openssl/crypto/aes/asm/aesfx-sparcv9.pl
Andy Polyakov ff823ee89b SPARC assembly pack: add missing .type directives.
Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-05-28 22:14:13 +02:00

446 lines
9.5 KiB
Raku
Executable file

#! /usr/bin/env perl
# Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# March 2016
#
# Initial support for Fujitsu SPARC64 X/X+ comprises minimally
# required key setup and single-block procedures.
$output = pop;
open STDOUT,">$output";
{
my ($inp,$out,$key,$rounds,$tmp,$mask) = map("%o$_",(0..5));
$code.=<<___;
.text
.globl aes_fx_encrypt
.align 32
aes_fx_encrypt:
and $inp, 7, $tmp ! is input aligned?
alignaddr $inp, %g0, $inp
ld [$key + 240], $rounds
ldd [$key + 0], %f6
ldd [$key + 8], %f8
ldd [$inp + 0], %f0 ! load input
brz,pt $tmp, .Lenc_inp_aligned
ldd [$inp + 8], %f2
ldd [$inp + 16], %f4
faligndata %f0, %f2, %f0
faligndata %f2, %f4, %f2
.Lenc_inp_aligned:
ldd [$key + 16], %f10
ldd [$key + 24], %f12
add $key, 32, $key
fxor %f0, %f6, %f0 ! ^=round[0]
fxor %f2, %f8, %f2
ldd [$key + 0], %f6
ldd [$key + 8], %f8
sub $rounds, 4, $rounds
.Loop_enc:
fmovd %f0, %f4
faesencx %f2, %f10, %f0
faesencx %f4, %f12, %f2
ldd [$key + 16], %f10
ldd [$key + 24], %f12
add $key, 32, $key
fmovd %f0, %f4
faesencx %f2, %f6, %f0
faesencx %f4, %f8, %f2
ldd [$key + 0], %f6
ldd [$key + 8], %f8
brnz,a $rounds, .Loop_enc
sub $rounds, 2, $rounds
andcc $out, 7, $tmp ! is output aligned?
mov 0xff, $mask
alignaddrl $out, %g0, $out
srl $mask, $tmp, $mask
fmovd %f0, %f4
faesencx %f2, %f10, %f0
faesencx %f4, %f12, %f2
fmovd %f0, %f4
faesenclx %f2, %f6, %f0
faesenclx %f4, %f8, %f2
bnz,pn %icc, .Lenc_out_unaligned
nop
std %f0, [$out + 0]
retl
std %f2, [$out + 8]
.Lenc_out_unaligned:
faligndata %f0, %f0, %f4
faligndata %f0, %f2, %f6
faligndata %f2, %f2, %f8
stda %f4, [$out + $mask]0xc0 ! partial store
std %f6, [$out + 8]
add $out, 16, $out
orn %g0, $mask, $mask
retl
stda %f8, [$out + $mask]0xc0 ! partial store
.type aes_fx_encrypt,#function
.size aes_fx_encrypt,.-aes_fx_encrypt
.globl aes_fx_decrypt
.align 32
aes_fx_decrypt:
and $inp, 7, $tmp ! is input aligned?
alignaddr $inp, %g0, $inp
ld [$key + 240], $rounds
ldd [$key + 0], %f6
ldd [$key + 8], %f8
ldd [$inp + 0], %f0 ! load input
brz,pt $tmp, .Ldec_inp_aligned
ldd [$inp + 8], %f2
ldd [$inp + 16], %f4
faligndata %f0, %f2, %f0
faligndata %f2, %f4, %f2
.Ldec_inp_aligned:
ldd [$key + 16], %f10
ldd [$key + 24], %f12
add $key, 32, $key
fxor %f0, %f6, %f0 ! ^=round[0]
fxor %f2, %f8, %f2
ldd [$key + 0], %f6
ldd [$key + 8], %f8
sub $rounds, 4, $rounds
.Loop_dec:
fmovd %f0, %f4
faesdecx %f2, %f10, %f0
faesdecx %f4, %f12, %f2
ldd [$key + 16], %f10
ldd [$key + 24], %f12
add $key, 32, $key
fmovd %f0, %f4
faesdecx %f2, %f6, %f0
faesdecx %f4, %f8, %f2
ldd [$key + 0], %f6
ldd [$key + 8], %f8
brnz,a $rounds, .Loop_dec
sub $rounds, 2, $rounds
andcc $out, 7, $tmp ! is output aligned?
mov 0xff, $mask
alignaddrl $out, %g0, $out
srl $mask, $tmp, $mask
fmovd %f0, %f4
faesdecx %f2, %f10, %f0
faesdecx %f4, %f12, %f2
fmovd %f0, %f4
faesdeclx %f2, %f6, %f0
faesdeclx %f4, %f8, %f2
bnz,pn %icc, .Ldec_out_unaligned
nop
std %f0, [$out + 0]
retl
std %f2, [$out + 8]
.Ldec_out_unaligned:
faligndata %f0, %f0, %f4
faligndata %f0, %f2, %f6
faligndata %f2, %f2, %f8
stda %f4, [$out + $mask]0xc0 ! partial store
std %f6, [$out + 8]
add $out, 16, $out
orn %g0, $mask, $mask
retl
stda %f8, [$out + $mask]0xc0 ! partial store
.type aes_fx_decrypt,#function
.size aes_fx_decrypt,.-aes_fx_decrypt
___
}
{
my ($inp,$bits,$out,$tmp,$inc) = map("%o$_",(0..5));
$code.=<<___;
.globl aes_fx_set_decrypt_key
.align 32
aes_fx_set_decrypt_key:
b .Lset_encrypt_key
mov -1, $inc
retl
nop
.type aes_fx_set_decrypt_key,#function
.size aes_fx_set_decrypt_key,.-aes_fx_set_decrypt_key
.globl aes_fx_set_encrypt_key
.align 32
aes_fx_set_encrypt_key:
mov 1, $inc
.Lset_encrypt_key:
and $inp, 7, $tmp
alignaddr $inp, %g0, $inp
nop
cmp $bits, 192
ldd [$inp + 0], %f0
bl,pt %icc, .L128
ldd [$inp + 8], %f2
be,pt %icc, .L192
ldd [$inp + 16], %f4
brz,pt $tmp, .L256aligned
ldd [$inp + 24], %f6
ldd [$inp + 32], %f8
faligndata %f0, %f2, %f0
faligndata %f2, %f4, %f2
faligndata %f4, %f6, %f4
faligndata %f6, %f8, %f6
.L256aligned:
mov 14, $bits
and $inc, `14*16`, $tmp
st $bits, [$out + 240] ! store rounds
add $out, $tmp, $out ! start or end of key schedule
sllx $inc, 4, $inc ! 16 or -16
___
for ($i=0; $i<6; $i++) {
$code.=<<___;
std %f0, [$out + 0]
faeskeyx %f6, `0x10+$i`, %f0
std %f2, [$out + 8]
add $out, $inc, $out
faeskeyx %f0, 0x00, %f2
std %f4, [$out + 0]
faeskeyx %f2, 0x01, %f4
std %f6, [$out + 8]
add $out, $inc, $out
faeskeyx %f4, 0x00, %f6
___
}
$code.=<<___;
std %f0, [$out + 0]
faeskeyx %f6, `0x10+$i`, %f0
std %f2, [$out + 8]
add $out, $inc, $out
faeskeyx %f0, 0x00, %f2
std %f4,[$out+0]
std %f6,[$out+8]
add $out, $inc, $out
std %f0,[$out+0]
std %f2,[$out+8]
retl
xor %o0, %o0, %o0 ! return 0
.align 16
.L192:
brz,pt $tmp, .L192aligned
nop
ldd [$inp + 24], %f6
faligndata %f0, %f2, %f0
faligndata %f2, %f4, %f2
faligndata %f4, %f6, %f4
.L192aligned:
mov 12, $bits
and $inc, `12*16`, $tmp
st $bits, [$out + 240] ! store rounds
add $out, $tmp, $out ! start or end of key schedule
sllx $inc, 4, $inc ! 16 or -16
___
for ($i=0; $i<8; $i+=2) {
$code.=<<___;
std %f0, [$out + 0]
faeskeyx %f4, `0x10+$i`, %f0
std %f2, [$out + 8]
add $out, $inc, $out
faeskeyx %f0, 0x00, %f2
std %f4, [$out + 0]
faeskeyx %f2, 0x00, %f4
std %f0, [$out + 8]
add $out, $inc, $out
faeskeyx %f4, `0x10+$i+1`, %f0
std %f2, [$out + 0]
faeskeyx %f0, 0x00, %f2
std %f4, [$out + 8]
add $out, $inc, $out
___
$code.=<<___ if ($i<6);
faeskeyx %f2, 0x00, %f4
___
}
$code.=<<___;
std %f0, [$out + 0]
std %f2, [$out + 8]
retl
xor %o0, %o0, %o0 ! return 0
.align 16
.L128:
brz,pt $tmp, .L128aligned
nop
ldd [$inp + 16], %f4
faligndata %f0, %f2, %f0
faligndata %f2, %f4, %f2
.L128aligned:
mov 10, $bits
and $inc, `10*16`, $tmp
st $bits, [$out + 240] ! store rounds
add $out, $tmp, $out ! start or end of key schedule
sllx $inc, 4, $inc ! 16 or -16
___
for ($i=0; $i<10; $i++) {
$code.=<<___;
std %f0, [$out + 0]
faeskeyx %f2, `0x10+$i`, %f0
std %f2, [$out + 8]
add $out, $inc, $out
faeskeyx %f0, 0x00, %f2
___
}
$code.=<<___;
std %f0, [$out + 0]
std %f2, [$out + 8]
retl
xor %o0, %o0, %o0 ! return 0
.type aes_fx_set_encrypt_key,#function
.size aes_fx_set_encrypt_key,.-aes_fx_set_encrypt_key
___
}
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my ($ref,$opf);
my %visopf = ( "faligndata" => 0x048,
"bshuffle" => 0x04c,
"fxor" => 0x06c,
"fsrc2" => 0x078 );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = ( "alignaddr" => 0x018,
"bmask" => 0x019,
"alignaddrl" => 0x01a );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%([goli])([0-9])/);
$_=$bias{$1}+$2;
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
sub unfx {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my ($ref,$opf);
my %aesopf = ( "faesencx" => 0x90,
"faesdecx" => 0x91,
"faesenclx" => 0x92,
"faesdeclx" => 0x93,
"faeskeyx" => 0x94 );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if (defined($opf=$aesopf{$mnemonic})) {
$rs2 = ($rs2 =~ /%f([0-6]*[02468])/) ? (($1|$1>>5)&31) : $rs2;
$rs2 = oct($rs2) if ($rs2 =~ /^0/);
foreach ($rs1,$rd) {
return $ref if (!/%f([0-9]{1,2})/);
$_=$1;
if ($1>=32) {
return $ref if ($1&1);
# re-encode for upper double register addressing
$_=($1|$1>>5)&31;
}
}
return sprintf ".word\t0x%08x !%s",
2<<30|$rd<<25|0x36<<19|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(faes[^x]{3,4}x)\s+(%f[0-9]{1,2}),\s*([%fx0-9]+),\s*(%f[0-9]{1,2})/
&unfx($1,$2,$3,$4,$5)
/ge or
s/\b([fb][^\s]*)\s+(%f[0-9]{1,2}),\s*(%f[0-9]{1,2}),\s*(%f[0-9]{1,2})/
&unvis($1,$2,$3,$4)
/ge or
s/\b(alignaddr[l]*)\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unvis3($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT;