c826988109
The various implementations of EVP_CTRL_AEAD_TLS_AAD expect a buffer of at least 13 bytes long. Add sanity checks to ensure that the length is at least that. Also add a new constant (EVP_AEAD_TLS1_AAD_LEN) to evp.h to represent this length. Thanks to Kevin Wojtysiak (Int3 Solutions) and Paramjot Oberoi (Int3 Solutions) for reporting this issue. Reviewed-by: Andy Polyakov <appro@openssl.org> |
||
---|---|---|
.. | ||
dtls1_bitmap.c | ||
README | ||
rec_layer_d1.c | ||
rec_layer_s3.c | ||
rec_layer_s23.c | ||
record.h | ||
record_locl.h | ||
ssl3_buffer.c | ||
ssl3_record.c |
Record Layer Design =================== This file provides some guidance on the thinking behind the design of the record layer code to aid future maintenance. The record layer is divided into a number of components. At the time of writing there are four: SSL3_RECORD, SSL3_BUFFER, DLTS1_BITMAP and RECORD_LAYER. Each of these components is defined by: 1) A struct definition of the same name as the component 2) A set of source files that define the functions for that component 3) A set of accessor macros All struct definitions are in record.h. The functions and macros are either defined in record.h or record_locl.h dependent on whether they are intended to be private to the record layer, or whether they form part of the API to the rest of libssl. The source files map to components as follows: dtls1_bitmap.c -> DTLS1_BITMAP component ssl3_buffer.c -> SSL3_BUFFER component ssl3_record.c -> SSL3_RECORD component rec_layer_s23.c, rec_layer_s3.c, rec_layer_d1.c -> RECORD_LAYER component The RECORD_LAYER component is a facade pattern, i.e. it provides a simplified interface to the record layer for the rest of libssl. The other 3 components are entirely private to the record layer and therefore should never be accessed directly by libssl. Any component can directly access its own members - they are private to that component, e.g. ssl3_buffer.c can access members of the SSL3_BUFFER struct without using a macro. No component can directly access the members of another component, e.g. ssl3_buffer cannot reach inside the RECORD_LAYER component to directly access its members. Instead components use accessor macros, so if code in ssl3_buffer.c wants to access the members of the RECORD_LAYER it uses the RECORD_LAYER_* macros. Conceptually it looks like this: libssl | ---------------------------|-----record.h-------------------------------------- | _______V______________ | | | RECORD_LAYER | | | | rec_layer_s23.c | | ^ | | | | | rec_layer_s3.c | | ^ | | _________|__________ | || || || DTLS1_RECORD_LAYER || || || || rec_layer_d1.c || ||____________________|| |______________________| record_locl.h ^ ^ ^ _________________| | |_________________ | | | _____V_________ ______V________ _______V________ | | | | | | | SSL3_BUFFER | | SSL3_RECORD | | DTLS1_BITMAP | | |--->| | | | | ssl3_buffer.c | | ssl3_record.c | | dtls1_bitmap.c | |_______________| |_______________| |________________| The three RECORD_LAYER source files build progressively on each other, i.e. the simplest is rec_layer_s23.c. This provides the most basic functions used for version negotiation. Next rec_layer_s3.c adds the SSL/TLS layer. Finally rec_layer_d1.c builds off of the SSL/TLS code to provide DTLS specific capabilities. It uses some DTLS specific RECORD_LAYER component members which should only be accessed from rec_layer_d1.c. These are held in the DTLS1_RECORD_LAYER struct.