openssl/doc/crypto/BN_add.pod
Richard Levitte d836e3679a It makes more sense to refer to specific function manuals than the concept
manual when the specific function is refered to in the current manual text.
This correction was originally introduced in OpenBSD's tracking of OpenSSL.
2002-09-25 13:11:20 +00:00

99 lines
3.4 KiB
Text

=pod
=head1 NAME
BN_add, BN_sub, BN_mul, BN_div, BN_sqr, BN_mod, BN_mod_mul, BN_exp,
BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs
=head1 SYNOPSIS
#include <openssl/bn.h>
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
=head1 DESCRIPTION
BN_add() adds B<a> and B<b> and places the result in B<r> (C<r=a+b>).
B<r> may be the same B<BIGNUM> as B<a> or B<b>.
BN_sub() subtracts B<b> from B<a> and places the result in B<r> (C<r=a-b>).
BN_mul() multiplies B<a> and B<b> and places the result in B<r> (C<r=a*b>).
B<r> may be the same B<BIGNUM> as B<a> or B<b>.
For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>.
BN_div() divides B<a> by B<d> and places the result in B<dv> and the
remainder in B<rem> (C<dv=a/d, rem=a%d>). Either of B<dv> and B<rem> may
be NULL, in which case the respective value is not returned.
For division by powers of 2, use BN_rshift(3).
BN_sqr() takes the square of B<a> and places the result in B<r>
(C<r=a^2>). B<r> and B<a> may be the same B<BIGNUM>.
This function is faster than BN_mul(r,a,a).
BN_mod() find the remainder of B<a> divided by B<m> and places it in
B<rem> (C<rem=a%m>).
BN_mod_mul() multiplies B<a> by B<b> and finds the remainder when
divided by B<m> (C<r=(a*b)%m>). B<r> may be the same B<BIGNUM> as B<a>
or B<b>. For a more efficient algorithm, see
L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)>; for repeated
computations using the same modulus, see L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>.
BN_exp() raises B<a> to the B<p>-th power and places the result in B<r>
(C<r=a^p>). This function is faster than repeated applications of
BN_mul().
BN_mod_exp() computes B<a> to the B<p>-th power modulo B<m> (C<r=a^p %
m>). This function uses less time and space than BN_exp().
BN_gcd() computes the greatest common divisor of B<a> and B<b> and
places the result in B<r>. B<r> may be the same B<BIGNUM> as B<a> or
B<b>.
For all functions, B<ctx> is a previously allocated B<BN_CTX> used for
temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>.
Unless noted otherwise, the result B<BIGNUM> must be different from
the arguments.
=head1 RETURN VALUES
For all functions, 1 is returned for success, 0 on error. The return
value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>.
=head1 SEE ALSO
L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>,
L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)>
=head1 HISTORY
BN_add(), BN_sub(), BN_div(), BN_sqr(), BN_mod(), BN_mod_mul(),
BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and
OpenSSL. The B<ctx> argument to BN_mul() was added in SSLeay
0.9.1b. BN_exp() appeared in SSLeay 0.9.0.
=cut