doit[i] = 0;
|
|
else {
|
|
if (ecdsa_c[i][0] == 0) {
|
|
ecdsa_c[i][0] = 1;
|
|
ecdsa_c[i][1] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ecdh_c[R_EC_P160][0] = count / 1000;
|
|
for (i = R_EC_P192; i <= R_EC_P521; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdh_c[R_EC_K163][0] = count / 1000;
|
|
for (i = R_EC_K233; i <= R_EC_K571; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
ecdh_c[R_EC_B163][0] = count / 1000;
|
|
for (i = R_EC_B233; i <= R_EC_B571; i++) {
|
|
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
|
|
if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
|
|
ecdh_doit[i] = 0;
|
|
else {
|
|
if (ecdh_c[i][0] == 0) {
|
|
ecdh_c[i][0] = 1;
|
|
}
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# else
|
|
/* not worth fixing */
|
|
# error "You cannot disable DES on systems without SIGALRM."
|
|
# endif /* OPENSSL_NO_DES */
|
|
#else
|
|
# ifndef _WIN32
|
|
signal(SIGALRM, sig_done);
|
|
# endif
|
|
#endif /* SIGALRM */
|
|
|
|
#ifndef OPENSSL_NO_MD2
|
|
if (doit[D_MD2]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_MDC2
|
|
if (doit[D_MDC2]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MDC2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD4
|
|
if (doit[D_MD4]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD4, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_MD5
|
|
if (doit[D_MD5]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, MD5_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_MD5, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_HMAC]) {
|
|
static const char hmac_key[] = "This is a key...";
|
|
int len = strlen(hmac_key);
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].hctx = HMAC_CTX_new();
|
|
if (loopargs[i].hctx == NULL) {
|
|
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
|
|
exit(1);
|
|
}
|
|
|
|
HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
|
|
}
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_HMAC, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
HMAC_CTX_free(loopargs[i].hctx);
|
|
}
|
|
}
|
|
#endif
|
|
if (doit[D_SHA1]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA1, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_SHA256]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA256], c[D_SHA256][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA256, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_SHA512]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_SHA512], c[D_SHA512][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_SHA512, testnum, count, d);
|
|
}
|
|
}
|
|
#ifndef OPENSSL_NO_WHIRLPOOL
|
|
if (doit[D_WHIRLPOOL]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_WHIRLPOOL, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef OPENSSL_NO_RMD160
|
|
if (doit[D_RMD160]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_RMD160], c[D_RMD160][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RMD160, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
if (doit[D_RC4]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RC4_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RC4, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
if (doit[D_CBC_DES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_DES, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_EDE3_DES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_EDE3_DES, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (doit[D_CBC_128_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_128_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_192_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_192_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_256_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_256_AES, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_IGE_128_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_128_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_IGE_192_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_192_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_IGE_256_AES]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_IGE_256_AES, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_GHASH]) {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].gcm_ctx =
|
|
CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
|
|
CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
|
|
(unsigned char *)"0123456789ab", 12);
|
|
}
|
|
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_GHASH], c[D_GHASH][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_GHASH, testnum, count, d);
|
|
}
|
|
for (i = 0; i < loopargs_len; i++)
|
|
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
|
|
}
|
|
#ifndef OPENSSL_NO_CAMELLIA
|
|
if (doit[D_CBC_128_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_128_CML]);
|
|
doit[D_CBC_128_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks1,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_128_CML, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_192_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_192_CML]);
|
|
doit[D_CBC_192_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks2,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_192_CML, testnum, count, d);
|
|
}
|
|
}
|
|
if (doit[D_CBC_256_CML]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_256_CML]);
|
|
doit[D_CBC_256_CML] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
|
|
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &camellia_ks3,
|
|
iv, CAMELLIA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_256_CML, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_IDEA
|
|
if (doit[D_CBC_IDEA]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_IDEA]);
|
|
doit[D_CBC_IDEA] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
|
|
IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &idea_ks,
|
|
iv, IDEA_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_IDEA, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_SEED
|
|
if (doit[D_CBC_SEED]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_SEED]);
|
|
doit[D_CBC_SEED] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
|
|
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &seed_ks, iv, 1);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_SEED, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC2
|
|
if (doit[D_CBC_RC2]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_RC2]);
|
|
doit[D_CBC_RC2] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
|
|
RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &rc2_ks,
|
|
iv, RC2_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_RC2, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC5
|
|
if (doit[D_CBC_RC5]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_RC5]);
|
|
doit[D_CBC_RC5] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
|
|
RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &rc5_ks,
|
|
iv, RC5_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_RC5, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
if (doit[D_CBC_BF]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_BF]);
|
|
doit[D_CBC_BF] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
|
|
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &bf_ks,
|
|
iv, BF_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_BF, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_CAST
|
|
if (doit[D_CBC_CAST]) {
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported with %s\n",
|
|
names[D_CBC_CAST]);
|
|
doit[D_CBC_CAST] = 0;
|
|
}
|
|
for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
|
|
print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
|
|
lengths[testnum], seconds.sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
|
|
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
|
|
(size_t)lengths[testnum], &cast_ks,
|
|
iv, CAST_ENCRYPT);
|
|
d = Time_F(STOP);
|
|
print_result(D_CBC_CAST, testnum, count, d);
|
|
}
|
|
}
|
|
#endif
|
|
if (doit[D_RAND]) {
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
print_result(D_RAND, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
if (doit[D_EVP]) {
|
|
if (multiblock && evp_cipher) {
|
|
if (!
|
|
(EVP_CIPHER_flags(evp_cipher) &
|
|
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
|
BIO_printf(bio_err, "%s is not multi-block capable\n",
|
|
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
|
|
goto end;
|
|
}
|
|
if (async_jobs > 0) {
|
|
BIO_printf(bio_err, "Async mode is not supported, exiting...");
|
|
exit(1);
|
|
}
|
|
multiblock_speed(evp_cipher, &seconds);
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
if (evp_cipher) {
|
|
|
|
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
|
|
/*
|
|
* -O3 -fschedule-insns messes up an optimization here!
|
|
* names[D_EVP] somehow becomes NULL
|
|
*/
|
|
print_message(names[D_EVP], save_count, lengths[testnum],
|
|
seconds.sym);
|
|
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
loopargs[k].ctx = EVP_CIPHER_CTX_new();
|
|
EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL,
|
|
iv, decrypt ? 0 : 1);
|
|
|
|
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
|
|
|
|
keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
|
|
loopargs[k].key = app_malloc(keylen, "evp_cipher key");
|
|
EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
|
|
EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
|
|
loopargs[k].key, NULL, -1);
|
|
OPENSSL_clear_free(loopargs[k].key, keylen);
|
|
}
|
|
switch (EVP_CIPHER_mode(evp_cipher)) {
|
|
case EVP_CIPH_CCM_MODE:
|
|
loopfunc = EVP_Update_loop_ccm;
|
|
break;
|
|
default:
|
|
loopfunc = EVP_Update_loop;
|
|
}
|
|
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, loopfunc, loopargs);
|
|
d = Time_F(STOP);
|
|
for (k = 0; k < loopargs_len; k++) {
|
|
EVP_CIPHER_CTX_free(loopargs[k].ctx);
|
|
}
|
|
}
|
|
if (evp_md) {
|
|
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
|
|
print_message(names[D_EVP], save_count, lengths[testnum],
|
|
seconds.sym);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
}
|
|
print_result(D_EVP, testnum, count, d);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
RAND_bytes(loopargs[i].buf, 36);
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (testnum = 0; testnum < RSA_NUM; testnum++) {
|
|
int st = 0;
|
|
if (!rsa_doit[testnum])
|
|
continue;
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
if (primes > 2) {
|
|
/* we haven't set keys yet, generate multi-prime RSA keys */
|
|
BIGNUM *bn = BN_new();
|
|
|
|
if (bn == NULL)
|
|
goto end;
|
|
if (!BN_set_word(bn, RSA_F4)) {
|
|
BN_free(bn);
|
|
goto end;
|
|
}
|
|
|
|
BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
|
|
rsa_choices[testnum].name);
|
|
|
|
loopargs[i].rsa_key[testnum] = RSA_new();
|
|
if (loopargs[i].rsa_key[testnum] == NULL) {
|
|
BN_free(bn);
|
|
goto end;
|
|
}
|
|
|
|
if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
|
|
rsa_bits[testnum],
|
|
primes, bn, NULL)) {
|
|
BN_free(bn);
|
|
goto end;
|
|
}
|
|
BN_free(bn);
|
|
}
|
|
st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
|
|
&loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"RSA sign failure. No RSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("private", "rsa",
|
|
rsa_c[testnum][0], rsa_bits[testnum],
|
|
seconds.rsa);
|
|
/* RSA_blinding_on(rsa_key[testnum],NULL); */
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R1:%ld:%d:%.2f\n"
|
|
: "%ld %d bit private RSA's in %.2fs\n",
|
|
count, rsa_bits[testnum], d);
|
|
rsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
|
|
loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
|
|
if (st <= 0)
|
|
break;
|
|
}
|
|
if (st <= 0) {
|
|
BIO_printf(bio_err,
|
|
"RSA verify failure. No RSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("public", "rsa",
|
|
rsa_c[testnum][1], rsa_bits[testnum],
|
|
seconds.rsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R2:%ld:%d:%.2f\n"
|
|
: "%ld %d bit public RSA's in %.2fs\n",
|
|
count, rsa_bits[testnum], d);
|
|
rsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < RSA_NUM; testnum++)
|
|
rsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_RSA */
|
|
|
|
for (i = 0; i < loopargs_len; i++)
|
|
RAND_bytes(loopargs[i].buf, 36);
|
|
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (testnum = 0; testnum < DSA_NUM; testnum++) {
|
|
int st = 0;
|
|
if (!dsa_doit[testnum])
|
|
continue;
|
|
|
|
/* DSA_generate_key(dsa_key[testnum]); */
|
|
/* DSA_sign_setup(dsa_key[testnum],NULL); */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
&loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"DSA sign failure. No DSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "dsa",
|
|
dsa_c[testnum][0], dsa_bits[testnum],
|
|
seconds.dsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R3:%ld:%d:%.2f\n"
|
|
: "%ld %d bit DSA signs in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
|
|
if (st <= 0)
|
|
break;
|
|
}
|
|
if (st <= 0) {
|
|
BIO_printf(bio_err,
|
|
"DSA verify failure. No DSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
dsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "dsa",
|
|
dsa_c[testnum][1], dsa_bits[testnum],
|
|
seconds.dsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R4:%ld:%d:%.2f\n"
|
|
: "%ld %d bit DSA verify in %.2fs\n",
|
|
count, dsa_bits[testnum], d);
|
|
dsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < DSA_NUM; testnum++)
|
|
dsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_DSA */
|
|
|
|
#ifndef OPENSSL_NO_EC
|
|
for (testnum = 0; testnum < EC_NUM; testnum++) {
|
|
int st = 1;
|
|
|
|
if (!ecdsa_doit[testnum])
|
|
continue; /* Ignore Curve */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
loopargs[i].ecdsa[testnum] =
|
|
EC_KEY_new_by_curve_name(test_curves[testnum]);
|
|
if (loopargs[i].ecdsa[testnum] == NULL) {
|
|
st = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err, "ECDSA failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
|
|
/* Perform ECDSA signature test */
|
|
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
|
|
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
&loopargs[i].siglen,
|
|
loopargs[i].ecdsa[testnum]);
|
|
if (st == 0)
|
|
break;
|
|
}
|
|
if (st == 0) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA sign failure. No ECDSA sign will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
} else {
|
|
pkey_print_message("sign", "ecdsa",
|
|
ecdsa_c[testnum][0],
|
|
test_curves_bits[testnum],
|
|
seconds.ecdsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
|
|
BIO_printf(bio_err,
|
|
mr ? "+R5:%ld:%d:%.2f\n" :
|
|
"%ld %d bit ECDSA signs in %.2fs \n",
|
|
count, test_curves_bits[testnum], d);
|
|
ecdsa_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
/* Perform ECDSA verification test */
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
|
|
loopargs[i].siglen,
|
|
loopargs[i].ecdsa[testnum]);
|
|
if (st != 1)
|
|
break;
|
|
}
|
|
if (st != 1) {
|
|
BIO_printf(bio_err,
|
|
"ECDSA verify failure. No ECDSA verify will be done.\n");
|
|
ERR_print_errors(bio_err);
|
|
ecdsa_doit[testnum] = 0;
|
|
} else {
|
|
pkey_print_message("verify", "ecdsa",
|
|
ecdsa_c[testnum][1],
|
|
test_curves_bits[testnum],
|
|
seconds.ecdsa);
|
|
Time_F(START);
|
|
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R6:%ld:%d:%.2f\n"
|
|
: "%ld %d bit ECDSA verify in %.2fs\n",
|
|
count, test_curves_bits[testnum], d);
|
|
ecdsa_results[testnum][1] = (double)count / d;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < EC_NUM; testnum++)
|
|
ecdsa_doit[testnum] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (testnum = 0; testnum < EC_NUM; testnum++) {
|
|
int ecdh_checks = 1;
|
|
|
|
if (!ecdh_doit[testnum])
|
|
continue;
|
|
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
EVP_PKEY_CTX *kctx = NULL;
|
|
EVP_PKEY_CTX *test_ctx = NULL;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
EVP_PKEY *key_A = NULL;
|
|
EVP_PKEY *key_B = NULL;
|
|
size_t outlen;
|
|
size_t test_outlen;
|
|
|
|
/* Ensure that the error queue is empty */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"WARNING: the error queue contains previous unhandled errors.\n");
|
|
ERR_print_errors(bio_err);
|
|
}
|
|
|
|
/* Let's try to create a ctx directly from the NID: this works for
|
|
* curves like Curve25519 that are not implemented through the low
|
|
* level EC interface.
|
|
* If this fails we try creating a EVP_PKEY_EC generic param ctx,
|
|
* then we set the curve by NID before deriving the actual keygen
|
|
* ctx for that specific curve. */
|
|
kctx = EVP_PKEY_CTX_new_id(test_curves[testnum], NULL); /* keygen ctx from NID */
|
|
if (!kctx) {
|
|
EVP_PKEY_CTX *pctx = NULL;
|
|
EVP_PKEY *params = NULL;
|
|
|
|
/* If we reach this code EVP_PKEY_CTX_new_id() failed and a
|
|
* "int_ctx_new:unsupported algorithm" error was added to the
|
|
* error queue.
|
|
* We remove it from the error queue as we are handling it. */
|
|
unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
|
|
if (error == ERR_peek_last_error() && /* oldest and latest errors match */
|
|
/* check that the error origin matches */
|
|
ERR_GET_LIB(error) == ERR_LIB_EVP &&
|
|
ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
|
|
ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
|
|
ERR_get_error(); /* pop error from queue */
|
|
if (ERR_peek_error()) {
|
|
BIO_printf(bio_err,
|
|
"Unhandled error in the error queue during ECDH init.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
if ( /* Create the context for parameter generation */
|
|
!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
|
|
/* Initialise the parameter generation */
|
|
!EVP_PKEY_paramgen_init(pctx) ||
|
|
/* Set the curve by NID */
|
|
!EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
|
test_curves
|
|
[testnum]) ||
|
|
/* Create the parameter object params */
|
|
!EVP_PKEY_paramgen(pctx, ¶ms)) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH EC params init failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
/* Create the context for the key generation */
|
|
kctx = EVP_PKEY_CTX_new(params, NULL);
|
|
|
|
EVP_PKEY_free(params);
|
|
params = NULL;
|
|
EVP_PKEY_CTX_free(pctx);
|
|
pctx = NULL;
|
|
}
|
|
if (kctx == NULL || /* keygen ctx is not null */
|
|
!EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH keygen failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
|
|
!EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
|
|
!(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
|
|
!EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
|
|
!EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
|
|
!EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
|
|
outlen == 0 || /* ensure outlen is a valid size */
|
|
outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH key generation failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
/* Here we perform a test run, comparing the output of a*B and b*A;
|
|
* we try this here and assume that further EVP_PKEY_derive calls
|
|
* never fail, so we can skip checks in the actually benchmarked
|
|
* code, for maximum performance. */
|
|
if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
|
|
!EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
|
|
!EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
|
|
!EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
|
|
!EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
|
|
!EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
|
|
test_outlen != outlen /* compare output length */ ) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computation failure.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
/* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
|
|
if (CRYPTO_memcmp(loopargs[i].secret_a,
|
|
loopargs[i].secret_b, outlen)) {
|
|
ecdh_checks = 0;
|
|
BIO_printf(bio_err, "ECDH computations don't match.\n");
|
|
ERR_print_errors(bio_err);
|
|
rsa_count = 1;
|
|
break;
|
|
}
|
|
|
|
loopargs[i].ecdh_ctx[testnum] = ctx;
|
|
loopargs[i].outlen[testnum] = outlen;
|
|
|
|
EVP_PKEY_free(key_A);
|
|
EVP_PKEY_free(key_B);
|
|
EVP_PKEY_CTX_free(kctx);
|
|
kctx = NULL;
|
|
EVP_PKEY_CTX_free(test_ctx);
|
|
test_ctx = NULL;
|
|
}
|
|
if (ecdh_checks != 0) {
|
|
pkey_print_message("", "ecdh",
|
|
ecdh_c[testnum][0],
|
|
test_curves_bits[testnum],
|
|
seconds.ecdh);
|
|
Time_F(START);
|
|
count =
|
|
run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err,
|
|
mr ? "+R7:%ld:%d:%.2f\n" :
|
|
"%ld %d-bit ECDH ops in %.2fs\n", count,
|
|
test_curves_bits[testnum], d);
|
|
ecdh_results[testnum][0] = (double)count / d;
|
|
rsa_count = count;
|
|
}
|
|
|
|
if (rsa_count <= 1) {
|
|
/* if longer than 10s, don't do any more */
|
|
for (testnum++; testnum < EC_NUM; testnum++)
|
|
ecdh_doit[testnum] = 0;
|
|
}
|
|
}
|
|
#endif /* OPENSSL_NO_EC */
|
|
#ifndef NO_FORK
|
|
show_res:
|
|
#endif
|
|
if (!mr) {
|
|
printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
|
|
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
|
|
printf("options:");
|
|
printf("%s ", BN_options());
|
|
#ifndef OPENSSL_NO_MD2
|
|
printf("%s ", MD2_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_RC4
|
|
printf("%s ", RC4_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_DES
|
|
printf("%s ", DES_options());
|
|
#endif
|
|
printf("%s ", AES_options());
|
|
#ifndef OPENSSL_NO_IDEA
|
|
printf("%s ", IDEA_options());
|
|
#endif
|
|
#ifndef OPENSSL_NO_BF
|
|
printf("%s ", BF_options());
|
|
#endif
|
|
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
|
|
}
|
|
|
|
if (pr_header) {
|
|
if (mr)
|
|
printf("+H");
|
|
else {
|
|
printf
|
|
("The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
printf("type ");
|
|
}
|
|
for (testnum = 0; testnum < size_num; testnum++)
|
|
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
|
|
printf("\n");
|
|
}
|
|
|
|
for (k = 0; k < ALGOR_NUM; k++) {
|
|
if (!doit[k])
|
|
continue;
|
|
if (mr)
|
|
printf("+F:%d:%s", k, names[k]);
|
|
else
|
|
printf("%-13s", names[k]);
|
|
for (testnum = 0; testnum < size_num; testnum++) {
|
|
if (results[k][testnum] > 10000 && !mr)
|
|
printf(" %11.2fk", results[k][testnum] / 1e3);
|
|
else
|
|
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#ifndef OPENSSL_NO_RSA
|
|
testnum = 1;
|
|
for (k = 0; k < RSA_NUM; k++) {
|
|
if (!rsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%18ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F2:%u:%u:%f:%f\n",
|
|
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
|
|
else
|
|
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
|
rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
|
|
rsa_results[k][0], rsa_results[k][1]);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
testnum = 1;
|
|
for (k = 0; k < DSA_NUM; k++) {
|
|
if (!dsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%18ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F3:%u:%u:%f:%f\n",
|
|
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
|
|
else
|
|
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
|
dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
|
|
dsa_results[k][0], dsa_results[k][1]);
|
|
}
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
testnum = 1;
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
if (!ecdsa_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30ssign verify sign/s verify/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
|
|
if (mr)
|
|
printf("+F4:%u:%u:%f:%f\n",
|
|
k, test_curves_bits[k],
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
else
|
|
printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
|
test_curves_bits[k],
|
|
test_curves_names[k],
|
|
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
|
|
ecdsa_results[k][0], ecdsa_results[k][1]);
|
|
}
|
|
|
|
testnum = 1;
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
if (!ecdh_doit[k])
|
|
continue;
|
|
if (testnum && !mr) {
|
|
printf("%30sop op/s\n", " ");
|
|
testnum = 0;
|
|
}
|
|
if (mr)
|
|
printf("+F5:%u:%u:%f:%f\n",
|
|
k, test_curves_bits[k],
|
|
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
|
|
|
|
else
|
|
printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
|
|
test_curves_bits[k],
|
|
test_curves_names[k],
|
|
1.0 / ecdh_results[k][0], ecdh_results[k][0]);
|
|
}
|
|
#endif
|
|
|
|
ret = 0;
|
|
|
|
end:
|
|
ERR_print_errors(bio_err);
|
|
for (i = 0; i < loopargs_len; i++) {
|
|
OPENSSL_free(loopargs[i].buf_malloc);
|
|
OPENSSL_free(loopargs[i].buf2_malloc);
|
|
|
|
#ifndef OPENSSL_NO_RSA
|
|
for (k = 0; k < RSA_NUM; k++)
|
|
RSA_free(loopargs[i].rsa_key[k]);
|
|
#endif
|
|
#ifndef OPENSSL_NO_DSA
|
|
for (k = 0; k < DSA_NUM; k++)
|
|
DSA_free(loopargs[i].dsa_key[k]);
|
|
#endif
|
|
#ifndef OPENSSL_NO_EC
|
|
for (k = 0; k < EC_NUM; k++) {
|
|
EC_KEY_free(loopargs[i].ecdsa[k]);
|
|
EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
|
|
}
|
|
OPENSSL_free(loopargs[i].secret_a);
|
|
OPENSSL_free(loopargs[i].secret_b);
|
|
#endif
|
|
}
|
|
|
|
if (async_jobs > 0) {
|
|
for (i = 0; i < loopargs_len; i++)
|
|
ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
|
|
}
|
|
|
|
if (async_init) {
|
|
ASYNC_cleanup_thread();
|
|
}
|
|
OPENSSL_free(loopargs);
|
|
release_engine(e);
|
|
return ret;
|
|
}
|
|
|
|
static void print_message(const char *s, long num, int length, int tm)
|
|
{
|
|
#ifdef SIGALRM
|
|
BIO_printf(bio_err,
|
|
mr ? "+DT:%s:%d:%d\n"
|
|
: "Doing %s for %ds on %d size blocks: ", s, tm, length);
|
|
(void)BIO_flush(bio_err);
|
|
alarm(tm);
|
|
#else
|
|
BIO_printf(bio_err,
|
|
mr ? "+DN:%s:%ld:%d\n"
|
|
: "Doing %s %ld times on %d size blocks: ", s, num, length);
|
|
(void)BIO_flush(bio_err);
|
|
#endif
|
|
}
|
|
|
|
static void pkey_print_message(const char *str, const char *str2, long num,
|
|
int bits, int tm)
|
|
{
|
|
#ifdef SIGALRM
|
|
BIO_printf(bio_err,
|
|
mr ? "+DTP:%d:%s:%s:%d\n"
|
|
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
|
|
(void)BIO_flush(bio_err);
|
|
alarm(tm);
|
|
#else
|
|
BIO_printf(bio_err,
|
|
mr ? "+DNP:%ld:%d:%s:%s\n"
|
|
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
|
|
(void)BIO_flush(bio_err);
|
|
#endif
|
|
}
|
|
|
|
static void print_result(int alg, int run_no, int count, double time_used)
|
|
{
|
|
if (count == -1) {
|
|
BIO_puts(bio_err, "EVP error!\n");
|
|
exit(1);
|
|
}
|
|
BIO_printf(bio_err,
|
|
mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s's in %.2fs\n", count, names[alg], time_used);
|
|
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
|
|
}
|
|
|
|
#ifndef NO_FORK
|
|
static char *sstrsep(char **string, const char *delim)
|
|
{
|
|
char isdelim[256];
|
|
char *token = *string;
|
|
|
|
if (**string == 0)
|
|
return NULL;
|
|
|
|
memset(isdelim, 0, sizeof(isdelim));
|
|
isdelim[0] = 1;
|
|
|
|
while (*delim) {
|
|
isdelim[(unsigned char)(*delim)] = 1;
|
|
delim++;
|
|
}
|
|
|
|
while (!isdelim[(unsigned char)(**string)]) {
|
|
(*string)++;
|
|
}
|
|
|
|
if (**string) {
|
|
**string = 0;
|
|
(*string)++;
|
|
}
|
|
|
|
return token;
|
|
}
|
|
|
|
static int do_multi(int multi, int size_num)
|
|
{
|
|
int n;
|
|
int fd[2];
|
|
int *fds;
|
|
static char sep[] = ":";
|
|
|
|
fds = malloc(sizeof(*fds) * multi);
|
|
for (n = 0; n < multi; ++n) {
|
|
if (pipe(fd) == -1) {
|
|
BIO_printf(bio_err, "pipe failure\n");
|
|
exit(1);
|
|
}
|
|
fflush(stdout);
|
|
(void)BIO_flush(bio_err);
|
|
if (fork()) {
|
|
close(fd[1]);
|
|
fds[n] = fd[0];
|
|
} else {
|
|
close(fd[0]);
|
|
close(1);
|
|
if (dup(fd[1]) == -1) {
|
|
BIO_printf(bio_err, "dup failed\n");
|
|
exit(1);
|
|
}
|
|
close(fd[1]);
|
|
mr = 1;
|
|
usertime = 0;
|
|
free(fds);
|
|
return 0;
|
|
}
|
|
printf("Forked child %d\n", n);
|
|
}
|
|
|
|
/* for now, assume the pipe is long enough to take all the output */
|
|
for (n = 0; n < multi; ++n) {
|
|
FILE *f;
|
|
char buf[1024];
|
|
char *p;
|
|
|
|
f = fdopen(fds[n], "r");
|
|
while (fgets(buf, sizeof(buf), f)) {
|
|
p = strchr(buf, '\n');
|
|
if (p)
|
|
*p = '\0';
|
|
if (buf[0] != '+') {
|
|
BIO_printf(bio_err,
|
|
"Don't understand line '%s' from child %d\n", buf,
|
|
n);
|
|
continue;
|
|
}
|
|
printf("Got: %s from %d\n", buf, n);
|
|
if (strncmp(buf, "+F:", 3) == 0) {
|
|
int alg;
|
|
int j;
|
|
|
|
p = buf + 3;
|
|
alg = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
for (j = 0; j < size_num; ++j)
|
|
results[alg][j] += atof(sstrsep(&p, sep));
|
|
} else if (strncmp(buf, "+F2:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
rsa_results[k][1] += d;
|
|
}
|
|
# ifndef OPENSSL_NO_DSA
|
|
else if (strncmp(buf, "+F3:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
dsa_results[k][1] += d;
|
|
}
|
|
# endif
|
|
# ifndef OPENSSL_NO_EC
|
|
else if (strncmp(buf, "+F4:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][0] += d;
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdsa_results[k][1] += d;
|
|
} else if (strncmp(buf, "+F5:", 4) == 0) {
|
|
int k;
|
|
double d;
|
|
|
|
p = buf + 4;
|
|
k = atoi(sstrsep(&p, sep));
|
|
sstrsep(&p, sep);
|
|
|
|
d = atof(sstrsep(&p, sep));
|
|
ecdh_results[k][0] += d;
|
|
}
|
|
# endif
|
|
|
|
else if (strncmp(buf, "+H:", 3) == 0) {
|
|
;
|
|
} else
|
|
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
|
|
n);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
free(fds);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void multiblock_speed(const EVP_CIPHER *evp_cipher,
|
|
const openssl_speed_sec_t *seconds)
|
|
{
|
|
static const int mblengths_list[] =
|
|
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
|
|
const int *mblengths = mblengths_list;
|
|
int j, count, keylen, num = OSSL_NELEM(mblengths_list);
|
|
const char *alg_name;
|
|
unsigned char *inp, *out, *key, no_key[32], no_iv[16];
|
|
EVP_CIPHER_CTX *ctx;
|
|
double d = 0.0;
|
|
|
|
if (lengths_single) {
|
|
mblengths = &lengths_single;
|
|
num = 1;
|
|
}
|
|
|
|
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
|
|
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
|
|
|
|
keylen = EVP_CIPHER_CTX_key_length(ctx);
|
|
key = app_malloc(keylen, "evp_cipher key");
|
|
EVP_CIPHER_CTX_rand_key(ctx, key);
|
|
EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
|
|
OPENSSL_clear_free(key, keylen);
|
|
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
|
|
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
|
|
|
|
for (j = 0; j < num; j++) {
|
|
print_message(alg_name, 0, mblengths[j], seconds->sym);
|
|
Time_F(START);
|
|
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
|
|
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
|
|
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
|
|
size_t len = mblengths[j];
|
|
int packlen;
|
|
|
|
memset(aad, 0, 8); /* avoid uninitialized values */
|
|
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
|
|
aad[9] = 3; /* version */
|
|
aad[10] = 2;
|
|
aad[11] = 0; /* length */
|
|
aad[12] = 0;
|
|
mb_param.out = NULL;
|
|
mb_param.inp = aad;
|
|
mb_param.len = len;
|
|
mb_param.interleave = 8;
|
|
|
|
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
|
|
sizeof(mb_param), &mb_param);
|
|
|
|
if (packlen > 0) {
|
|
mb_param.out = out;
|
|
mb_param.inp = inp;
|
|
mb_param.len = len;
|
|
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
|
|
sizeof(mb_param), &mb_param);
|
|
} else {
|
|
int pad;
|
|
|
|
RAND_bytes(out, 16);
|
|
len += 16;
|
|
aad[11] = (unsigned char)(len >> 8);
|
|
aad[12] = (unsigned char)(len);
|
|
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
|
EVP_AEAD_TLS1_AAD_LEN, aad);
|
|
EVP_Cipher(ctx, out, inp, len + pad);
|
|
}
|
|
}
|
|
d = Time_F(STOP);
|
|
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
|
|
: "%d %s's in %.2fs\n", count, "evp", d);
|
|
results[D_EVP][j] = ((double)count) / d * mblengths[j];
|
|
}
|
|
|
|
if (mr) {
|
|
fprintf(stdout, "+H");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%d", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, ":%.2f", results[D_EVP][j]);
|
|
fprintf(stdout, "\n");
|
|
} else {
|
|
fprintf(stdout,
|
|
"The 'numbers' are in 1000s of bytes per second processed.\n");
|
|
fprintf(stdout, "type ");
|
|
for (j = 0; j < num; j++)
|
|
fprintf(stdout, "%7d bytes", mblengths[j]);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "%-24s", alg_name);
|
|
|
|
for (j = 0; j < num; j++) {
|
|
if (results[D_EVP][j] > 10000)
|
|
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
|
|
else
|
|
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
|
|
}
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
OPENSSL_free(inp);
|
|
OPENSSL_free(out);
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
}
|