openssl/crypto/evp/e_des.c
Nils Larsch f8296228f1 as we encrypt every bit separately we need to loop through the number
of bits; thanks to Michael McDougall <mmcdouga@saul.cis.upenn.edu>

PR: 1318
2006-04-20 13:11:52 +00:00

176 lines
6.3 KiB
C

/* crypto/evp/e_des.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include "cryptlib.h"
#ifndef OPENSSL_NO_DES
#include <openssl/evp.h>
#include <openssl/objects.h>
#include "evp_locl.h"
#include <openssl/des.h>
#include <openssl/rand.h>
static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);
/* Because of various casts and different names can't use IMPLEMENT_BLOCK_CIPHER */
static int des_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
BLOCK_CIPHER_ecb_loop()
DES_ecb_encrypt((DES_cblock *)(in + i), (DES_cblock *)(out + i), ctx->cipher_data, ctx->encrypt);
return 1;
}
static int des_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
DES_ofb64_encrypt(in, out, (long)inl, ctx->cipher_data, (DES_cblock *)ctx->iv, &ctx->num);
return 1;
}
static int des_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
DES_ncbc_encrypt(in, out, (long)inl, ctx->cipher_data,
(DES_cblock *)ctx->iv, ctx->encrypt);
return 1;
}
static int des_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
DES_cfb64_encrypt(in, out, (long)inl, ctx->cipher_data,
(DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt);
return 1;
}
/* Although we have a CFB-r implementation for DES, it doesn't pack the right
way, so wrap it here */
static int des_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
unsigned int n;
unsigned char c[1],d[1];
for(n=0 ; n < inl * 8; ++n)
{
c[0]=(in[n/8]&(1 << (7-n%8))) ? 0x80 : 0;
DES_cfb_encrypt(c,d,1,1,ctx->cipher_data,(DES_cblock *)ctx->iv,
ctx->encrypt);
out[n/8]=(out[n/8]&~(0x80 >> (n%8)))|((d[0]&0x80) >> (n%8));
}
return 1;
}
static int des_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, unsigned int inl)
{
DES_cfb_encrypt(in,out,8,inl,ctx->cipher_data,(DES_cblock *)ctx->iv,
ctx->encrypt);
return 1;
}
BLOCK_CIPHER_defs(des, DES_key_schedule, NID_des, 8, 8, 8, 64,
EVP_CIPH_RAND_KEY, des_init_key, NULL,
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,
des_ctrl)
BLOCK_CIPHER_def_cfb(des,DES_key_schedule,NID_des,8,8,1,
EVP_CIPH_RAND_KEY, des_init_key,NULL,
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,des_ctrl)
BLOCK_CIPHER_def_cfb(des,DES_key_schedule,NID_des,8,8,8,
EVP_CIPH_RAND_KEY,des_init_key,NULL,
EVP_CIPHER_set_asn1_iv,
EVP_CIPHER_get_asn1_iv,des_ctrl)
static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
DES_cblock *deskey = (DES_cblock *)key;
#ifdef EVP_CHECK_DES_KEY
if(DES_set_key_checked(deskey,ctx->cipher_data) != 0)
return 0;
#else
DES_set_key_unchecked(deskey,ctx->cipher_data);
#endif
return 1;
}
static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
{
switch(type)
{
case EVP_CTRL_RAND_KEY:
if (RAND_bytes(ptr, 8) <= 0)
return 0;
DES_set_odd_parity((DES_cblock *)ptr);
return 1;
default:
return -1;
}
}
#endif