openssl/crypto/sha/asm/keccak1600-avx512.pl
Andy Polyakov e3c79f0f19 sha/asm/keccak1600-avx512.pl: improve performance by 17%.
Improvement is result of combination of data layout ideas from
Keccak Code Package and initial version of this module.

Hardware used for benchmarking courtesy of Atos, experiments run by
Romain Dolbeau <romain.dolbeau@atos.net>. Kudos!

Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Rich Salz <rsalz@openssl.org>
2017-07-24 21:23:01 +02:00

549 lines
16 KiB
Raku
Executable file

#!/usr/bin/env perl
# Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Keccak-1600 for AVX-512F.
#
# July 2017.
#
# Below code is KECCAK_1X_ALT implementation (see sha/keccak1600.c).
# Pretty straightforward, the only "magic" is data layout in registers.
# It's impossible to have one that is optimal for every step, hence
# it's changing as algorithm progresses. Data is saved in linear order,
# but in-register order morphs between rounds. Even rounds take in
# linear layout, and odd rounds - transposed, or "verticaly-shaped"...
#
########################################################################
# Numbers are cycles per processed byte out of large message.
#
# r=1088(*)
#
# Knights Landing 7.6
# Skylake-X 5.7
#
# (*) Corresponds to SHA3-256.
########################################################################
# Below code is combination of two ideas. One is taken from Keccak Code
# Package, hereafter KCP, and another one from initial version of this
# module. What is common is observation that Pi's input and output are
# "mostly transposed", i.e. if input is aligned by x coordinate, then
# output is [mostly] aligned by y. Both versions, KCP and predecessor,
# were trying to use one of them from round to round, which resulted in
# some kind of transposition in each round. This version still does
# transpose data, but only every second round. Another essential factor
# is that KCP transposition has to be performed with instructions that
# turned to be rather expensive on Knights Landing, both latency- and
# throughput-wise. Not to mention that some of them have to depend on
# each other. On the other hand initial version of this module was
# relying heavily on blend instructions. There were lots of them,
# resulting in higher instruction count, yet it performed better on
# Knights Landing, because processor can execute pair of them each
# cycle and they have minimal latency. This module is an attempt to
# bring best parts together:-)
#
# Coordinates below correspond to those in sha/keccak1600.c. Input
# layout is straight linear:
#
# [0][4] [0][3] [0][2] [0][1] [0][0]
# [1][4] [1][3] [1][2] [1][1] [1][0]
# [2][4] [2][3] [2][2] [2][1] [2][0]
# [3][4] [3][3] [3][2] [3][1] [3][0]
# [4][4] [4][3] [4][2] [4][1] [4][0]
#
# It's perfect for Theta, while Pi is reduced to intra-register
# permutations which yield layout perfect for Chi:
#
# [4][0] [3][0] [2][0] [1][0] [0][0]
# [4][1] [3][1] [2][1] [1][1] [0][1]
# [4][2] [3][2] [2][2] [1][2] [0][2]
# [4][3] [3][3] [2][3] [1][3] [0][3]
# [4][4] [3][4] [2][4] [1][4] [0][4]
#
# Now instead of performing full transposition and feeding it to next
# identical round, we perform kind of diagonal transposition to layout
# from initial version of this module, and make it suitable for Theta:
#
# [4][4] [3][3] [2][2] [1][1] [0][0]>4.3.2.1.0>[4][4] [3][3] [2][2] [1][1] [0][0]
# [4][0] [3][4] [2][3] [1][2] [0][1]>3.2.1.0.4>[3][4] [2][3] [1][2] [0][1] [4][0]
# [4][1] [3][0] [2][4] [1][3] [0][2]>2.1.0.4.3>[2][4] [1][3] [0][2] [4][1] [3][0]
# [4][2] [3][1] [2][0] [1][4] [0][3]>1.0.4.3.2>[1][4] [0][3] [4][2] [3][1] [2][0]
# [4][3] [3][2] [2][1] [1][0] [0][4]>0.4.3.2.1>[0][4] [4][3] [3][2] [2][1] [1][0]
#
# Now intra-register permutations yield initial [almost] straight
# linear layout:
#
# [4][4] [3][3] [2][2] [1][1] [0][0]
##[0][4] [0][3] [0][2] [0][1] [0][0]
# [3][4] [2][3] [1][2] [0][1] [4][0]
##[2][3] [2][2] [2][1] [2][0] [2][4]
# [2][4] [1][3] [0][2] [4][1] [3][0]
##[4][2] [4][1] [4][0] [4][4] [4][3]
# [1][4] [0][3] [4][2] [3][1] [2][0]
##[1][1] [1][0] [1][4] [1][3] [1][2]
# [0][4] [4][3] [3][2] [2][1] [1][0]
##[3][0] [3][4] [3][3] [3][2] [3][1]
#
# This means that odd round Chi is performed in less suitable layout,
# with a number of additional permutations. But overall it turned to be
# a win. Permutations are fastest possible on Knights Landing and they
# are laid down to be independent of each other. In the essence I traded
# 20 blend instructions for 3 permutations. The result is 13% faster
# than KCP on Skylake-X, and >40% on Knights Landing.
#
# As implied, data is loaded in straight linear order. Digits in
# variables' names represent coordinates of right-most element of
# loaded data chunk:
my ($A00, # [0][4] [0][3] [0][2] [0][1] [0][0]
$A10, # [1][4] [1][3] [1][2] [1][1] [1][0]
$A20, # [2][4] [2][3] [2][2] [2][1] [2][0]
$A30, # [3][4] [3][3] [3][2] [3][1] [3][0]
$A40) = # [4][4] [4][3] [4][2] [4][1] [4][0]
map("%zmm$_",(0..4));
# We also need to map the magic order into offsets within structure:
my @A_jagged = ([0,0], [0,1], [0,2], [0,3], [0,4],
[1,0], [1,1], [1,2], [1,3], [1,4],
[2,0], [2,1], [2,2], [2,3], [2,4],
[3,0], [3,1], [3,2], [3,3], [3,4],
[4,0], [4,1], [4,2], [4,3], [4,4]);
@A_jagged = map(8*($$_[0]*8+$$_[1]), @A_jagged); # ... and now linear
my @T = map("%zmm$_",(5..12));
my @Theta = map("%zmm$_",(33,13..16)); # invalid @Theta[0] is not typo
my @Pi0 = map("%zmm$_",(17..21));
my @Rhotate0 = map("%zmm$_",(22..26));
my @Rhotate1 = map("%zmm$_",(27..31));
my ($C00,$D00) = @T[0..1];
my ($k00001,$k00010,$k00100,$k01000,$k10000,$k11111) = map("%k$_",(1..6));
$code.=<<___;
.text
.type __KeccakF1600,\@function
.align 32
__KeccakF1600:
lea iotas(%rip),%r10
mov \$12,%eax
jmp .Loop_avx512
.align 32
.Loop_avx512:
######################################### Theta, even round
vmovdqa64 $A00,@T[0] # put aside original A00
vpternlogq \$0x96,$A20,$A10,$A00 # and use it as "C00"
vpternlogq \$0x96,$A40,$A30,$A00
vprolq \$1,$A00,$D00
vpermq $A00,@Theta[1],$A00
vpermq $D00,@Theta[4],$D00
vpternlogq \$0x96,$A00,$D00,@T[0] # T[0] is original A00
vpternlogq \$0x96,$A00,$D00,$A10
vpternlogq \$0x96,$A00,$D00,$A20
vpternlogq \$0x96,$A00,$D00,$A30
vpternlogq \$0x96,$A00,$D00,$A40
######################################### Rho
vprolvq @Rhotate0[0],@T[0],$A00 # T[0] is original A00
vprolvq @Rhotate0[1],$A10,$A10
vprolvq @Rhotate0[2],$A20,$A20
vprolvq @Rhotate0[3],$A30,$A30
vprolvq @Rhotate0[4],$A40,$A40
######################################### Pi
vpermq $A00,@Pi0[0],$A00
vpermq $A10,@Pi0[1],$A10
vpermq $A20,@Pi0[2],$A20
vpermq $A30,@Pi0[3],$A30
vpermq $A40,@Pi0[4],$A40
######################################### Chi
vmovdqa64 $A00,@T[0]
vmovdqa64 $A10,@T[1]
vpternlogq \$0xD2,$A20,$A10,$A00
vpternlogq \$0xD2,$A30,$A20,$A10
vpternlogq \$0xD2,$A40,$A30,$A20
vpternlogq \$0xD2,@T[0],$A40,$A30
vpternlogq \$0xD2,@T[1],@T[0],$A40
######################################### Iota
vpxorq (%r10),$A00,${A00}{$k00001}
lea 16(%r10),%r10
######################################### Harmonize rounds
vpblendmq $A20,$A10,@{T[1]}{$k00010}
vpblendmq $A30,$A20,@{T[2]}{$k00010}
vpblendmq $A40,$A30,@{T[3]}{$k00010}
vpblendmq $A10,$A00,@{T[0]}{$k00010}
vpblendmq $A00,$A40,@{T[4]}{$k00010}
vpblendmq $A30,@T[1],@{T[1]}{$k00100}
vpblendmq $A40,@T[2],@{T[2]}{$k00100}
vpblendmq $A20,@T[0],@{T[0]}{$k00100}
vpblendmq $A00,@T[3],@{T[3]}{$k00100}
vpblendmq $A10,@T[4],@{T[4]}{$k00100}
vpblendmq $A40,@T[1],@{T[1]}{$k01000}
vpblendmq $A30,@T[0],@{T[0]}{$k01000}
vpblendmq $A00,@T[2],@{T[2]}{$k01000}
vpblendmq $A10,@T[3],@{T[3]}{$k01000}
vpblendmq $A20,@T[4],@{T[4]}{$k01000}
vpblendmq $A40,@T[0],@{T[0]}{$k10000}
vpblendmq $A00,@T[1],@{T[1]}{$k10000}
vpblendmq $A10,@T[2],@{T[2]}{$k10000}
vpblendmq $A20,@T[3],@{T[3]}{$k10000}
vpblendmq $A30,@T[4],@{T[4]}{$k10000}
#vpermq @T[0],@Theta[0],$A00 # doesn't actually change order
vpermq @T[1],@Theta[1],$A10
vpermq @T[2],@Theta[2],$A20
vpermq @T[3],@Theta[3],$A30
vpermq @T[4],@Theta[4],$A40
######################################### Theta, odd round
vmovdqa64 $T[0],$A00 # real A00
vpternlogq \$0x96,$A20,$A10,$C00 # C00 is @T[0]'s alias
vpternlogq \$0x96,$A40,$A30,$C00
vprolq \$1,$C00,$D00
vpermq $C00,@Theta[1],$C00
vpermq $D00,@Theta[4],$D00
vpternlogq \$0x96,$C00,$D00,$A00
vpternlogq \$0x96,$C00,$D00,$A30
vpternlogq \$0x96,$C00,$D00,$A10
vpternlogq \$0x96,$C00,$D00,$A40
vpternlogq \$0x96,$C00,$D00,$A20
######################################### Rho
vprolvq @Rhotate1[0],$A00,$A00
vprolvq @Rhotate1[3],$A30,@T[1]
vprolvq @Rhotate1[1],$A10,@T[2]
vprolvq @Rhotate1[4],$A40,@T[3]
vprolvq @Rhotate1[2],$A20,@T[4]
vpermq $A00,@Theta[4],@T[5]
vpermq $A00,@Theta[3],@T[6]
######################################### Iota
vpxorq -8(%r10),$A00,${A00}{$k00001}
######################################### Pi
vpermq @T[1],@Theta[2],$A10
vpermq @T[2],@Theta[4],$A20
vpermq @T[3],@Theta[1],$A30
vpermq @T[4],@Theta[3],$A40
######################################### Chi
vpternlogq \$0xD2,@T[6],@T[5],$A00
vpermq @T[1],@Theta[1],@T[7]
#vpermq @T[1],@Theta[0],@T[1]
vpternlogq \$0xD2,@T[1],@T[7],$A10
vpermq @T[2],@Theta[3],@T[0]
vpermq @T[2],@Theta[2],@T[2]
vpternlogq \$0xD2,@T[2],@T[0],$A20
#vpermq @T[3],@Theta[0],@T[3]
vpermq @T[3],@Theta[4],@T[1]
vpternlogq \$0xD2,@T[1],@T[3],$A30
vpermq @T[4],@Theta[2],@T[0]
vpermq @T[4],@Theta[1],@T[4]
vpternlogq \$0xD2,@T[4],@T[0],$A40
dec %eax
jnz .Loop_avx512
ret
.size __KeccakF1600,.-__KeccakF1600
___
my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
my $out = $inp; # in squeeze
$code.=<<___;
.globl SHA3_absorb
.type SHA3_absorb,\@function
.align 32
SHA3_absorb:
mov %rsp,%r11
lea -320(%rsp),%rsp
and \$-64,%rsp
lea 96($A_flat),$A_flat
lea 96($inp),$inp
lea 128(%rsp),%r9
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
kshiftrw \$15,$k11111,$k00001
kshiftrw \$11,$k11111,$k11111
kshiftlw \$1,$k00001,$k00010
kshiftlw \$2,$k00001,$k00100
kshiftlw \$3,$k00001,$k01000
kshiftlw \$4,$k00001,$k10000
#vmovdqa64 64*0(%r8),@Theta[0]
vmovdqa64 64*1(%r8),@Theta[1]
vmovdqa64 64*2(%r8),@Theta[2]
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
vmovdqa64 64*5(%r8),@Rhotate1[0]
vmovdqa64 64*6(%r8),@Rhotate1[1]
vmovdqa64 64*7(%r8),@Rhotate1[2]
vmovdqa64 64*8(%r8),@Rhotate1[3]
vmovdqa64 64*9(%r8),@Rhotate1[4]
vmovdqa64 64*10(%r8),@Rhotate0[0]
vmovdqa64 64*11(%r8),@Rhotate0[1]
vmovdqa64 64*12(%r8),@Rhotate0[2]
vmovdqa64 64*13(%r8),@Rhotate0[3]
vmovdqa64 64*14(%r8),@Rhotate0[4]
vmovdqa64 64*15(%r8),@Pi0[0]
vmovdqa64 64*16(%r8),@Pi0[1]
vmovdqa64 64*17(%r8),@Pi0[2]
vmovdqa64 64*18(%r8),@Pi0[3]
vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
vpxorq @T[0],@T[0],@T[0]
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
vmovdqa64 @T[0],0*64-128(%r9) # zero transfer area on stack
vmovdqa64 @T[0],1*64-128(%r9)
vmovdqa64 @T[0],2*64-128(%r9)
vmovdqa64 @T[0],3*64-128(%r9)
vmovdqa64 @T[0],4*64-128(%r9)
jmp .Loop_absorb_avx512
.align 32
.Loop_absorb_avx512:
mov $bsz,%rax
sub $bsz,$len
jc .Ldone_absorb_avx512
shr \$3,%eax
___
for(my $i=0; $i<25; $i++) {
$code.=<<___
mov 8*$i-96($inp),%r8
mov %r8,$A_jagged[$i]-128(%r9)
dec %eax
jz .Labsorved_avx512
___
}
$code.=<<___;
.Labsorved_avx512:
lea ($inp,$bsz),$inp
vpxorq 64*0-128(%r9),$A00,$A00
vpxorq 64*1-128(%r9),$A10,$A10
vpxorq 64*2-128(%r9),$A20,$A20
vpxorq 64*3-128(%r9),$A30,$A30
vpxorq 64*4-128(%r9),$A40,$A40
call __KeccakF1600
jmp .Loop_absorb_avx512
.align 32
.Ldone_absorb_avx512:
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
vzeroupper
lea (%r11),%rsp
lea ($len,$bsz),%rax # return value
ret
.size SHA3_absorb,.-SHA3_absorb
.globl SHA3_squeeze
.type SHA3_squeeze,\@function
.align 32
SHA3_squeeze:
mov %rsp,%r11
lea 96($A_flat),$A_flat
cmp $bsz,$len
jbe .Lno_output_extension_avx512
lea theta_perm(%rip),%r8
kxnorw $k11111,$k11111,$k11111
kshiftrw \$15,$k11111,$k00001
kshiftrw \$11,$k11111,$k11111
kshiftlw \$1,$k00001,$k00010
kshiftlw \$2,$k00001,$k00100
kshiftlw \$3,$k00001,$k01000
kshiftlw \$4,$k00001,$k10000
#vmovdqa64 64*0(%r8),@Theta[0]
vmovdqa64 64*1(%r8),@Theta[1]
vmovdqa64 64*2(%r8),@Theta[2]
vmovdqa64 64*3(%r8),@Theta[3]
vmovdqa64 64*4(%r8),@Theta[4]
vmovdqa64 64*5(%r8),@Rhotate1[0]
vmovdqa64 64*6(%r8),@Rhotate1[1]
vmovdqa64 64*7(%r8),@Rhotate1[2]
vmovdqa64 64*8(%r8),@Rhotate1[3]
vmovdqa64 64*9(%r8),@Rhotate1[4]
vmovdqa64 64*10(%r8),@Rhotate0[0]
vmovdqa64 64*11(%r8),@Rhotate0[1]
vmovdqa64 64*12(%r8),@Rhotate0[2]
vmovdqa64 64*13(%r8),@Rhotate0[3]
vmovdqa64 64*14(%r8),@Rhotate0[4]
vmovdqa64 64*15(%r8),@Pi0[0]
vmovdqa64 64*16(%r8),@Pi0[1]
vmovdqa64 64*17(%r8),@Pi0[2]
vmovdqa64 64*18(%r8),@Pi0[3]
vmovdqa64 64*19(%r8),@Pi0[4]
vmovdqu64 40*0-96($A_flat),${A00}{$k11111}{z}
vmovdqu64 40*1-96($A_flat),${A10}{$k11111}{z}
vmovdqu64 40*2-96($A_flat),${A20}{$k11111}{z}
vmovdqu64 40*3-96($A_flat),${A30}{$k11111}{z}
vmovdqu64 40*4-96($A_flat),${A40}{$k11111}{z}
.Lno_output_extension_avx512:
shr \$3,$bsz
lea -96($A_flat),%r9
mov $bsz,%rax
jmp .Loop_squeeze_avx512
.align 32
.Loop_squeeze_avx512:
cmp \$8,$len
jb .Ltail_squeeze_avx512
mov (%r9),%r8
lea 8(%r9),%r9
mov %r8,($out)
lea 8($out),$out
sub \$8,$len # len -= 8
jz .Ldone_squeeze_avx512
sub \$1,%rax # bsz--
jnz .Loop_squeeze_avx512
#vpermq @Theta[4],@Theta[4],@Theta[3]
#vpermq @Theta[3],@Theta[4],@Theta[2]
#vpermq @Theta[3],@Theta[3],@Theta[1]
call __KeccakF1600
vmovdqu64 $A00,40*0-96($A_flat){$k11111}
vmovdqu64 $A10,40*1-96($A_flat){$k11111}
vmovdqu64 $A20,40*2-96($A_flat){$k11111}
vmovdqu64 $A30,40*3-96($A_flat){$k11111}
vmovdqu64 $A40,40*4-96($A_flat){$k11111}
lea -96($A_flat),%r9
mov $bsz,%rax
jmp .Loop_squeeze_avx512
.Ltail_squeeze_avx512:
mov %r9,%rsi
mov $out,%rdi
mov $len,%rcx
.byte 0xf3,0xa4 # rep movsb
.Ldone_squeeze_avx512:
vzeroupper
lea (%r11),%rsp
ret
.size SHA3_squeeze,.-SHA3_squeeze
.align 64
theta_perm:
.quad 0, 1, 2, 3, 4, 5, 6, 7 # [not used]
.quad 4, 0, 1, 2, 3, 5, 6, 7
.quad 3, 4, 0, 1, 2, 5, 6, 7
.quad 2, 3, 4, 0, 1, 5, 6, 7
.quad 1, 2, 3, 4, 0, 5, 6, 7
rhotates1:
.quad 0, 44, 43, 21, 14, 0, 0, 0 # [0][0] [1][1] [2][2] [3][3] [4][4]
.quad 18, 1, 6, 25, 8, 0, 0, 0 # [4][0] [0][1] [1][2] [2][3] [3][4]
.quad 41, 2, 62, 55, 39, 0, 0, 0 # [3][0] [4][1] [0][2] [1][3] [2][4]
.quad 3, 45, 61, 28, 20, 0, 0, 0 # [2][0] [3][1] [4][2] [0][3] [1][4]
.quad 36, 10, 15, 56, 27, 0, 0, 0 # [1][0] [2][1] [3][2] [4][3] [0][4]
rhotates0:
.quad 0, 1, 62, 28, 27, 0, 0, 0
.quad 36, 44, 6, 55, 20, 0, 0, 0
.quad 3, 10, 43, 25, 39, 0, 0, 0
.quad 41, 45, 15, 21, 8, 0, 0, 0
.quad 18, 2, 61, 56, 14, 0, 0, 0
pi0_perm:
.quad 0, 3, 1, 4, 2, 5, 6, 7
.quad 1, 4, 2, 0, 3, 5, 6, 7
.quad 2, 0, 3, 1, 4, 5, 6, 7
.quad 3, 1, 4, 2, 0, 5, 6, 7
.quad 4, 2, 0, 3, 1, 5, 6, 7
iotas:
.quad 0x0000000000000001
.quad 0x0000000000008082
.quad 0x800000000000808a
.quad 0x8000000080008000
.quad 0x000000000000808b
.quad 0x0000000080000001
.quad 0x8000000080008081
.quad 0x8000000000008009
.quad 0x000000000000008a
.quad 0x0000000000000088
.quad 0x0000000080008009
.quad 0x000000008000000a
.quad 0x000000008000808b
.quad 0x800000000000008b
.quad 0x8000000000008089
.quad 0x8000000000008003
.quad 0x8000000000008002
.quad 0x8000000000000080
.quad 0x000000000000800a
.quad 0x800000008000000a
.quad 0x8000000080008081
.quad 0x8000000000008080
.quad 0x0000000080000001
.quad 0x8000000080008008
.asciz "Keccak-1600 absorb and squeeze for AVX-512F, CRYPTOGAMS by <appro\@openssl.org>"
___
print $code;
close STDOUT;