242 lines
5.1 KiB
Raku
Executable file
242 lines
5.1 KiB
Raku
Executable file
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# sha1_block procedure for x86_64.
|
|
#
|
|
# It was brought to my attention that on EM64T compiler-generated code
|
|
# was far behind 32-bit assembler implementation. This is unlike on
|
|
# Opteron where compiler-generated code was only 15% behind 32-bit
|
|
# assembler, which originally made it hard to motivate the effort.
|
|
# There was suggestion to mechanically translate 32-bit code, but I
|
|
# dismissed it, reasoning that x86_64 offers enough register bank
|
|
# capacity to fully utilize SHA-1 parallelism. Therefore this fresh
|
|
# implementation:-) However! While 64-bit code does performs better
|
|
# on Opteron, I failed to beat 32-bit assembler on EM64T core. Well,
|
|
# x86_64 does offer larger *addressable* bank, but out-of-order core
|
|
# reaches for even more registers through dynamic aliasing, and EM64T
|
|
# core must have managed to run-time optimize even 32-bit code just as
|
|
# good as 64-bit one. Performance improvement is summarized in the
|
|
# following table:
|
|
#
|
|
# gcc 3.4 32-bit asm cycles/byte
|
|
# Opteron +45% +20% 6.8
|
|
# Xeon P4 +65% +0% 9.9
|
|
# Core2 +60% +10% 7.0
|
|
|
|
$output=shift;
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
|
die "can't locate x86_64-xlate.pl";
|
|
|
|
open STDOUT,"| $^X $xlate $output";
|
|
|
|
$ctx="%rdi"; # 1st arg
|
|
$inp="%rsi"; # 2nd arg
|
|
$num="%rdx"; # 3rd arg
|
|
|
|
# reassign arguments in order to produce more compact code
|
|
$ctx="%r8";
|
|
$inp="%r9";
|
|
$num="%r10";
|
|
|
|
$xi="%eax";
|
|
$t0="%ebx";
|
|
$t1="%ecx";
|
|
$A="%edx";
|
|
$B="%esi";
|
|
$C="%edi";
|
|
$D="%ebp";
|
|
$E="%r11d";
|
|
$T="%r12d";
|
|
|
|
@V=($A,$B,$C,$D,$E,$T);
|
|
|
|
sub PROLOGUE {
|
|
my $func=shift;
|
|
$code.=<<___;
|
|
.globl $func
|
|
.type $func,\@function,3
|
|
.align 16
|
|
$func:
|
|
push %rbx
|
|
push %rbp
|
|
push %r12
|
|
mov %rsp,%rax
|
|
mov %rdi,$ctx # reassigned argument
|
|
sub \$`8+16*4`,%rsp
|
|
mov %rsi,$inp # reassigned argument
|
|
and \$-64,%rsp
|
|
mov %rdx,$num # reassigned argument
|
|
mov %rax,`16*4`(%rsp)
|
|
|
|
mov 0($ctx),$A
|
|
mov 4($ctx),$B
|
|
mov 8($ctx),$C
|
|
mov 12($ctx),$D
|
|
mov 16($ctx),$E
|
|
___
|
|
}
|
|
|
|
sub EPILOGUE {
|
|
my $func=shift;
|
|
$code.=<<___;
|
|
mov `16*4`(%rsp),%rsp
|
|
pop %r12
|
|
pop %rbp
|
|
pop %rbx
|
|
ret
|
|
.size $func,.-$func
|
|
___
|
|
}
|
|
|
|
sub BODY_00_19 {
|
|
my ($i,$a,$b,$c,$d,$e,$f,$host)=@_;
|
|
my $j=$i+1;
|
|
$code.=<<___ if ($i==0);
|
|
mov `4*$i`($inp),$xi
|
|
`"bswap $xi" if(!defined($host))`
|
|
mov $xi,`4*$i`(%rsp)
|
|
___
|
|
$code.=<<___ if ($i<15);
|
|
lea 0x5a827999($xi,$e),$f
|
|
mov $c,$t0
|
|
mov `4*$j`($inp),$xi
|
|
mov $a,$e
|
|
xor $d,$t0
|
|
`"bswap $xi" if(!defined($host))`
|
|
rol \$5,$e
|
|
and $b,$t0
|
|
mov $xi,`4*$j`(%rsp)
|
|
add $e,$f
|
|
xor $d,$t0
|
|
rol \$30,$b
|
|
add $t0,$f
|
|
___
|
|
$code.=<<___ if ($i>=15);
|
|
lea 0x5a827999($xi,$e),$f
|
|
mov `4*($j%16)`(%rsp),$xi
|
|
mov $c,$t0
|
|
mov $a,$e
|
|
xor `4*(($j+2)%16)`(%rsp),$xi
|
|
xor $d,$t0
|
|
rol \$5,$e
|
|
xor `4*(($j+8)%16)`(%rsp),$xi
|
|
and $b,$t0
|
|
add $e,$f
|
|
xor `4*(($j+13)%16)`(%rsp),$xi
|
|
xor $d,$t0
|
|
rol \$30,$b
|
|
add $t0,$f
|
|
rol \$1,$xi
|
|
mov $xi,`4*($j%16)`(%rsp)
|
|
___
|
|
}
|
|
|
|
sub BODY_20_39 {
|
|
my ($i,$a,$b,$c,$d,$e,$f)=@_;
|
|
my $j=$i+1;
|
|
my $K=($i<40)?0x6ed9eba1:0xca62c1d6;
|
|
$code.=<<___ if ($i<79);
|
|
lea $K($xi,$e),$f
|
|
mov `4*($j%16)`(%rsp),$xi
|
|
mov $c,$t0
|
|
mov $a,$e
|
|
xor `4*(($j+2)%16)`(%rsp),$xi
|
|
xor $b,$t0
|
|
rol \$5,$e
|
|
xor `4*(($j+8)%16)`(%rsp),$xi
|
|
xor $d,$t0
|
|
add $e,$f
|
|
xor `4*(($j+13)%16)`(%rsp),$xi
|
|
rol \$30,$b
|
|
add $t0,$f
|
|
rol \$1,$xi
|
|
___
|
|
$code.=<<___ if ($i<76);
|
|
mov $xi,`4*($j%16)`(%rsp)
|
|
___
|
|
$code.=<<___ if ($i==79);
|
|
lea $K($xi,$e),$f
|
|
mov $c,$t0
|
|
mov $a,$e
|
|
xor $b,$t0
|
|
rol \$5,$e
|
|
xor $d,$t0
|
|
add $e,$f
|
|
rol \$30,$b
|
|
add $t0,$f
|
|
___
|
|
}
|
|
|
|
sub BODY_40_59 {
|
|
my ($i,$a,$b,$c,$d,$e,$f)=@_;
|
|
my $j=$i+1;
|
|
$code.=<<___;
|
|
lea 0x8f1bbcdc($xi,$e),$f
|
|
mov `4*($j%16)`(%rsp),$xi
|
|
mov $b,$t0
|
|
mov $b,$t1
|
|
xor `4*(($j+2)%16)`(%rsp),$xi
|
|
mov $a,$e
|
|
and $c,$t0
|
|
xor `4*(($j+8)%16)`(%rsp),$xi
|
|
or $c,$t1
|
|
rol \$5,$e
|
|
xor `4*(($j+13)%16)`(%rsp),$xi
|
|
and $d,$t1
|
|
add $e,$f
|
|
rol \$1,$xi
|
|
or $t1,$t0
|
|
rol \$30,$b
|
|
mov $xi,`4*($j%16)`(%rsp)
|
|
add $t0,$f
|
|
___
|
|
}
|
|
|
|
$code=".text\n";
|
|
|
|
&PROLOGUE("sha1_block_data_order");
|
|
$code.=".align 4\n.Lloop:\n";
|
|
for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
|
|
for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
|
|
for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
|
$code.=<<___;
|
|
add 0($ctx),$E
|
|
add 4($ctx),$T
|
|
add 8($ctx),$A
|
|
add 12($ctx),$B
|
|
add 16($ctx),$C
|
|
mov $E,0($ctx)
|
|
mov $T,4($ctx)
|
|
mov $A,8($ctx)
|
|
mov $B,12($ctx)
|
|
mov $C,16($ctx)
|
|
|
|
xchg $E,$A # mov $E,$A
|
|
xchg $T,$B # mov $T,$B
|
|
xchg $E,$C # mov $A,$C
|
|
xchg $T,$D # mov $B,$D
|
|
# mov $C,$E
|
|
lea `16*4`($inp),$inp
|
|
sub \$1,$num
|
|
jnz .Lloop
|
|
___
|
|
&EPILOGUE("sha1_block_data_order");
|
|
$code.=<<___;
|
|
.asciz "SHA1 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
|
|
___
|
|
|
|
####################################################################
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
print $code;
|
|
close STDOUT;
|