openssl/crypto/stack/stack.c
Richard Levitte 5c3f1e34b5 ossl_bsearch(): New generic internal binary search utility function
OBJ_bsearch_ and OBJ_bsearch_ex_ are generic functions that don't
really belong with the OBJ API, but should rather be generic utility
functions.  The ending underscore indicates that they are considered
internal, even though they are declared publicly.

Since crypto/stack/stack.c uses OBJ_bsearch_ex_, the stack API ends up
depending on the OBJ API, which is unnecessary, and carries along
other dependencies.

Therefor, a generic internal function is created, ossl_bsearch().
This removes the unecessary dependencies.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8899)
2019-05-08 16:17:16 +02:00

412 lines
10 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <openssl/stack.h>
#include <errno.h>
#include <openssl/e_os2.h> /* For ossl_inline */
/*
* The initial number of nodes in the array.
*/
static const int min_nodes = 4;
static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
? (int)(SIZE_MAX / sizeof(void *))
: INT_MAX;
struct stack_st {
int num;
const void **data;
int sorted;
int num_alloc;
OPENSSL_sk_compfunc comp;
};
OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
{
OPENSSL_sk_compfunc old = sk->comp;
if (sk->comp != c)
sk->sorted = 0;
sk->comp = c;
return old;
}
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
{
OPENSSL_STACK *ret;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
return NULL;
}
/* direct structure assignment */
*ret = *sk;
if (sk->num == 0) {
/* postpone |ret->data| allocation */
ret->data = NULL;
ret->num_alloc = 0;
return ret;
}
/* duplicate |sk->data| content */
if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
goto err;
memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
return ret;
err:
OPENSSL_sk_free(ret);
return NULL;
}
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
OPENSSL_sk_copyfunc copy_func,
OPENSSL_sk_freefunc free_func)
{
OPENSSL_STACK *ret;
int i;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
return NULL;
}
/* direct structure assignment */
*ret = *sk;
if (sk->num == 0) {
/* postpone |ret| data allocation */
ret->data = NULL;
ret->num_alloc = 0;
return ret;
}
ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
if (ret->data == NULL) {
OPENSSL_free(ret);
return NULL;
}
for (i = 0; i < ret->num; ++i) {
if (sk->data[i] == NULL)
continue;
if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
while (--i >= 0)
if (ret->data[i] != NULL)
free_func((void *)ret->data[i]);
OPENSSL_sk_free(ret);
return NULL;
}
}
return ret;
}
OPENSSL_STACK *OPENSSL_sk_new_null(void)
{
return OPENSSL_sk_new_reserve(NULL, 0);
}
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
{
return OPENSSL_sk_new_reserve(c, 0);
}
/*
* Calculate the array growth based on the target size.
*
* The growth fraction is a rational number and is defined by a numerator
* and a denominator. According to Andrew Koenig in his paper "Why Are
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
* than the golden ratio (1.618...).
*
* We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
* Another option 8/5 = 1.6 allows for slightly faster growth, although safe
* computation is more difficult.
*
* The limit to avoid overflow is spot on. The modulo three correction term
* ensures that the limit is the largest number than can be expanded by the
* growth factor without exceeding the hard limit.
*
* Do not call it with |current| lower than 2, or it will infinitely loop.
*/
static ossl_inline int compute_growth(int target, int current)
{
const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
while (current < target) {
/* Check to see if we're at the hard limit */
if (current >= max_nodes)
return 0;
/* Expand the size by a factor of 3/2 if it is within range */
current = current < limit ? current + current / 2 : max_nodes;
}
return current;
}
/* internal STACK storage allocation */
static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
{
const void **tmpdata;
int num_alloc;
/* Check to see the reservation isn't exceeding the hard limit */
if (n > max_nodes - st->num)
return 0;
/* Figure out the new size */
num_alloc = st->num + n;
if (num_alloc < min_nodes)
num_alloc = min_nodes;
/* If |st->data| allocation was postponed */
if (st->data == NULL) {
/*
* At this point, |st->num_alloc| and |st->num| are 0;
* so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
*/
if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
return 0;
}
st->num_alloc = num_alloc;
return 1;
}
if (!exact) {
if (num_alloc <= st->num_alloc)
return 1;
num_alloc = compute_growth(num_alloc, st->num_alloc);
if (num_alloc == 0)
return 0;
} else if (num_alloc == st->num_alloc) {
return 1;
}
tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
if (tmpdata == NULL)
return 0;
st->data = tmpdata;
st->num_alloc = num_alloc;
return 1;
}
OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
{
OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
if (st == NULL)
return NULL;
st->comp = c;
if (n <= 0)
return st;
if (!sk_reserve(st, n, 1)) {
OPENSSL_sk_free(st);
return NULL;
}
return st;
}
int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
{
if (st == NULL)
return 0;
if (n < 0)
return 1;
return sk_reserve(st, n, 1);
}
int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
{
if (st == NULL || st->num == max_nodes)
return 0;
if (!sk_reserve(st, 1, 0))
return 0;
if ((loc >= st->num) || (loc < 0)) {
st->data[st->num] = data;
} else {
memmove(&st->data[loc + 1], &st->data[loc],
sizeof(st->data[0]) * (st->num - loc));
st->data[loc] = data;
}
st->num++;
st->sorted = 0;
return st->num;
}
static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
{
const void *ret = st->data[loc];
if (loc != st->num - 1)
memmove(&st->data[loc], &st->data[loc + 1],
sizeof(st->data[0]) * (st->num - loc - 1));
st->num--;
return (void *)ret;
}
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
{
int i;
for (i = 0; i < st->num; i++)
if (st->data[i] == p)
return internal_delete(st, i);
return NULL;
}
void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
{
if (st == NULL || loc < 0 || loc >= st->num)
return NULL;
return internal_delete(st, loc);
}
static int internal_find(OPENSSL_STACK *st, const void *data,
int ret_val_options)
{
const void *r;
int i;
if (st == NULL || st->num == 0)
return -1;
if (st->comp == NULL) {
for (i = 0; i < st->num; i++)
if (st->data[i] == data)
return i;
return -1;
}
if (!st->sorted) {
if (st->num > 1)
qsort(st->data, st->num, sizeof(void *), st->comp);
st->sorted = 1; /* empty or single-element stack is considered sorted */
}
if (data == NULL)
return -1;
r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,
ret_val_options);
return r == NULL ? -1 : (int)((const void **)r - st->data);
}
int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
{
return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH);
}
int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
{
return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH);
}
int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
{
if (st == NULL)
return -1;
return OPENSSL_sk_insert(st, data, st->num);
}
int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
{
return OPENSSL_sk_insert(st, data, 0);
}
void *OPENSSL_sk_shift(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return NULL;
return internal_delete(st, 0);
}
void *OPENSSL_sk_pop(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return NULL;
return internal_delete(st, st->num - 1);
}
void OPENSSL_sk_zero(OPENSSL_STACK *st)
{
if (st == NULL || st->num == 0)
return;
memset(st->data, 0, sizeof(*st->data) * st->num);
st->num = 0;
}
void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
{
int i;
if (st == NULL)
return;
for (i = 0; i < st->num; i++)
if (st->data[i] != NULL)
func((char *)st->data[i]);
OPENSSL_sk_free(st);
}
void OPENSSL_sk_free(OPENSSL_STACK *st)
{
if (st == NULL)
return;
OPENSSL_free(st->data);
OPENSSL_free(st);
}
int OPENSSL_sk_num(const OPENSSL_STACK *st)
{
return st == NULL ? -1 : st->num;
}
void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
{
if (st == NULL || i < 0 || i >= st->num)
return NULL;
return (void *)st->data[i];
}
void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
{
if (st == NULL || i < 0 || i >= st->num)
return NULL;
st->data[i] = data;
st->sorted = 0;
return (void *)st->data[i];
}
void OPENSSL_sk_sort(OPENSSL_STACK *st)
{
if (st != NULL && !st->sorted && st->comp != NULL) {
if (st->num > 1)
qsort(st->data, st->num, sizeof(void *), st->comp);
st->sorted = 1; /* empty or single-element stack is considered sorted */
}
}
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
{
return st == NULL ? 1 : st->sorted;
}