ae5c8664e5
Reviewed-by: Tim Hudson <tjh@openssl.org>
479 lines
14 KiB
C
479 lines
14 KiB
C
/* ====================================================================
|
|
* Copyright (c) 2011 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*/
|
|
|
|
#include <openssl/crypto.h>
|
|
#include "modes_lcl.h"
|
|
#include <string.h>
|
|
|
|
#ifndef MODES_DEBUG
|
|
# ifndef NDEBUG
|
|
# define NDEBUG
|
|
# endif
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
/*
|
|
* First you setup M and L parameters and pass the key schedule. This is
|
|
* called once per session setup...
|
|
*/
|
|
void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx,
|
|
unsigned int M, unsigned int L, void *key,
|
|
block128_f block)
|
|
{
|
|
memset(ctx->nonce.c, 0, sizeof(ctx->nonce.c));
|
|
ctx->nonce.c[0] = ((u8)(L - 1) & 7) | (u8)(((M - 2) / 2) & 7) << 3;
|
|
ctx->blocks = 0;
|
|
ctx->block = block;
|
|
ctx->key = key;
|
|
}
|
|
|
|
/* !!! Following interfaces are to be called *once* per packet !!! */
|
|
|
|
/* Then you setup per-message nonce and pass the length of the message */
|
|
int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx,
|
|
const unsigned char *nonce, size_t nlen, size_t mlen)
|
|
{
|
|
unsigned int L = ctx->nonce.c[0] & 7; /* the L parameter */
|
|
|
|
if (nlen < (14 - L))
|
|
return -1; /* nonce is too short */
|
|
|
|
if (sizeof(mlen) == 8 && L >= 3) {
|
|
ctx->nonce.c[8] = (u8)(mlen >> (56 % (sizeof(mlen) * 8)));
|
|
ctx->nonce.c[9] = (u8)(mlen >> (48 % (sizeof(mlen) * 8)));
|
|
ctx->nonce.c[10] = (u8)(mlen >> (40 % (sizeof(mlen) * 8)));
|
|
ctx->nonce.c[11] = (u8)(mlen >> (32 % (sizeof(mlen) * 8)));
|
|
} else
|
|
ctx->nonce.u[1] = 0;
|
|
|
|
ctx->nonce.c[12] = (u8)(mlen >> 24);
|
|
ctx->nonce.c[13] = (u8)(mlen >> 16);
|
|
ctx->nonce.c[14] = (u8)(mlen >> 8);
|
|
ctx->nonce.c[15] = (u8)mlen;
|
|
|
|
ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */
|
|
memcpy(&ctx->nonce.c[1], nonce, 14 - L);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Then you pass additional authentication data, this is optional */
|
|
void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx,
|
|
const unsigned char *aad, size_t alen)
|
|
{
|
|
unsigned int i;
|
|
block128_f block = ctx->block;
|
|
|
|
if (alen == 0)
|
|
return;
|
|
|
|
ctx->nonce.c[0] |= 0x40; /* set Adata flag */
|
|
(*block) (ctx->nonce.c, ctx->cmac.c, ctx->key), ctx->blocks++;
|
|
|
|
if (alen < (0x10000 - 0x100)) {
|
|
ctx->cmac.c[0] ^= (u8)(alen >> 8);
|
|
ctx->cmac.c[1] ^= (u8)alen;
|
|
i = 2;
|
|
} else if (sizeof(alen) == 8
|
|
&& alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
|
|
ctx->cmac.c[0] ^= 0xFF;
|
|
ctx->cmac.c[1] ^= 0xFF;
|
|
ctx->cmac.c[2] ^= (u8)(alen >> (56 % (sizeof(alen) * 8)));
|
|
ctx->cmac.c[3] ^= (u8)(alen >> (48 % (sizeof(alen) * 8)));
|
|
ctx->cmac.c[4] ^= (u8)(alen >> (40 % (sizeof(alen) * 8)));
|
|
ctx->cmac.c[5] ^= (u8)(alen >> (32 % (sizeof(alen) * 8)));
|
|
ctx->cmac.c[6] ^= (u8)(alen >> 24);
|
|
ctx->cmac.c[7] ^= (u8)(alen >> 16);
|
|
ctx->cmac.c[8] ^= (u8)(alen >> 8);
|
|
ctx->cmac.c[9] ^= (u8)alen;
|
|
i = 10;
|
|
} else {
|
|
ctx->cmac.c[0] ^= 0xFF;
|
|
ctx->cmac.c[1] ^= 0xFE;
|
|
ctx->cmac.c[2] ^= (u8)(alen >> 24);
|
|
ctx->cmac.c[3] ^= (u8)(alen >> 16);
|
|
ctx->cmac.c[4] ^= (u8)(alen >> 8);
|
|
ctx->cmac.c[5] ^= (u8)alen;
|
|
i = 6;
|
|
}
|
|
|
|
do {
|
|
for (; i < 16 && alen; ++i, ++aad, --alen)
|
|
ctx->cmac.c[i] ^= *aad;
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, ctx->key), ctx->blocks++;
|
|
i = 0;
|
|
} while (alen);
|
|
}
|
|
|
|
/* Finally you encrypt or decrypt the message */
|
|
|
|
/*
|
|
* counter part of nonce may not be larger than L*8 bits, L is not larger
|
|
* than 8, therefore 64-bit counter...
|
|
*/
|
|
static void ctr64_inc(unsigned char *counter)
|
|
{
|
|
unsigned int n = 8;
|
|
u8 c;
|
|
|
|
counter += 8;
|
|
do {
|
|
--n;
|
|
c = counter[n];
|
|
++c;
|
|
counter[n] = c;
|
|
if (c)
|
|
return;
|
|
} while (n);
|
|
}
|
|
|
|
int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
size_t n;
|
|
unsigned int i, L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} scratch;
|
|
|
|
if (!(flags0 & 0x40))
|
|
(*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++;
|
|
|
|
ctx->nonce.c[0] = L = flags0 & 7;
|
|
for (n = 0, i = 15 - L; i < 15; ++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i] = 0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15] = 1;
|
|
|
|
if (n != len)
|
|
return -1; /* length mismatch */
|
|
|
|
ctx->blocks += ((len + 15) >> 3) | 1;
|
|
if (ctx->blocks > (U64(1) << 61))
|
|
return -2; /* too much data */
|
|
|
|
while (len >= 16) {
|
|
#if defined(STRICT_ALIGNMENT)
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} temp;
|
|
|
|
memcpy(temp.c, inp, 16);
|
|
ctx->cmac.u[0] ^= temp.u[0];
|
|
ctx->cmac.u[1] ^= temp.u[1];
|
|
#else
|
|
ctx->cmac.u[0] ^= ((u64 *)inp)[0];
|
|
ctx->cmac.u[1] ^= ((u64 *)inp)[1];
|
|
#endif
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctr64_inc(ctx->nonce.c);
|
|
#if defined(STRICT_ALIGNMENT)
|
|
temp.u[0] ^= scratch.u[0];
|
|
temp.u[1] ^= scratch.u[1];
|
|
memcpy(out, temp.c, 16);
|
|
#else
|
|
((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0];
|
|
((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1];
|
|
#endif
|
|
inp += 16;
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len) {
|
|
for (i = 0; i < len; ++i)
|
|
ctx->cmac.c[i] ^= inp[i];
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
for (i = 0; i < len; ++i)
|
|
out[i] = scratch.c[i] ^ inp[i];
|
|
}
|
|
|
|
for (i = 15 - L; i < 16; ++i)
|
|
ctx->nonce.c[i] = 0;
|
|
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len)
|
|
{
|
|
size_t n;
|
|
unsigned int i, L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} scratch;
|
|
|
|
if (!(flags0 & 0x40))
|
|
(*block) (ctx->nonce.c, ctx->cmac.c, key);
|
|
|
|
ctx->nonce.c[0] = L = flags0 & 7;
|
|
for (n = 0, i = 15 - L; i < 15; ++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i] = 0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15] = 1;
|
|
|
|
if (n != len)
|
|
return -1;
|
|
|
|
while (len >= 16) {
|
|
#if defined(STRICT_ALIGNMENT)
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} temp;
|
|
#endif
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctr64_inc(ctx->nonce.c);
|
|
#if defined(STRICT_ALIGNMENT)
|
|
memcpy(temp.c, inp, 16);
|
|
ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]);
|
|
ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]);
|
|
memcpy(out, scratch.c, 16);
|
|
#else
|
|
ctx->cmac.u[0] ^= (((u64 *)out)[0] = scratch.u[0] ^ ((u64 *)inp)[0]);
|
|
ctx->cmac.u[1] ^= (((u64 *)out)[1] = scratch.u[1] ^ ((u64 *)inp)[1]);
|
|
#endif
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
|
|
inp += 16;
|
|
out += 16;
|
|
len -= 16;
|
|
}
|
|
|
|
if (len) {
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
for (i = 0; i < len; ++i)
|
|
ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]);
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
}
|
|
|
|
for (i = 15 - L; i < 16; ++i)
|
|
ctx->nonce.c[i] = 0;
|
|
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ctr64_add(unsigned char *counter, size_t inc)
|
|
{
|
|
size_t n = 8, val = 0;
|
|
|
|
counter += 8;
|
|
do {
|
|
--n;
|
|
val += counter[n] + (inc & 0xff);
|
|
counter[n] = (unsigned char)val;
|
|
val >>= 8; /* carry bit */
|
|
inc >>= 8;
|
|
} while (n && (inc || val));
|
|
}
|
|
|
|
int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len, ccm128_f stream)
|
|
{
|
|
size_t n;
|
|
unsigned int i, L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} scratch;
|
|
|
|
if (!(flags0 & 0x40))
|
|
(*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++;
|
|
|
|
ctx->nonce.c[0] = L = flags0 & 7;
|
|
for (n = 0, i = 15 - L; i < 15; ++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i] = 0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15] = 1;
|
|
|
|
if (n != len)
|
|
return -1; /* length mismatch */
|
|
|
|
ctx->blocks += ((len + 15) >> 3) | 1;
|
|
if (ctx->blocks > (U64(1) << 61))
|
|
return -2; /* too much data */
|
|
|
|
if ((n = len / 16)) {
|
|
(*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c);
|
|
n *= 16;
|
|
inp += n;
|
|
out += n;
|
|
len -= n;
|
|
if (len)
|
|
ctr64_add(ctx->nonce.c, n / 16);
|
|
}
|
|
|
|
if (len) {
|
|
for (i = 0; i < len; ++i)
|
|
ctx->cmac.c[i] ^= inp[i];
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
for (i = 0; i < len; ++i)
|
|
out[i] = scratch.c[i] ^ inp[i];
|
|
}
|
|
|
|
for (i = 15 - L; i < 16; ++i)
|
|
ctx->nonce.c[i] = 0;
|
|
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,
|
|
const unsigned char *inp, unsigned char *out,
|
|
size_t len, ccm128_f stream)
|
|
{
|
|
size_t n;
|
|
unsigned int i, L;
|
|
unsigned char flags0 = ctx->nonce.c[0];
|
|
block128_f block = ctx->block;
|
|
void *key = ctx->key;
|
|
union {
|
|
u64 u[2];
|
|
u8 c[16];
|
|
} scratch;
|
|
|
|
if (!(flags0 & 0x40))
|
|
(*block) (ctx->nonce.c, ctx->cmac.c, key);
|
|
|
|
ctx->nonce.c[0] = L = flags0 & 7;
|
|
for (n = 0, i = 15 - L; i < 15; ++i) {
|
|
n |= ctx->nonce.c[i];
|
|
ctx->nonce.c[i] = 0;
|
|
n <<= 8;
|
|
}
|
|
n |= ctx->nonce.c[15]; /* reconstructed length */
|
|
ctx->nonce.c[15] = 1;
|
|
|
|
if (n != len)
|
|
return -1;
|
|
|
|
if ((n = len / 16)) {
|
|
(*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c);
|
|
n *= 16;
|
|
inp += n;
|
|
out += n;
|
|
len -= n;
|
|
if (len)
|
|
ctr64_add(ctx->nonce.c, n / 16);
|
|
}
|
|
|
|
if (len) {
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
for (i = 0; i < len; ++i)
|
|
ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]);
|
|
(*block) (ctx->cmac.c, ctx->cmac.c, key);
|
|
}
|
|
|
|
for (i = 15 - L; i < 16; ++i)
|
|
ctx->nonce.c[i] = 0;
|
|
|
|
(*block) (ctx->nonce.c, scratch.c, key);
|
|
ctx->cmac.u[0] ^= scratch.u[0];
|
|
ctx->cmac.u[1] ^= scratch.u[1];
|
|
|
|
ctx->nonce.c[0] = flags0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
|
|
{
|
|
unsigned int M = (ctx->nonce.c[0] >> 3) & 7; /* the M parameter */
|
|
|
|
M *= 2;
|
|
M += 2;
|
|
if (len < M)
|
|
return 0;
|
|
memcpy(tag, ctx->cmac.c, M);
|
|
return M;
|
|
}
|