openssl/crypto/rsa/rsa_ameth.c
Dr. Stephen Henson dc427fc8e2 Return correct enveloped data type in ASN1 methods.
For RSA and DSA keys return an appropriate RecipientInfo type. By setting
CMS_RECIPINFO_NONE for DSA keys an appropriate error is returned if
an attempt is made to use DSA with enveloped data.
(cherry picked from commit 41b920ef01)
2013-10-01 14:01:18 +01:00

1007 lines
24 KiB
C

/* crypto/rsa/rsa_ameth.c */
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2006.
*/
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include "cryptlib.h"
#include <openssl/asn1t.h>
#include <openssl/x509.h>
#include <openssl/rsa.h>
#include <openssl/bn.h>
#ifndef OPENSSL_NO_CMS
#include <openssl/cms.h>
#endif
#include "asn1_locl.h"
static int rsa_cms_sign(CMS_SignerInfo *si);
static int rsa_cms_verify(CMS_SignerInfo *si);
static int rsa_cms_decrypt(CMS_RecipientInfo *ri);
static int rsa_cms_encrypt(CMS_RecipientInfo *ri);
static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey)
{
unsigned char *penc = NULL;
int penclen;
penclen = i2d_RSAPublicKey(pkey->pkey.rsa, &penc);
if (penclen <= 0)
return 0;
if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA),
V_ASN1_NULL, NULL, penc, penclen))
return 1;
OPENSSL_free(penc);
return 0;
}
static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey)
{
const unsigned char *p;
int pklen;
RSA *rsa = NULL;
if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey))
return 0;
if (!(rsa = d2i_RSAPublicKey(NULL, &p, pklen)))
{
RSAerr(RSA_F_RSA_PUB_DECODE, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA (pkey, rsa);
return 1;
}
static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
{
if (BN_cmp(b->pkey.rsa->n,a->pkey.rsa->n) != 0
|| BN_cmp(b->pkey.rsa->e,a->pkey.rsa->e) != 0)
return 0;
return 1;
}
static int old_rsa_priv_decode(EVP_PKEY *pkey,
const unsigned char **pder, int derlen)
{
RSA *rsa;
if (!(rsa = d2i_RSAPrivateKey (NULL, pder, derlen)))
{
RSAerr(RSA_F_OLD_RSA_PRIV_DECODE, ERR_R_RSA_LIB);
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa);
return 1;
}
static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder)
{
return i2d_RSAPrivateKey(pkey->pkey.rsa, pder);
}
static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey)
{
unsigned char *rk = NULL;
int rklen;
rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk);
if (rklen <= 0)
{
RSAerr(RSA_F_RSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
return 0;
}
if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_rsaEncryption), 0,
V_ASN1_NULL, NULL, rk, rklen))
{
RSAerr(RSA_F_RSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
return 0;
}
return 1;
}
static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8)
{
const unsigned char *p;
int pklen;
if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8))
return 0;
return old_rsa_priv_decode(pkey, &p, pklen);
}
static int int_rsa_size(const EVP_PKEY *pkey)
{
return RSA_size(pkey->pkey.rsa);
}
static int rsa_bits(const EVP_PKEY *pkey)
{
return BN_num_bits(pkey->pkey.rsa->n);
}
static void int_rsa_free(EVP_PKEY *pkey)
{
RSA_free(pkey->pkey.rsa);
}
static void update_buflen(const BIGNUM *b, size_t *pbuflen)
{
size_t i;
if (!b)
return;
if (*pbuflen < (i = (size_t)BN_num_bytes(b)))
*pbuflen = i;
}
static int do_rsa_print(BIO *bp, const RSA *x, int off, int priv)
{
char *str;
const char *s;
unsigned char *m=NULL;
int ret=0, mod_len = 0;
size_t buf_len=0;
update_buflen(x->n, &buf_len);
update_buflen(x->e, &buf_len);
if (priv)
{
update_buflen(x->d, &buf_len);
update_buflen(x->p, &buf_len);
update_buflen(x->q, &buf_len);
update_buflen(x->dmp1, &buf_len);
update_buflen(x->dmq1, &buf_len);
update_buflen(x->iqmp, &buf_len);
}
m=(unsigned char *)OPENSSL_malloc(buf_len+10);
if (m == NULL)
{
RSAerr(RSA_F_DO_RSA_PRINT,ERR_R_MALLOC_FAILURE);
goto err;
}
if (x->n != NULL)
mod_len = BN_num_bits(x->n);
if(!BIO_indent(bp,off,128))
goto err;
if (priv && x->d)
{
if (BIO_printf(bp,"Private-Key: (%d bit)\n", mod_len)
<= 0) goto err;
str = "modulus:";
s = "publicExponent:";
}
else
{
if (BIO_printf(bp,"Public-Key: (%d bit)\n", mod_len)
<= 0) goto err;
str = "Modulus:";
s= "Exponent:";
}
if (!ASN1_bn_print(bp,str,x->n,m,off)) goto err;
if (!ASN1_bn_print(bp,s,x->e,m,off))
goto err;
if (priv)
{
if (!ASN1_bn_print(bp,"privateExponent:",x->d,m,off))
goto err;
if (!ASN1_bn_print(bp,"prime1:",x->p,m,off))
goto err;
if (!ASN1_bn_print(bp,"prime2:",x->q,m,off))
goto err;
if (!ASN1_bn_print(bp,"exponent1:",x->dmp1,m,off))
goto err;
if (!ASN1_bn_print(bp,"exponent2:",x->dmq1,m,off))
goto err;
if (!ASN1_bn_print(bp,"coefficient:",x->iqmp,m,off))
goto err;
}
ret=1;
err:
if (m != NULL) OPENSSL_free(m);
return(ret);
}
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx)
{
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
}
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx)
{
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
}
/* Given an MGF1 Algorithm ID decode to an Algorithm Identifier */
static X509_ALGOR *rsa_mgf1_decode(X509_ALGOR *alg)
{
const unsigned char *p;
int plen;
if (alg == NULL)
return NULL;
if (OBJ_obj2nid(alg->algorithm) != NID_mgf1)
return NULL;
if (alg->parameter->type != V_ASN1_SEQUENCE)
return NULL;
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
return d2i_X509_ALGOR(NULL, &p, plen);
}
static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg,
X509_ALGOR **pmaskHash)
{
const unsigned char *p;
int plen;
RSA_PSS_PARAMS *pss;
*pmaskHash = NULL;
if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE)
return NULL;
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen);
if (!pss)
return NULL;
*pmaskHash = rsa_mgf1_decode(pss->maskGenAlgorithm);
return pss;
}
static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss,
X509_ALGOR *maskHash, int indent)
{
int rv = 0;
if (!pss)
{
if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0)
return 0;
return 1;
}
if (BIO_puts(bp, "\n") <= 0)
goto err;
if (!BIO_indent(bp, indent, 128))
goto err;
if (BIO_puts(bp, "Hash Algorithm: ") <= 0)
goto err;
if (pss->hashAlgorithm)
{
if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0)
goto err;
}
else if (BIO_puts(bp, "sha1 (default)") <= 0)
goto err;
if (BIO_puts(bp, "\n") <= 0)
goto err;
if (!BIO_indent(bp, indent, 128))
goto err;
if (BIO_puts(bp, "Mask Algorithm: ") <= 0)
goto err;
if (pss->maskGenAlgorithm)
{
if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0)
goto err;
if (BIO_puts(bp, " with ") <= 0)
goto err;
if (maskHash)
{
if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0)
goto err;
}
else if (BIO_puts(bp, "INVALID") <= 0)
goto err;
}
else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0)
goto err;
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128))
goto err;
if (BIO_puts(bp, "Salt Length: 0x") <= 0)
goto err;
if (pss->saltLength)
{
if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0)
goto err;
}
else if (BIO_puts(bp, "0x14 (default)") <= 0)
goto err;
BIO_puts(bp, "\n");
if (!BIO_indent(bp, indent, 128))
goto err;
if (BIO_puts(bp, "Trailer Field: 0x") <= 0)
goto err;
if (pss->trailerField)
{
if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0)
goto err;
}
else if (BIO_puts(bp, "BC (default)") <= 0)
goto err;
BIO_puts(bp, "\n");
rv = 1;
err:
return rv;
}
static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
const ASN1_STRING *sig,
int indent, ASN1_PCTX *pctx)
{
if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss)
{
int rv;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
pss = rsa_pss_decode(sigalg, &maskHash);
rv = rsa_pss_param_print(bp, pss, maskHash, indent);
if (pss)
RSA_PSS_PARAMS_free(pss);
if (maskHash)
X509_ALGOR_free(maskHash);
if (!rv)
return 0;
}
else if (!sig && BIO_puts(bp, "\n") <= 0)
return 0;
if (sig)
return X509_signature_dump(bp, sig, indent);
return 1;
}
static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2)
{
X509_ALGOR *alg = NULL;
switch (op)
{
case ASN1_PKEY_CTRL_PKCS7_SIGN:
if (arg1 == 0)
PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, NULL, &alg);
break;
case ASN1_PKEY_CTRL_PKCS7_ENCRYPT:
if (arg1 == 0)
PKCS7_RECIP_INFO_get0_alg(arg2, &alg);
break;
#ifndef OPENSSL_NO_CMS
case ASN1_PKEY_CTRL_CMS_SIGN:
if (arg1 == 0)
return rsa_cms_sign(arg2);
else if (arg1 == 1)
return rsa_cms_verify(arg2);
break;
case ASN1_PKEY_CTRL_CMS_ENVELOPE:
if (arg1 == 0)
return rsa_cms_encrypt(arg2);
else if (arg1 == 1)
return rsa_cms_decrypt(arg2);
break;
case ASN1_PKEY_CTRL_CMS_RI_TYPE:
*(int *)arg2 = CMS_RECIPINFO_TRANS;
return 1;
#endif
case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
*(int *)arg2 = NID_sha1;
return 1;
default:
return -2;
}
if (alg)
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
V_ASN1_NULL, 0);
return 1;
}
/* allocate and set algorithm ID from EVP_MD, default SHA1 */
static int rsa_md_to_algor(X509_ALGOR **palg, const EVP_MD *md)
{
if (EVP_MD_type(md) == NID_sha1)
return 1;
*palg = X509_ALGOR_new();
if (!*palg)
return 0;
X509_ALGOR_set_md(*palg, md);
return 1;
}
/* Allocate and set MGF1 algorithm ID from EVP_MD */
static int rsa_md_to_mgf1(X509_ALGOR **palg, const EVP_MD *mgf1md)
{
X509_ALGOR *algtmp = NULL;
ASN1_STRING *stmp = NULL;
*palg = NULL;
if (EVP_MD_type(mgf1md) == NID_sha1)
return 1;
/* need to embed algorithm ID inside another */
if (!rsa_md_to_algor(&algtmp, mgf1md))
goto err;
if (!ASN1_item_pack(algtmp, ASN1_ITEM_rptr(X509_ALGOR), &stmp))
goto err;
*palg = X509_ALGOR_new();
if (!*palg)
goto err;
X509_ALGOR_set0(*palg, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, stmp);
stmp = NULL;
err:
if (stmp)
ASN1_STRING_free(stmp);
if (algtmp)
X509_ALGOR_free(algtmp);
if (*palg)
return 1;
return 0;
}
/* convert algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_algor_to_md(X509_ALGOR *alg)
{
const EVP_MD *md;
if (!alg)
return EVP_sha1();
md = EVP_get_digestbyobj(alg->algorithm);
if (md == NULL)
RSAerr(RSA_F_RSA_ALGOR_TO_MD, RSA_R_UNKNOWN_DIGEST);
return md;
}
/* convert MGF1 algorithm ID to EVP_MD, default SHA1 */
static const EVP_MD *rsa_mgf1_to_md(X509_ALGOR *alg, X509_ALGOR *maskHash)
{
const EVP_MD *md;
if (!alg)
return EVP_sha1();
/* Check mask and lookup mask hash algorithm */
if (OBJ_obj2nid(alg->algorithm) != NID_mgf1)
{
RSAerr(RSA_F_RSA_MGF1_TO_MD, RSA_R_UNSUPPORTED_MASK_ALGORITHM);
return NULL;
}
if (!maskHash)
{
RSAerr(RSA_F_RSA_MGF1_TO_MD, RSA_R_UNSUPPORTED_MASK_PARAMETER);
return NULL;
}
md = EVP_get_digestbyobj(maskHash->algorithm);
if (md == NULL)
{
RSAerr(RSA_F_RSA_MGF1_TO_MD, RSA_R_UNKNOWN_MASK_DIGEST);
return NULL;
}
return md;
}
/* Convert EVP_PKEY_CTX is PSS mode into corresponding algorithm parameter,
* suitable for setting an AlgorithmIdentifier.
*/
static ASN1_STRING *rsa_ctx_to_pss(EVP_PKEY_CTX *pkctx)
{
const EVP_MD *sigmd, *mgf1md;
RSA_PSS_PARAMS *pss = NULL;
ASN1_STRING *os = NULL;
EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx);
int saltlen, rv = 0;
if (EVP_PKEY_CTX_get_signature_md(pkctx, &sigmd) <= 0)
goto err;
if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0)
goto err;
if (!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen))
goto err;
if (saltlen == -1)
saltlen = EVP_MD_size(sigmd);
else if (saltlen == -2)
{
saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2;
if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0)
saltlen--;
}
pss = RSA_PSS_PARAMS_new();
if (!pss)
goto err;
if (saltlen != 20)
{
pss->saltLength = ASN1_INTEGER_new();
if (!pss->saltLength)
goto err;
if (!ASN1_INTEGER_set(pss->saltLength, saltlen))
goto err;
}
if (!rsa_md_to_algor(&pss->hashAlgorithm, sigmd))
goto err;
if (!rsa_md_to_mgf1(&pss->maskGenAlgorithm, mgf1md))
goto err;
/* Finally create string with pss parameter encoding. */
if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os))
goto err;
rv = 1;
err:
if (pss)
RSA_PSS_PARAMS_free(pss);
if (rv)
return os;
if (os)
ASN1_STRING_free(os);
return NULL;
}
/* From PSS AlgorithmIdentifier set public key parameters. If pkey
* isn't NULL then the EVP_MD_CTX is setup and initalised. If it
* is NULL parameters are passed to pkctx instead.
*/
static int rsa_pss_to_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pkctx,
X509_ALGOR *sigalg, EVP_PKEY *pkey)
{
int rv = -1;
int saltlen;
const EVP_MD *mgf1md = NULL, *md = NULL;
RSA_PSS_PARAMS *pss;
X509_ALGOR *maskHash;
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss)
{
RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_UNSUPPORTED_SIGNATURE_TYPE);
return -1;
}
/* Decode PSS parameters */
pss = rsa_pss_decode(sigalg, &maskHash);
if (pss == NULL)
{
RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_INVALID_PSS_PARAMETERS);
goto err;
}
mgf1md = rsa_mgf1_to_md(pss->maskGenAlgorithm, maskHash);
if (!mgf1md)
goto err;
md = rsa_algor_to_md(pss->hashAlgorithm);
if (!md)
goto err;
if (pss->saltLength)
{
saltlen = ASN1_INTEGER_get(pss->saltLength);
/* Could perform more salt length sanity checks but the main
* RSA routines will trap other invalid values anyway.
*/
if (saltlen < 0)
{
RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_INVALID_SALT_LENGTH);
goto err;
}
}
else
saltlen = 20;
/* low-level routines support only trailer field 0xbc (value 1)
* and PKCS#1 says we should reject any other value anyway.
*/
if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1)
{
RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_INVALID_TRAILER);
goto err;
}
/* We have all parameters now set up context */
if (pkey)
{
if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey))
goto err;
}
else
{
const EVP_MD *checkmd;
if (EVP_PKEY_CTX_get_signature_md(pkctx, &checkmd) <= 0)
goto err;
if (EVP_MD_type(md) != EVP_MD_type(checkmd))
{
RSAerr(RSA_F_RSA_PSS_TO_CTX, RSA_R_DIGEST_DOES_NOT_MATCH);
goto err;
}
}
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0)
goto err;
/* Carry on */
rv = 1;
err:
RSA_PSS_PARAMS_free(pss);
if (maskHash)
X509_ALGOR_free(maskHash);
return rv;
}
static int rsa_cms_verify(CMS_SignerInfo *si)
{
int nid;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si);
CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg);
nid = OBJ_obj2nid(alg->algorithm);
if (nid == NID_rsaEncryption)
return 1;
if (nid == NID_rsassaPss)
return rsa_pss_to_ctx(NULL, pkctx, alg, NULL);
return 0;
}
/* Customised RSA item verification routine. This is called
* when a signature is encountered requiring special handling. We
* currently only handle PSS.
*/
static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
X509_ALGOR *sigalg, ASN1_BIT_STRING *sig,
EVP_PKEY *pkey)
{
/* Sanity check: make sure it is PSS */
if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss)
{
RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNSUPPORTED_SIGNATURE_TYPE);
return -1;
}
if (rsa_pss_to_ctx(ctx, NULL, sigalg, pkey))
/* Carry on */
return 2;
return -1;
}
static int rsa_cms_sign(CMS_SignerInfo *si)
{
int pad_mode = RSA_PKCS1_PADDING;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_SignerInfo_get0_pkey_ctx(si);
ASN1_STRING *os = NULL;
CMS_SignerInfo_get0_algs(si, NULL, NULL, NULL, &alg);
if (pkctx)
{
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
return 0;
}
if (pad_mode == RSA_PKCS1_PADDING)
{
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
V_ASN1_NULL, 0);
return 1;
}
/* We don't support it */
if (pad_mode != RSA_PKCS1_PSS_PADDING)
return 0;
os = rsa_ctx_to_pss(pkctx);
if (!os)
return 0;
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsassaPss), V_ASN1_SEQUENCE, os);
return 1;
}
static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
X509_ALGOR *alg1, X509_ALGOR *alg2,
ASN1_BIT_STRING *sig)
{
int pad_mode;
EVP_PKEY_CTX *pkctx = ctx->pctx;
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
return 0;
if (pad_mode == RSA_PKCS1_PADDING)
return 2;
if (pad_mode == RSA_PKCS1_PSS_PADDING)
{
ASN1_STRING *os1 = NULL;
os1 = rsa_ctx_to_pss(pkctx);
if (!os1)
return 0;
/* Duplicate parameters if we have to */
if (alg2)
{
ASN1_STRING *os2 = ASN1_STRING_dup(os1);
if (!os2)
{
ASN1_STRING_free(os1);
return 0;
}
X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_rsassaPss),
V_ASN1_SEQUENCE, os2);
}
X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_rsassaPss),
V_ASN1_SEQUENCE, os1);
return 3;
}
return 2;
}
static RSA_OAEP_PARAMS *rsa_oaep_decode(const X509_ALGOR *alg,
X509_ALGOR **pmaskHash)
{
const unsigned char *p;
int plen;
RSA_OAEP_PARAMS *pss;
*pmaskHash = NULL;
if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE)
return NULL;
p = alg->parameter->value.sequence->data;
plen = alg->parameter->value.sequence->length;
pss = d2i_RSA_OAEP_PARAMS(NULL, &p, plen);
if (!pss)
return NULL;
*pmaskHash = rsa_mgf1_decode(pss->maskGenFunc);
return pss;
}
static int rsa_cms_decrypt(CMS_RecipientInfo *ri)
{
EVP_PKEY_CTX *pkctx;
X509_ALGOR *cmsalg;
int nid;
int rv = -1;
unsigned char *label = NULL;
int labellen = 0;
const EVP_MD *mgf1md = NULL, *md = NULL;
RSA_OAEP_PARAMS *oaep;
X509_ALGOR *maskHash;
pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
if (!pkctx)
return 0;
if (!CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &cmsalg))
return -1;
nid = OBJ_obj2nid(cmsalg->algorithm);
if (nid == NID_rsaEncryption)
return 1;
if (nid != NID_rsaesOaep)
{
RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_UNSUPPORTED_ENCRYPTION_TYPE);
return -1;
}
/* Decode OAEP parameters */
oaep = rsa_oaep_decode(cmsalg, &maskHash);
if (oaep == NULL)
{
RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_INVALID_OAEP_PARAMETERS);
goto err;
}
mgf1md = rsa_mgf1_to_md(oaep->maskGenFunc, maskHash);
if (!mgf1md)
goto err;
md = rsa_algor_to_md(oaep->hashFunc);
if (!md)
goto err;
if (oaep->pSourceFunc)
{
X509_ALGOR *plab = oaep->pSourceFunc;
if (OBJ_obj2nid(plab->algorithm) != NID_pSpecified)
{
RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_UNSUPPORTED_LABEL_SOURCE);
goto err;
}
if (plab->parameter->type != V_ASN1_OCTET_STRING)
{
RSAerr(RSA_F_RSA_CMS_DECRYPT, RSA_R_INVALID_LABEL);
goto err;
}
label = plab->parameter->value.octet_string->data;
/* Stop label being freed when OAEP parameters are freed */
plab->parameter->value.octet_string->data = NULL;
labellen = plab->parameter->value.octet_string->length;
}
if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_OAEP_PADDING) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_oaep_md(pkctx, md) <= 0)
goto err;
if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0)
goto err;
if (EVP_PKEY_CTX_set0_rsa_oaep_label(pkctx, label, labellen) <= 0)
goto err;
/* Carry on */
rv = 1;
err:
RSA_OAEP_PARAMS_free(oaep);
if (maskHash)
X509_ALGOR_free(maskHash);
return rv;
}
static int rsa_cms_encrypt(CMS_RecipientInfo *ri)
{
const EVP_MD *md, *mgf1md;
RSA_OAEP_PARAMS *oaep = NULL;
ASN1_STRING *os = NULL;
X509_ALGOR *alg;
EVP_PKEY_CTX *pkctx = CMS_RecipientInfo_get0_pkey_ctx(ri);
int pad_mode = RSA_PKCS1_PADDING, rv = 0, labellen;
unsigned char *label;
CMS_RecipientInfo_ktri_get0_algs(ri, NULL, NULL, &alg);
if (pkctx)
{
if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
return 0;
}
if (pad_mode == RSA_PKCS1_PADDING)
{
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
V_ASN1_NULL, 0);
return 1;
}
/* Not supported */
if (pad_mode != RSA_PKCS1_OAEP_PADDING)
return 0;
if (EVP_PKEY_CTX_get_rsa_oaep_md(pkctx, &md) <= 0)
goto err;
if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0)
goto err;
labellen = EVP_PKEY_CTX_get0_rsa_oaep_label(pkctx, &label);
if (labellen < 0)
goto err;
oaep = RSA_OAEP_PARAMS_new();
if (!oaep)
goto err;
if (!rsa_md_to_algor(&oaep->hashFunc, md))
goto err;
if (!rsa_md_to_mgf1(&oaep->maskGenFunc, mgf1md))
goto err;
if (labellen > 0)
{
ASN1_OCTET_STRING *los = ASN1_OCTET_STRING_new();
oaep->pSourceFunc = X509_ALGOR_new();
if (!oaep->pSourceFunc)
goto err;
if (!los)
goto err;
if (!ASN1_OCTET_STRING_set(los, label, labellen))
{
ASN1_OCTET_STRING_free(los);
goto err;
}
X509_ALGOR_set0(oaep->pSourceFunc, OBJ_nid2obj(NID_pSpecified),
V_ASN1_OCTET_STRING, los);
}
/* create string with pss parameter encoding. */
if (!ASN1_item_pack(oaep, ASN1_ITEM_rptr(RSA_OAEP_PARAMS), &os))
goto err;
X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaesOaep), V_ASN1_SEQUENCE, os);
os = NULL;
rv = 1;
err:
if (oaep)
RSA_OAEP_PARAMS_free(oaep);
if (os)
ASN1_STRING_free(os);
return rv;
}
const EVP_PKEY_ASN1_METHOD rsa_asn1_meths[] =
{
{
EVP_PKEY_RSA,
EVP_PKEY_RSA,
ASN1_PKEY_SIGPARAM_NULL,
"RSA",
"OpenSSL RSA method",
rsa_pub_decode,
rsa_pub_encode,
rsa_pub_cmp,
rsa_pub_print,
rsa_priv_decode,
rsa_priv_encode,
rsa_priv_print,
int_rsa_size,
rsa_bits,
0,0,0,0,0,0,
rsa_sig_print,
int_rsa_free,
rsa_pkey_ctrl,
old_rsa_priv_decode,
old_rsa_priv_encode,
rsa_item_verify,
rsa_item_sign
},
{
EVP_PKEY_RSA2,
EVP_PKEY_RSA,
ASN1_PKEY_ALIAS
}
};