218e740f85
If one of the perlasm xlate drivers crashes, OpenSSL's build will currently swallow the error and silently truncate the output to however far the driver got. This will hopefully fail to build, but better to check such things. Handle this by checking for errors when closing STDOUT (which is a pipe to the xlate driver). This is the OpenSSL 1.1.1 version of https://github.com/openssl/openssl/pull/10883 and https://github.com/openssl/openssl/pull/10930. Reviewed-by: Mark J. Cox <mark@awe.com> Reviewed-by: Paul Dale David Benjamin <davidben@google.com> (Merged from https://github.com/openssl/openssl/pull/10931)
284 lines
6.9 KiB
Raku
284 lines
6.9 KiB
Raku
#! /usr/bin/env perl
|
|
# Copyright 2007-2018 The OpenSSL Project Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the OpenSSL license (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
|
|
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
|
|
# April 2007.
|
|
#
|
|
# Performance improvement over vanilla C code varies from 85% to 45%
|
|
# depending on key length and benchmark. Unfortunately in this context
|
|
# these are not very impressive results [for code that utilizes "wide"
|
|
# 64x64=128-bit multiplication, which is not commonly available to C
|
|
# programmers], at least hand-coded bn_asm.c replacement is known to
|
|
# provide 30-40% better results for longest keys. Well, on a second
|
|
# thought it's not very surprising, because z-CPUs are single-issue
|
|
# and _strictly_ in-order execution, while bn_mul_mont is more or less
|
|
# dependent on CPU ability to pipe-line instructions and have several
|
|
# of them "in-flight" at the same time. I mean while other methods,
|
|
# for example Karatsuba, aim to minimize amount of multiplications at
|
|
# the cost of other operations increase, bn_mul_mont aim to neatly
|
|
# "overlap" multiplications and the other operations [and on most
|
|
# platforms even minimize the amount of the other operations, in
|
|
# particular references to memory]. But it's possible to improve this
|
|
# module performance by implementing dedicated squaring code-path and
|
|
# possibly by unrolling loops...
|
|
|
|
# January 2009.
|
|
#
|
|
# Reschedule to minimize/avoid Address Generation Interlock hazard,
|
|
# make inner loops counter-based.
|
|
|
|
# November 2010.
|
|
#
|
|
# Adapt for -m31 build. If kernel supports what's called "highgprs"
|
|
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
|
|
# instructions and achieve "64-bit" performance even in 31-bit legacy
|
|
# application context. The feature is not specific to any particular
|
|
# processor, as long as it's "z-CPU". Latter implies that the code
|
|
# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
|
|
# is achieved by swapping words after 64-bit loads, follow _dswap-s.
|
|
# On z990 it was measured to perform 2.6-2.2 times better than
|
|
# compiler-generated code, less for longer keys...
|
|
|
|
$flavour = shift;
|
|
|
|
if ($flavour =~ /3[12]/) {
|
|
$SIZE_T=4;
|
|
$g="";
|
|
} else {
|
|
$SIZE_T=8;
|
|
$g="g";
|
|
}
|
|
|
|
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
|
|
open STDOUT,">$output";
|
|
|
|
$stdframe=16*$SIZE_T+4*8;
|
|
|
|
$mn0="%r0";
|
|
$num="%r1";
|
|
|
|
# int bn_mul_mont(
|
|
$rp="%r2"; # BN_ULONG *rp,
|
|
$ap="%r3"; # const BN_ULONG *ap,
|
|
$bp="%r4"; # const BN_ULONG *bp,
|
|
$np="%r5"; # const BN_ULONG *np,
|
|
$n0="%r6"; # const BN_ULONG *n0,
|
|
#$num="160(%r15)" # int num);
|
|
|
|
$bi="%r2"; # zaps rp
|
|
$j="%r7";
|
|
|
|
$ahi="%r8";
|
|
$alo="%r9";
|
|
$nhi="%r10";
|
|
$nlo="%r11";
|
|
$AHI="%r12";
|
|
$NHI="%r13";
|
|
$count="%r14";
|
|
$sp="%r15";
|
|
|
|
$code.=<<___;
|
|
.text
|
|
.globl bn_mul_mont
|
|
.type bn_mul_mont,\@function
|
|
bn_mul_mont:
|
|
lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
|
|
sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
|
|
la $bp,0($num,$bp)
|
|
|
|
st${g} %r2,2*$SIZE_T($sp)
|
|
|
|
cghi $num,16 #
|
|
lghi %r2,0 #
|
|
blr %r14 # if($num<16) return 0;
|
|
___
|
|
$code.=<<___ if ($flavour =~ /3[12]/);
|
|
tmll $num,4
|
|
bnzr %r14 # if ($num&1) return 0;
|
|
___
|
|
$code.=<<___ if ($flavour !~ /3[12]/);
|
|
cghi $num,96 #
|
|
bhr %r14 # if($num>96) return 0;
|
|
___
|
|
$code.=<<___;
|
|
stm${g} %r3,%r15,3*$SIZE_T($sp)
|
|
|
|
lghi $rp,-$stdframe-8 # leave room for carry bit
|
|
lcgr $j,$num # -$num
|
|
lgr %r0,$sp
|
|
la $rp,0($rp,$sp)
|
|
la $sp,0($j,$rp) # alloca
|
|
st${g} %r0,0($sp) # back chain
|
|
|
|
sra $num,3 # restore $num
|
|
la $bp,0($j,$bp) # restore $bp
|
|
ahi $num,-1 # adjust $num for inner loop
|
|
lg $n0,0($n0) # pull n0
|
|
_dswap $n0
|
|
|
|
lg $bi,0($bp)
|
|
_dswap $bi
|
|
lg $alo,0($ap)
|
|
_dswap $alo
|
|
mlgr $ahi,$bi # ap[0]*bp[0]
|
|
lgr $AHI,$ahi
|
|
|
|
lgr $mn0,$alo # "tp[0]"*n0
|
|
msgr $mn0,$n0
|
|
|
|
lg $nlo,0($np) #
|
|
_dswap $nlo
|
|
mlgr $nhi,$mn0 # np[0]*m1
|
|
algr $nlo,$alo # +="tp[0]"
|
|
lghi $NHI,0
|
|
alcgr $NHI,$nhi
|
|
|
|
la $j,8 # j=1
|
|
lr $count,$num
|
|
|
|
.align 16
|
|
.L1st:
|
|
lg $alo,0($j,$ap)
|
|
_dswap $alo
|
|
mlgr $ahi,$bi # ap[j]*bp[0]
|
|
algr $alo,$AHI
|
|
lghi $AHI,0
|
|
alcgr $AHI,$ahi
|
|
|
|
lg $nlo,0($j,$np)
|
|
_dswap $nlo
|
|
mlgr $nhi,$mn0 # np[j]*m1
|
|
algr $nlo,$NHI
|
|
lghi $NHI,0
|
|
alcgr $nhi,$NHI # +="tp[j]"
|
|
algr $nlo,$alo
|
|
alcgr $NHI,$nhi
|
|
|
|
stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
|
|
la $j,8($j) # j++
|
|
brct $count,.L1st
|
|
|
|
algr $NHI,$AHI
|
|
lghi $AHI,0
|
|
alcgr $AHI,$AHI # upmost overflow bit
|
|
stg $NHI,$stdframe-8($j,$sp)
|
|
stg $AHI,$stdframe($j,$sp)
|
|
la $bp,8($bp) # bp++
|
|
|
|
.Louter:
|
|
lg $bi,0($bp) # bp[i]
|
|
_dswap $bi
|
|
lg $alo,0($ap)
|
|
_dswap $alo
|
|
mlgr $ahi,$bi # ap[0]*bp[i]
|
|
alg $alo,$stdframe($sp) # +=tp[0]
|
|
lghi $AHI,0
|
|
alcgr $AHI,$ahi
|
|
|
|
lgr $mn0,$alo
|
|
msgr $mn0,$n0 # tp[0]*n0
|
|
|
|
lg $nlo,0($np) # np[0]
|
|
_dswap $nlo
|
|
mlgr $nhi,$mn0 # np[0]*m1
|
|
algr $nlo,$alo # +="tp[0]"
|
|
lghi $NHI,0
|
|
alcgr $NHI,$nhi
|
|
|
|
la $j,8 # j=1
|
|
lr $count,$num
|
|
|
|
.align 16
|
|
.Linner:
|
|
lg $alo,0($j,$ap)
|
|
_dswap $alo
|
|
mlgr $ahi,$bi # ap[j]*bp[i]
|
|
algr $alo,$AHI
|
|
lghi $AHI,0
|
|
alcgr $ahi,$AHI
|
|
alg $alo,$stdframe($j,$sp)# +=tp[j]
|
|
alcgr $AHI,$ahi
|
|
|
|
lg $nlo,0($j,$np)
|
|
_dswap $nlo
|
|
mlgr $nhi,$mn0 # np[j]*m1
|
|
algr $nlo,$NHI
|
|
lghi $NHI,0
|
|
alcgr $nhi,$NHI
|
|
algr $nlo,$alo # +="tp[j]"
|
|
alcgr $NHI,$nhi
|
|
|
|
stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
|
|
la $j,8($j) # j++
|
|
brct $count,.Linner
|
|
|
|
algr $NHI,$AHI
|
|
lghi $AHI,0
|
|
alcgr $AHI,$AHI
|
|
alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
|
|
lghi $ahi,0
|
|
alcgr $AHI,$ahi # new upmost overflow bit
|
|
stg $NHI,$stdframe-8($j,$sp)
|
|
stg $AHI,$stdframe($j,$sp)
|
|
|
|
la $bp,8($bp) # bp++
|
|
cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
|
|
jne .Louter
|
|
|
|
l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
|
|
la $ap,$stdframe($sp)
|
|
ahi $num,1 # restore $num, incidentally clears "borrow"
|
|
|
|
la $j,0
|
|
lr $count,$num
|
|
.Lsub: lg $alo,0($j,$ap)
|
|
lg $nlo,0($j,$np)
|
|
_dswap $nlo
|
|
slbgr $alo,$nlo
|
|
stg $alo,0($j,$rp)
|
|
la $j,8($j)
|
|
brct $count,.Lsub
|
|
lghi $ahi,0
|
|
slbgr $AHI,$ahi # handle upmost carry
|
|
lghi $NHI,-1
|
|
xgr $NHI,$AHI
|
|
|
|
la $j,0
|
|
lgr $count,$num
|
|
.Lcopy: lg $ahi,$stdframe($j,$sp) # conditional copy
|
|
lg $alo,0($j,$rp)
|
|
ngr $ahi,$AHI
|
|
ngr $alo,$NHI
|
|
ogr $alo,$ahi
|
|
_dswap $alo
|
|
stg $j,$stdframe($j,$sp) # zap tp
|
|
stg $alo,0($j,$rp)
|
|
la $j,8($j)
|
|
brct $count,.Lcopy
|
|
|
|
la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
|
|
lm${g} %r6,%r15,0(%r1)
|
|
lghi %r2,1 # signal "processed"
|
|
br %r14
|
|
.size bn_mul_mont,.-bn_mul_mont
|
|
.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
|
|
___
|
|
|
|
foreach (split("\n",$code)) {
|
|
s/\`([^\`]*)\`/eval $1/ge;
|
|
s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
|
|
print $_,"\n";
|
|
}
|
|
close STDOUT or die "error closing STDOUT: $!";
|