61783db5b5
Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/8023)
716 lines
20 KiB
C
716 lines
20 KiB
C
/*
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#ifndef _GNU_SOURCE
|
|
# define _GNU_SOURCE
|
|
#endif
|
|
#include "e_os.h"
|
|
#include <stdio.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/rand.h>
|
|
#include "rand_lcl.h"
|
|
#include "internal/rand_int.h"
|
|
#include <stdio.h>
|
|
#include "internal/dso.h"
|
|
#if defined(__linux)
|
|
# include <asm/unistd.h>
|
|
#endif
|
|
#if defined(__FreeBSD__)
|
|
# include <sys/types.h>
|
|
# include <sys/sysctl.h>
|
|
# include <sys/param.h>
|
|
#endif
|
|
#if defined(__OpenBSD__) || defined(__NetBSD__)
|
|
# include <sys/param.h>
|
|
#endif
|
|
|
|
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
|
|
|| defined(__DJGPP__)
|
|
# include <sys/types.h>
|
|
# include <sys/stat.h>
|
|
# include <fcntl.h>
|
|
# include <unistd.h>
|
|
# include <sys/time.h>
|
|
|
|
static uint64_t get_time_stamp(void);
|
|
static uint64_t get_timer_bits(void);
|
|
|
|
/* Macro to convert two thirty two bit values into a sixty four bit one */
|
|
# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
|
|
|
|
/*
|
|
* Check for the existence and support of POSIX timers. The standard
|
|
* says that the _POSIX_TIMERS macro will have a positive value if they
|
|
* are available.
|
|
*
|
|
* However, we want an additional constraint: that the timer support does
|
|
* not require an extra library dependency. Early versions of glibc
|
|
* require -lrt to be specified on the link line to access the timers,
|
|
* so this needs to be checked for.
|
|
*
|
|
* It is worse because some libraries define __GLIBC__ but don't
|
|
* support the version testing macro (e.g. uClibc). This means
|
|
* an extra check is needed.
|
|
*
|
|
* The final condition is:
|
|
* "have posix timers and either not glibc or glibc without -lrt"
|
|
*
|
|
* The nested #if sequences are required to avoid using a parameterised
|
|
* macro that might be undefined.
|
|
*/
|
|
# undef OSSL_POSIX_TIMER_OKAY
|
|
# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
|
|
# if defined(__GLIBC__)
|
|
# if defined(__GLIBC_PREREQ)
|
|
# if __GLIBC_PREREQ(2, 17)
|
|
# define OSSL_POSIX_TIMER_OKAY
|
|
# endif
|
|
# endif
|
|
# else
|
|
# define OSSL_POSIX_TIMER_OKAY
|
|
# endif
|
|
# endif
|
|
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
|
|
|
|
#if defined(OPENSSL_RAND_SEED_NONE)
|
|
/* none means none. this simplifies the following logic */
|
|
# undef OPENSSL_RAND_SEED_OS
|
|
# undef OPENSSL_RAND_SEED_GETRANDOM
|
|
# undef OPENSSL_RAND_SEED_LIBRANDOM
|
|
# undef OPENSSL_RAND_SEED_DEVRANDOM
|
|
# undef OPENSSL_RAND_SEED_RDTSC
|
|
# undef OPENSSL_RAND_SEED_RDCPU
|
|
# undef OPENSSL_RAND_SEED_EGD
|
|
#endif
|
|
|
|
#if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
|
|
# error "UEFI only supports seeding NONE"
|
|
#endif
|
|
|
|
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|
|
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|
|
|| defined(OPENSSL_SYS_UEFI))
|
|
|
|
# if defined(OPENSSL_SYS_VOS)
|
|
|
|
# ifndef OPENSSL_RAND_SEED_OS
|
|
# error "Unsupported seeding method configured; must be os"
|
|
# endif
|
|
|
|
# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
|
|
# error "Unsupported HP-PA and IA32 at the same time."
|
|
# endif
|
|
# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
|
|
# error "Must have one of HP-PA or IA32"
|
|
# endif
|
|
|
|
/*
|
|
* The following algorithm repeatedly samples the real-time clock (RTC) to
|
|
* generate a sequence of unpredictable data. The algorithm relies upon the
|
|
* uneven execution speed of the code (due to factors such as cache misses,
|
|
* interrupts, bus activity, and scheduling) and upon the rather large
|
|
* relative difference between the speed of the clock and the rate at which
|
|
* it can be read. If it is ported to an environment where execution speed
|
|
* is more constant or where the RTC ticks at a much slower rate, or the
|
|
* clock can be read with fewer instructions, it is likely that the results
|
|
* would be far more predictable. This should only be used for legacy
|
|
* platforms.
|
|
*
|
|
* As a precaution, we assume only 2 bits of entropy per byte.
|
|
*/
|
|
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
|
{
|
|
short int code;
|
|
int i, k;
|
|
size_t bytes_needed;
|
|
struct timespec ts;
|
|
unsigned char v;
|
|
# ifdef OPENSSL_SYS_VOS_HPPA
|
|
long duration;
|
|
extern void s$sleep(long *_duration, short int *_code);
|
|
# else
|
|
long long duration;
|
|
extern void s$sleep2(long long *_duration, short int *_code);
|
|
# endif
|
|
|
|
bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
|
|
|
|
for (i = 0; i < bytes_needed; i++) {
|
|
/*
|
|
* burn some cpu; hope for interrupts, cache collisions, bus
|
|
* interference, etc.
|
|
*/
|
|
for (k = 0; k < 99; k++)
|
|
ts.tv_nsec = random();
|
|
|
|
# ifdef OPENSSL_SYS_VOS_HPPA
|
|
/* sleep for 1/1024 of a second (976 us). */
|
|
duration = 1;
|
|
s$sleep(&duration, &code);
|
|
# else
|
|
/* sleep for 1/65536 of a second (15 us). */
|
|
duration = 1;
|
|
s$sleep2(&duration, &code);
|
|
# endif
|
|
|
|
/* Get wall clock time, take 8 bits. */
|
|
clock_gettime(CLOCK_REALTIME, &ts);
|
|
v = (unsigned char)(ts.tv_nsec & 0xFF);
|
|
rand_pool_add(pool, arg, &v, sizeof(v) , 2);
|
|
}
|
|
return rand_pool_entropy_available(pool);
|
|
}
|
|
|
|
void rand_pool_cleanup(void)
|
|
{
|
|
}
|
|
|
|
void rand_pool_keep_random_devices_open(int keep)
|
|
{
|
|
}
|
|
|
|
# else
|
|
|
|
# if defined(OPENSSL_RAND_SEED_EGD) && \
|
|
(defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
|
|
# error "Seeding uses EGD but EGD is turned off or no device given"
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
|
|
# error "Seeding uses urandom but DEVRANDOM is not configured"
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_OS)
|
|
# if !defined(DEVRANDOM)
|
|
# error "OS seeding requires DEVRANDOM to be configured"
|
|
# endif
|
|
# define OPENSSL_RAND_SEED_GETRANDOM
|
|
# define OPENSSL_RAND_SEED_DEVRANDOM
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
|
# error "librandom not (yet) supported"
|
|
# endif
|
|
|
|
# if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
|
/*
|
|
* sysctl_random(): Use sysctl() to read a random number from the kernel
|
|
* Returns the number of bytes returned in buf on success, -1 on failure.
|
|
*/
|
|
static ssize_t sysctl_random(char *buf, size_t buflen)
|
|
{
|
|
int mib[2];
|
|
size_t done = 0;
|
|
size_t len;
|
|
|
|
/*
|
|
* Note: sign conversion between size_t and ssize_t is safe even
|
|
* without a range check, see comment in syscall_random()
|
|
*/
|
|
|
|
/*
|
|
* On FreeBSD old implementations returned longs, newer versions support
|
|
* variable sizes up to 256 byte. The code below would not work properly
|
|
* when the sysctl returns long and we want to request something not a
|
|
* multiple of longs, which should never be the case.
|
|
*/
|
|
if (!ossl_assert(buflen % sizeof(long) == 0)) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
|
|
* filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
|
|
* it returns a variable number of bytes with the current version supporting
|
|
* up to 256 bytes.
|
|
* Just return an error on older NetBSD versions.
|
|
*/
|
|
#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
|
|
errno = ENOSYS;
|
|
return -1;
|
|
#endif
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_ARND;
|
|
|
|
do {
|
|
len = buflen;
|
|
if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
|
|
return done > 0 ? done : -1;
|
|
done += len;
|
|
buf += len;
|
|
buflen -= len;
|
|
} while (buflen > 0);
|
|
|
|
return done;
|
|
}
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
|
/*
|
|
* syscall_random(): Try to get random data using a system call
|
|
* returns the number of bytes returned in buf, or < 0 on error.
|
|
*/
|
|
static ssize_t syscall_random(void *buf, size_t buflen)
|
|
{
|
|
/*
|
|
* Note: 'buflen' equals the size of the buffer which is used by the
|
|
* get_entropy() callback of the RAND_DRBG. It is roughly bounded by
|
|
*
|
|
* 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
|
|
*
|
|
* which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
|
|
* between size_t and ssize_t is safe even without a range check.
|
|
*/
|
|
|
|
/*
|
|
* Do runtime detection to find getentropy().
|
|
*
|
|
* Known OSs that should support this:
|
|
* - Darwin since 16 (OSX 10.12, IOS 10.0).
|
|
* - Solaris since 11.3
|
|
* - OpenBSD since 5.6
|
|
* - Linux since 3.17 with glibc 2.25
|
|
* - FreeBSD since 12.0 (1200061)
|
|
*/
|
|
# if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
|
|
extern int getentropy(void *buffer, size_t length) __attribute__((weak));
|
|
|
|
if (getentropy != NULL)
|
|
return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
|
# else
|
|
union {
|
|
void *p;
|
|
int (*f)(void *buffer, size_t length);
|
|
} p_getentropy;
|
|
|
|
/*
|
|
* We could cache the result of the lookup, but we normally don't
|
|
* call this function often.
|
|
*/
|
|
ERR_set_mark();
|
|
p_getentropy.p = DSO_global_lookup("getentropy");
|
|
ERR_pop_to_mark();
|
|
if (p_getentropy.p != NULL)
|
|
return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
|
# endif
|
|
|
|
/* Linux supports this since version 3.17 */
|
|
# if defined(__linux) && defined(__NR_getrandom)
|
|
return syscall(__NR_getrandom, buf, buflen, 0);
|
|
# elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
|
return sysctl_random(buf, buflen);
|
|
# else
|
|
errno = ENOSYS;
|
|
return -1;
|
|
# endif
|
|
}
|
|
# endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
|
|
|
|
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
|
static const char *random_device_paths[] = { DEVRANDOM };
|
|
static struct random_device {
|
|
int fd;
|
|
dev_t dev;
|
|
ino_t ino;
|
|
mode_t mode;
|
|
dev_t rdev;
|
|
} random_devices[OSSL_NELEM(random_device_paths)];
|
|
static int keep_random_devices_open = 1;
|
|
|
|
/*
|
|
* Verify that the file descriptor associated with the random source is
|
|
* still valid. The rationale for doing this is the fact that it is not
|
|
* uncommon for daemons to close all open file handles when daemonizing.
|
|
* So the handle might have been closed or even reused for opening
|
|
* another file.
|
|
*/
|
|
static int check_random_device(struct random_device * rd)
|
|
{
|
|
struct stat st;
|
|
|
|
return rd->fd != -1
|
|
&& fstat(rd->fd, &st) != -1
|
|
&& rd->dev == st.st_dev
|
|
&& rd->ino == st.st_ino
|
|
&& ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
|
|
&& rd->rdev == st.st_rdev;
|
|
}
|
|
|
|
/*
|
|
* Open a random device if required and return its file descriptor or -1 on error
|
|
*/
|
|
static int get_random_device(size_t n)
|
|
{
|
|
struct stat st;
|
|
struct random_device * rd = &random_devices[n];
|
|
|
|
/* reuse existing file descriptor if it is (still) valid */
|
|
if (check_random_device(rd))
|
|
return rd->fd;
|
|
|
|
/* open the random device ... */
|
|
if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
|
|
return rd->fd;
|
|
|
|
/* ... and cache its relevant stat(2) data */
|
|
if (fstat(rd->fd, &st) != -1) {
|
|
rd->dev = st.st_dev;
|
|
rd->ino = st.st_ino;
|
|
rd->mode = st.st_mode;
|
|
rd->rdev = st.st_rdev;
|
|
} else {
|
|
close(rd->fd);
|
|
rd->fd = -1;
|
|
}
|
|
|
|
return rd->fd;
|
|
}
|
|
|
|
/*
|
|
* Close a random device making sure it is a random device
|
|
*/
|
|
static void close_random_device(size_t n)
|
|
{
|
|
struct random_device * rd = &random_devices[n];
|
|
|
|
if (check_random_device(rd))
|
|
close(rd->fd);
|
|
rd->fd = -1;
|
|
}
|
|
|
|
int rand_pool_init(void)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
|
random_devices[i].fd = -1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void rand_pool_cleanup(void)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
|
close_random_device(i);
|
|
}
|
|
|
|
void rand_pool_keep_random_devices_open(int keep)
|
|
{
|
|
if (!keep)
|
|
rand_pool_cleanup();
|
|
|
|
keep_random_devices_open = keep;
|
|
}
|
|
|
|
# else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
|
|
|
int rand_pool_init(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void rand_pool_cleanup(void)
|
|
{
|
|
}
|
|
|
|
void rand_pool_keep_random_devices_open(int keep)
|
|
{
|
|
}
|
|
|
|
# endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
|
|
|
/*
|
|
* Try the various seeding methods in turn, exit when successful.
|
|
*
|
|
* TODO(DRBG): If more than one entropy source is available, is it
|
|
* preferable to stop as soon as enough entropy has been collected
|
|
* (as favored by @rsalz) or should one rather be defensive and add
|
|
* more entropy than requested and/or from different sources?
|
|
*
|
|
* Currently, the user can select multiple entropy sources in the
|
|
* configure step, yet in practice only the first available source
|
|
* will be used. A more flexible solution has been requested, but
|
|
* currently it is not clear how this can be achieved without
|
|
* overengineering the problem. There are many parameters which
|
|
* could be taken into account when selecting the order and amount
|
|
* of input from the different entropy sources (trust, quality,
|
|
* possibility of blocking).
|
|
*/
|
|
size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
|
{
|
|
# if defined(OPENSSL_RAND_SEED_NONE)
|
|
return rand_pool_entropy_available(pool);
|
|
# else
|
|
size_t bytes_needed;
|
|
size_t entropy_available = 0;
|
|
unsigned char *buffer;
|
|
|
|
# if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
|
{
|
|
ssize_t bytes;
|
|
/* Maximum allowed number of consecutive unsuccessful attempts */
|
|
int attempts = 3;
|
|
|
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
while (bytes_needed != 0 && attempts-- > 0) {
|
|
buffer = rand_pool_add_begin(pool, bytes_needed);
|
|
bytes = syscall_random(buffer, bytes_needed);
|
|
if (bytes > 0) {
|
|
rand_pool_add_end(pool, bytes, 8 * bytes);
|
|
bytes_needed -= bytes;
|
|
attempts = 3; /* reset counter after successful attempt */
|
|
} else if (bytes < 0 && errno != EINTR) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
entropy_available = rand_pool_entropy_available(pool);
|
|
if (entropy_available > 0)
|
|
return entropy_available;
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
|
{
|
|
/* Not yet implemented. */
|
|
}
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
{
|
|
size_t i;
|
|
#ifdef DEVRANDOM_WAIT
|
|
static int wait_done = 0;
|
|
|
|
/*
|
|
* On some implementations reading from /dev/urandom is possible
|
|
* before it is initialized. Therefore we wait for /dev/random
|
|
* to be readable to make sure /dev/urandom is initialized.
|
|
*/
|
|
if (!wait_done && bytes_needed > 0) {
|
|
int f = open(DEVRANDOM_WAIT, O_RDONLY);
|
|
|
|
if (f >= 0) {
|
|
fd_set fds;
|
|
|
|
FD_ZERO(&fds);
|
|
FD_SET(f, &fds);
|
|
while (select(f+1, &fds, NULL, NULL, NULL) < 0
|
|
&& errno == EINTR);
|
|
close(f);
|
|
}
|
|
wait_done = 1;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths); i++) {
|
|
ssize_t bytes = 0;
|
|
/* Maximum allowed number of consecutive unsuccessful attempts */
|
|
int attempts = 3;
|
|
const int fd = get_random_device(i);
|
|
|
|
if (fd == -1)
|
|
continue;
|
|
|
|
while (bytes_needed != 0 && attempts-- > 0) {
|
|
buffer = rand_pool_add_begin(pool, bytes_needed);
|
|
bytes = read(fd, buffer, bytes_needed);
|
|
|
|
if (bytes > 0) {
|
|
rand_pool_add_end(pool, bytes, 8 * bytes);
|
|
bytes_needed -= bytes;
|
|
attempts = 3; /* reset counter after successful attempt */
|
|
} else if (bytes < 0 && errno != EINTR) {
|
|
break;
|
|
}
|
|
}
|
|
if (bytes < 0 || !keep_random_devices_open)
|
|
close_random_device(i);
|
|
|
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
}
|
|
entropy_available = rand_pool_entropy_available(pool);
|
|
if (entropy_available > 0)
|
|
return entropy_available;
|
|
}
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_RDTSC)
|
|
entropy_available = rand_acquire_entropy_from_tsc(pool);
|
|
if (entropy_available > 0)
|
|
return entropy_available;
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_RDCPU)
|
|
entropy_available = rand_acquire_entropy_from_cpu(pool);
|
|
if (entropy_available > 0)
|
|
return entropy_available;
|
|
# endif
|
|
|
|
# if defined(OPENSSL_RAND_SEED_EGD)
|
|
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
|
if (bytes_needed > 0) {
|
|
static const char *paths[] = { DEVRANDOM_EGD, NULL };
|
|
int i;
|
|
|
|
for (i = 0; paths[i] != NULL; i++) {
|
|
buffer = rand_pool_add_begin(pool, bytes_needed);
|
|
if (buffer != NULL) {
|
|
size_t bytes = 0;
|
|
int num = RAND_query_egd_bytes(paths[i],
|
|
buffer, (int)bytes_needed);
|
|
if (num == (int)bytes_needed)
|
|
bytes = bytes_needed;
|
|
|
|
rand_pool_add_end(pool, bytes, 8 * bytes);
|
|
entropy_available = rand_pool_entropy_available(pool);
|
|
}
|
|
if (entropy_available > 0)
|
|
return entropy_available;
|
|
}
|
|
}
|
|
# endif
|
|
|
|
return rand_pool_entropy_available(pool);
|
|
# endif
|
|
}
|
|
# endif
|
|
#endif
|
|
|
|
#if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
|
|
|| defined(__DJGPP__)
|
|
int rand_pool_add_nonce_data(RAND_POOL *pool)
|
|
{
|
|
struct {
|
|
pid_t pid;
|
|
CRYPTO_THREAD_ID tid;
|
|
uint64_t time;
|
|
} data;
|
|
|
|
/* Erase the entire structure including any padding */
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/*
|
|
* Add process id, thread id, and a high resolution timestamp to
|
|
* ensure that the nonce is unique with high probability for
|
|
* different process instances.
|
|
*/
|
|
data.pid = getpid();
|
|
data.tid = CRYPTO_THREAD_get_current_id();
|
|
data.time = get_time_stamp();
|
|
|
|
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
|
}
|
|
|
|
int rand_pool_add_additional_data(RAND_POOL *pool)
|
|
{
|
|
struct {
|
|
CRYPTO_THREAD_ID tid;
|
|
uint64_t time;
|
|
} data;
|
|
|
|
/* Erase the entire structure including any padding */
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/*
|
|
* Add some noise from the thread id and a high resolution timer.
|
|
* The thread id adds a little randomness if the drbg is accessed
|
|
* concurrently (which is the case for the <master> drbg).
|
|
*/
|
|
data.tid = CRYPTO_THREAD_get_current_id();
|
|
data.time = get_timer_bits();
|
|
|
|
return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get the current time with the highest possible resolution
|
|
*
|
|
* The time stamp is added to the nonce, so it is optimized for not repeating.
|
|
* The current time is ideal for this purpose, provided the computer's clock
|
|
* is synchronized.
|
|
*/
|
|
static uint64_t get_time_stamp(void)
|
|
{
|
|
# if defined(OSSL_POSIX_TIMER_OKAY)
|
|
{
|
|
struct timespec ts;
|
|
|
|
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
|
|
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
|
}
|
|
# endif
|
|
# if defined(__unix__) \
|
|
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
|
{
|
|
struct timeval tv;
|
|
|
|
if (gettimeofday(&tv, NULL) == 0)
|
|
return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
|
}
|
|
# endif
|
|
return time(NULL);
|
|
}
|
|
|
|
/*
|
|
* Get an arbitrary timer value of the highest possible resolution
|
|
*
|
|
* The timer value is added as random noise to the additional data,
|
|
* which is not considered a trusted entropy sourec, so any result
|
|
* is acceptable.
|
|
*/
|
|
static uint64_t get_timer_bits(void)
|
|
{
|
|
uint64_t res = OPENSSL_rdtsc();
|
|
|
|
if (res != 0)
|
|
return res;
|
|
|
|
# if defined(__sun) || defined(__hpux)
|
|
return gethrtime();
|
|
# elif defined(_AIX)
|
|
{
|
|
timebasestruct_t t;
|
|
|
|
read_wall_time(&t, TIMEBASE_SZ);
|
|
return TWO32TO64(t.tb_high, t.tb_low);
|
|
}
|
|
# elif defined(OSSL_POSIX_TIMER_OKAY)
|
|
{
|
|
struct timespec ts;
|
|
|
|
# ifdef CLOCK_BOOTTIME
|
|
# define CLOCK_TYPE CLOCK_BOOTTIME
|
|
# elif defined(_POSIX_MONOTONIC_CLOCK)
|
|
# define CLOCK_TYPE CLOCK_MONOTONIC
|
|
# else
|
|
# define CLOCK_TYPE CLOCK_REALTIME
|
|
# endif
|
|
|
|
if (clock_gettime(CLOCK_TYPE, &ts) == 0)
|
|
return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
|
}
|
|
# endif
|
|
# if defined(__unix__) \
|
|
|| (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
|
{
|
|
struct timeval tv;
|
|
|
|
if (gettimeofday(&tv, NULL) == 0)
|
|
return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
|
}
|
|
# endif
|
|
return time(NULL);
|
|
}
|
|
#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
|