openssl/apps/s_cb.c
Matt Caswell 78021171db Fix -verify_return_error in s_client
The "verify_return_error" option in s_client is documented as:

 Return verification errors instead of continuing. This will typically
 abort the handshake with a fatal error.

In practice this option was ignored unless also accompanied with the
"-verify" option. It's unclear what the original intention was. One fix
could have been to change the documentation to match the actual behaviour.
However it seems unecessarily complex and unexpected that you should need
to have both options. Instead the fix implemented here is make the option
match the documentation so that "-verify" is not also required.

Note that s_server has a similar option where "-verify" (or "-Verify") is
still required. This makes more sense because those options additionally
request a certificate from the client. Without a certificate there is no
possibility of a verification failing, and so "-verify_return_error" doing
nothing seems ok.

Fixes #8079

Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8080)
2019-02-14 17:07:57 +00:00

1481 lines
44 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* callback functions used by s_client, s_server, and s_time */
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memcpy() and strcmp() */
#include "apps.h"
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/ssl.h>
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include "s_apps.h"
#define COOKIE_SECRET_LENGTH 16
VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
#ifndef OPENSSL_NO_SOCK
static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
static int cookie_initialized = 0;
#endif
static BIO *bio_keylog = NULL;
static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
{
for ( ; list->name; ++list)
if (list->retval == val)
return list->name;
return def;
}
int verify_callback(int ok, X509_STORE_CTX *ctx)
{
X509 *err_cert;
int err, depth;
err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);
if (!verify_args.quiet || !ok) {
BIO_printf(bio_err, "depth=%d ", depth);
if (err_cert != NULL) {
X509_NAME_print_ex(bio_err,
X509_get_subject_name(err_cert),
0, get_nameopt());
BIO_puts(bio_err, "\n");
} else {
BIO_puts(bio_err, "<no cert>\n");
}
}
if (!ok) {
BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
X509_verify_cert_error_string(err));
if (verify_args.depth < 0 || verify_args.depth >= depth) {
if (!verify_args.return_error)
ok = 1;
verify_args.error = err;
} else {
ok = 0;
verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
}
}
switch (err) {
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
BIO_puts(bio_err, "issuer= ");
X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
0, get_nameopt());
BIO_puts(bio_err, "\n");
break;
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
BIO_printf(bio_err, "notBefore=");
ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
BIO_printf(bio_err, "notAfter=");
ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
BIO_printf(bio_err, "\n");
break;
case X509_V_ERR_NO_EXPLICIT_POLICY:
if (!verify_args.quiet)
policies_print(ctx);
break;
}
if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
policies_print(ctx);
if (ok && !verify_args.quiet)
BIO_printf(bio_err, "verify return:%d\n", ok);
return ok;
}
int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
{
if (cert_file != NULL) {
if (SSL_CTX_use_certificate_file(ctx, cert_file,
SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get certificate from '%s'\n",
cert_file);
ERR_print_errors(bio_err);
return 0;
}
if (key_file == NULL)
key_file = cert_file;
if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get private key from '%s'\n",
key_file);
ERR_print_errors(bio_err);
return 0;
}
/*
* If we are using DSA, we can copy the parameters from the private
* key
*/
/*
* Now we know that a key and cert have been set against the SSL
* context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
}
return 1;
}
int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
STACK_OF(X509) *chain, int build_chain)
{
int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
if (cert == NULL)
return 1;
if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
BIO_printf(bio_err, "error setting certificate\n");
ERR_print_errors(bio_err);
return 0;
}
if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
BIO_printf(bio_err, "error setting private key\n");
ERR_print_errors(bio_err);
return 0;
}
/*
* Now we know that a key and cert have been set against the SSL context
*/
if (!SSL_CTX_check_private_key(ctx)) {
BIO_printf(bio_err,
"Private key does not match the certificate public key\n");
return 0;
}
if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
BIO_printf(bio_err, "error setting certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
BIO_printf(bio_err, "error building certificate chain\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static STRINT_PAIR cert_type_list[] = {
{"RSA sign", TLS_CT_RSA_SIGN},
{"DSA sign", TLS_CT_DSS_SIGN},
{"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
{"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
{"ECDSA sign", TLS_CT_ECDSA_SIGN},
{"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
{"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
{"GOST01 Sign", TLS_CT_GOST01_SIGN},
{NULL}
};
static void ssl_print_client_cert_types(BIO *bio, SSL *s)
{
const unsigned char *p;
int i;
int cert_type_num = SSL_get0_certificate_types(s, &p);
if (!cert_type_num)
return;
BIO_puts(bio, "Client Certificate Types: ");
for (i = 0; i < cert_type_num; i++) {
unsigned char cert_type = p[i];
const char *cname = lookup((int)cert_type, cert_type_list, NULL);
if (i)
BIO_puts(bio, ", ");
if (cname != NULL)
BIO_puts(bio, cname);
else
BIO_printf(bio, "UNKNOWN (%d),", cert_type);
}
BIO_puts(bio, "\n");
}
static const char *get_sigtype(int nid)
{
switch (nid) {
case EVP_PKEY_RSA:
return "RSA";
case EVP_PKEY_RSA_PSS:
return "RSA-PSS";
case EVP_PKEY_DSA:
return "DSA";
case EVP_PKEY_EC:
return "ECDSA";
case NID_ED25519:
return "Ed25519";
case NID_ED448:
return "Ed448";
case NID_id_GostR3410_2001:
return "gost2001";
case NID_id_GostR3410_2012_256:
return "gost2012_256";
case NID_id_GostR3410_2012_512:
return "gost2012_512";
default:
return NULL;
}
}
static int do_print_sigalgs(BIO *out, SSL *s, int shared)
{
int i, nsig, client;
client = SSL_is_server(s) ? 0 : 1;
if (shared)
nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
else
nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
if (nsig == 0)
return 1;
if (shared)
BIO_puts(out, "Shared ");
if (client)
BIO_puts(out, "Requested ");
BIO_puts(out, "Signature Algorithms: ");
for (i = 0; i < nsig; i++) {
int hash_nid, sign_nid;
unsigned char rhash, rsign;
const char *sstr = NULL;
if (shared)
SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
&rsign, &rhash);
else
SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
if (i)
BIO_puts(out, ":");
sstr = get_sigtype(sign_nid);
if (sstr)
BIO_printf(out, "%s", sstr);
else
BIO_printf(out, "0x%02X", (int)rsign);
if (hash_nid != NID_undef)
BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
else if (sstr == NULL)
BIO_printf(out, "+0x%02X", (int)rhash);
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_sigalgs(BIO *out, SSL *s)
{
int nid;
if (!SSL_is_server(s))
ssl_print_client_cert_types(out, s);
do_print_sigalgs(out, s, 0);
do_print_sigalgs(out, s, 1);
if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
if (SSL_get_peer_signature_type_nid(s, &nid))
BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
return 1;
}
#ifndef OPENSSL_NO_EC
int ssl_print_point_formats(BIO *out, SSL *s)
{
int i, nformats;
const char *pformats;
nformats = SSL_get0_ec_point_formats(s, &pformats);
if (nformats <= 0)
return 1;
BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
for (i = 0; i < nformats; i++, pformats++) {
if (i)
BIO_puts(out, ":");
switch (*pformats) {
case TLSEXT_ECPOINTFORMAT_uncompressed:
BIO_puts(out, "uncompressed");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
BIO_puts(out, "ansiX962_compressed_prime");
break;
case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
BIO_puts(out, "ansiX962_compressed_char2");
break;
default:
BIO_printf(out, "unknown(%d)", (int)*pformats);
break;
}
}
BIO_puts(out, "\n");
return 1;
}
int ssl_print_groups(BIO *out, SSL *s, int noshared)
{
int i, ngroups, *groups, nid;
const char *gname;
ngroups = SSL_get1_groups(s, NULL);
if (ngroups <= 0)
return 1;
groups = app_malloc(ngroups * sizeof(int), "groups to print");
SSL_get1_groups(s, groups);
BIO_puts(out, "Supported Elliptic Groups: ");
for (i = 0; i < ngroups; i++) {
if (i)
BIO_puts(out, ":");
nid = groups[i];
/* If unrecognised print out hex version */
if (nid & TLSEXT_nid_unknown) {
BIO_printf(out, "0x%04X", nid & 0xFFFF);
} else {
/* TODO(TLS1.3): Get group name here */
/* Use NIST name for curve if it exists */
gname = EC_curve_nid2nist(nid);
if (gname == NULL)
gname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", gname);
}
}
OPENSSL_free(groups);
if (noshared) {
BIO_puts(out, "\n");
return 1;
}
BIO_puts(out, "\nShared Elliptic groups: ");
ngroups = SSL_get_shared_group(s, -1);
for (i = 0; i < ngroups; i++) {
if (i)
BIO_puts(out, ":");
nid = SSL_get_shared_group(s, i);
/* TODO(TLS1.3): Convert for DH groups */
gname = EC_curve_nid2nist(nid);
if (gname == NULL)
gname = OBJ_nid2sn(nid);
BIO_printf(out, "%s", gname);
}
if (ngroups == 0)
BIO_puts(out, "NONE");
BIO_puts(out, "\n");
return 1;
}
#endif
int ssl_print_tmp_key(BIO *out, SSL *s)
{
EVP_PKEY *key;
if (!SSL_get_peer_tmp_key(s, &key))
return 1;
BIO_puts(out, "Server Temp Key: ");
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
break;
case EVP_PKEY_DH:
BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
break;
#ifndef OPENSSL_NO_EC
case EVP_PKEY_EC:
{
EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
int nid;
const char *cname;
nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
EC_KEY_free(ec);
cname = EC_curve_nid2nist(nid);
if (cname == NULL)
cname = OBJ_nid2sn(nid);
BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
}
break;
#endif
default:
BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)),
EVP_PKEY_bits(key));
}
EVP_PKEY_free(key);
return 1;
}
long bio_dump_callback(BIO *bio, int cmd, const char *argp,
int argi, long argl, long ret)
{
BIO *out;
out = (BIO *)BIO_get_callback_arg(bio);
if (out == NULL)
return ret;
if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
return ret;
} else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
(void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
BIO_dump(out, argp, (int)ret);
}
return ret;
}
void apps_ssl_info_callback(const SSL *s, int where, int ret)
{
const char *str;
int w;
w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT)
str = "SSL_connect";
else if (w & SSL_ST_ACCEPT)
str = "SSL_accept";
else
str = "undefined";
if (where & SSL_CB_LOOP) {
BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
} else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));
} else if (where & SSL_CB_EXIT) {
if (ret == 0)
BIO_printf(bio_err, "%s:failed in %s\n",
str, SSL_state_string_long(s));
else if (ret < 0)
BIO_printf(bio_err, "%s:error in %s\n",
str, SSL_state_string_long(s));
}
}
static STRINT_PAIR ssl_versions[] = {
{"SSL 3.0", SSL3_VERSION},
{"TLS 1.0", TLS1_VERSION},
{"TLS 1.1", TLS1_1_VERSION},
{"TLS 1.2", TLS1_2_VERSION},
{"TLS 1.3", TLS1_3_VERSION},
{"DTLS 1.0", DTLS1_VERSION},
{"DTLS 1.0 (bad)", DTLS1_BAD_VER},
{NULL}
};
static STRINT_PAIR alert_types[] = {
{" close_notify", 0},
{" end_of_early_data", 1},
{" unexpected_message", 10},
{" bad_record_mac", 20},
{" decryption_failed", 21},
{" record_overflow", 22},
{" decompression_failure", 30},
{" handshake_failure", 40},
{" bad_certificate", 42},
{" unsupported_certificate", 43},
{" certificate_revoked", 44},
{" certificate_expired", 45},
{" certificate_unknown", 46},
{" illegal_parameter", 47},
{" unknown_ca", 48},
{" access_denied", 49},
{" decode_error", 50},
{" decrypt_error", 51},
{" export_restriction", 60},
{" protocol_version", 70},
{" insufficient_security", 71},
{" internal_error", 80},
{" inappropriate_fallback", 86},
{" user_canceled", 90},
{" no_renegotiation", 100},
{" missing_extension", 109},
{" unsupported_extension", 110},
{" certificate_unobtainable", 111},
{" unrecognized_name", 112},
{" bad_certificate_status_response", 113},
{" bad_certificate_hash_value", 114},
{" unknown_psk_identity", 115},
{" certificate_required", 116},
{NULL}
};
static STRINT_PAIR handshakes[] = {
{", HelloRequest", SSL3_MT_HELLO_REQUEST},
{", ClientHello", SSL3_MT_CLIENT_HELLO},
{", ServerHello", SSL3_MT_SERVER_HELLO},
{", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
{", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
{", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
{", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
{", Certificate", SSL3_MT_CERTIFICATE},
{", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
{", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
{", ServerHelloDone", SSL3_MT_SERVER_DONE},
{", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
{", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
{", Finished", SSL3_MT_FINISHED},
{", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
{", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
{", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
{", KeyUpdate", SSL3_MT_KEY_UPDATE},
#ifndef OPENSSL_NO_NEXTPROTONEG
{", NextProto", SSL3_MT_NEXT_PROTO},
#endif
{", MessageHash", SSL3_MT_MESSAGE_HASH},
{NULL}
};
void msg_cb(int write_p, int version, int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)
{
BIO *bio = arg;
const char *str_write_p = write_p ? ">>>" : "<<<";
const char *str_version = lookup(version, ssl_versions, "???");
const char *str_content_type = "", *str_details1 = "", *str_details2 = "";
const unsigned char* bp = buf;
if (version == SSL3_VERSION ||
version == TLS1_VERSION ||
version == TLS1_1_VERSION ||
version == TLS1_2_VERSION ||
version == TLS1_3_VERSION ||
version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
switch (content_type) {
case 20:
str_content_type = ", ChangeCipherSpec";
break;
case 21:
str_content_type = ", Alert";
str_details1 = ", ???";
if (len == 2) {
switch (bp[0]) {
case 1:
str_details1 = ", warning";
break;
case 2:
str_details1 = ", fatal";
break;
}
str_details2 = lookup((int)bp[1], alert_types, " ???");
}
break;
case 22:
str_content_type = ", Handshake";
str_details1 = "???";
if (len > 0)
str_details1 = lookup((int)bp[0], handshakes, "???");
break;
case 23:
str_content_type = ", ApplicationData";
break;
#ifndef OPENSSL_NO_HEARTBEATS
case 24:
str_details1 = ", Heartbeat";
if (len > 0) {
switch (bp[0]) {
case 1:
str_details1 = ", HeartbeatRequest";
break;
case 2:
str_details1 = ", HeartbeatResponse";
break;
}
}
break;
#endif
}
}
BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
str_content_type, (unsigned long)len, str_details1,
str_details2);
if (len > 0) {
size_t num, i;
BIO_printf(bio, " ");
num = len;
for (i = 0; i < num; i++) {
if (i % 16 == 0 && i > 0)
BIO_printf(bio, "\n ");
BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
}
if (i < len)
BIO_printf(bio, " ...");
BIO_printf(bio, "\n");
}
(void)BIO_flush(bio);
}
static STRINT_PAIR tlsext_types[] = {
{"server name", TLSEXT_TYPE_server_name},
{"max fragment length", TLSEXT_TYPE_max_fragment_length},
{"client certificate URL", TLSEXT_TYPE_client_certificate_url},
{"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
{"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
{"status request", TLSEXT_TYPE_status_request},
{"user mapping", TLSEXT_TYPE_user_mapping},
{"client authz", TLSEXT_TYPE_client_authz},
{"server authz", TLSEXT_TYPE_server_authz},
{"cert type", TLSEXT_TYPE_cert_type},
{"supported_groups", TLSEXT_TYPE_supported_groups},
{"EC point formats", TLSEXT_TYPE_ec_point_formats},
{"SRP", TLSEXT_TYPE_srp},
{"signature algorithms", TLSEXT_TYPE_signature_algorithms},
{"use SRTP", TLSEXT_TYPE_use_srtp},
{"heartbeat", TLSEXT_TYPE_heartbeat},
{"session ticket", TLSEXT_TYPE_session_ticket},
{"renegotiation info", TLSEXT_TYPE_renegotiate},
{"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
{"TLS padding", TLSEXT_TYPE_padding},
#ifdef TLSEXT_TYPE_next_proto_neg
{"next protocol", TLSEXT_TYPE_next_proto_neg},
#endif
#ifdef TLSEXT_TYPE_encrypt_then_mac
{"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
{"application layer protocol negotiation",
TLSEXT_TYPE_application_layer_protocol_negotiation},
#endif
#ifdef TLSEXT_TYPE_extended_master_secret
{"extended master secret", TLSEXT_TYPE_extended_master_secret},
#endif
{"key share", TLSEXT_TYPE_key_share},
{"supported versions", TLSEXT_TYPE_supported_versions},
{"psk", TLSEXT_TYPE_psk},
{"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
{"certificate authorities", TLSEXT_TYPE_certificate_authorities},
{"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
{NULL}
};
void tlsext_cb(SSL *s, int client_server, int type,
const unsigned char *data, int len, void *arg)
{
BIO *bio = arg;
const char *extname = lookup(type, tlsext_types, "unknown");
BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
client_server ? "server" : "client", extname, type, len);
BIO_dump(bio, (const char *)data, len);
(void)BIO_flush(bio);
}
#ifndef OPENSSL_NO_SOCK
int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
unsigned int *cookie_len)
{
unsigned char *buffer;
size_t length = 0;
unsigned short port;
BIO_ADDR *lpeer = NULL, *peer = NULL;
/* Initialize a random secret */
if (!cookie_initialized) {
if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
BIO_printf(bio_err, "error setting random cookie secret\n");
return 0;
}
cookie_initialized = 1;
}
if (SSL_is_dtls(ssl)) {
lpeer = peer = BIO_ADDR_new();
if (peer == NULL) {
BIO_printf(bio_err, "memory full\n");
return 0;
}
/* Read peer information */
(void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
} else {
peer = ourpeer;
}
/* Create buffer with peer's address and port */
if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
BIO_printf(bio_err, "Failed getting peer address\n");
return 0;
}
OPENSSL_assert(length != 0);
port = BIO_ADDR_rawport(peer);
length += sizeof(port);
buffer = app_malloc(length, "cookie generate buffer");
memcpy(buffer, &port, sizeof(port));
BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
/* Calculate HMAC of buffer using the secret */
HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH,
buffer, length, cookie, cookie_len);
OPENSSL_free(buffer);
BIO_ADDR_free(lpeer);
return 1;
}
int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
unsigned int cookie_len)
{
unsigned char result[EVP_MAX_MD_SIZE];
unsigned int resultlength;
/* Note: we check cookie_initialized because if it's not,
* it cannot be valid */
if (cookie_initialized
&& generate_cookie_callback(ssl, result, &resultlength)
&& cookie_len == resultlength
&& memcmp(result, cookie, resultlength) == 0)
return 1;
return 0;
}
int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
size_t *cookie_len)
{
unsigned int temp;
int res = generate_cookie_callback(ssl, cookie, &temp);
*cookie_len = temp;
return res;
}
int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
size_t cookie_len)
{
return verify_cookie_callback(ssl, cookie, cookie_len);
}
#endif
/*
* Example of extended certificate handling. Where the standard support of
* one certificate per algorithm is not sufficient an application can decide
* which certificate(s) to use at runtime based on whatever criteria it deems
* appropriate.
*/
/* Linked list of certificates, keys and chains */
struct ssl_excert_st {
int certform;
const char *certfile;
int keyform;
const char *keyfile;
const char *chainfile;
X509 *cert;
EVP_PKEY *key;
STACK_OF(X509) *chain;
int build_chain;
struct ssl_excert_st *next, *prev;
};
static STRINT_PAIR chain_flags[] = {
{"Overall Validity", CERT_PKEY_VALID},
{"Sign with EE key", CERT_PKEY_SIGN},
{"EE signature", CERT_PKEY_EE_SIGNATURE},
{"CA signature", CERT_PKEY_CA_SIGNATURE},
{"EE key parameters", CERT_PKEY_EE_PARAM},
{"CA key parameters", CERT_PKEY_CA_PARAM},
{"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
{"Issuer Name", CERT_PKEY_ISSUER_NAME},
{"Certificate Type", CERT_PKEY_CERT_TYPE},
{NULL}
};
static void print_chain_flags(SSL *s, int flags)
{
STRINT_PAIR *pp;
for (pp = chain_flags; pp->name; ++pp)
BIO_printf(bio_err, "\t%s: %s\n",
pp->name,
(flags & pp->retval) ? "OK" : "NOT OK");
BIO_printf(bio_err, "\tSuite B: ");
if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
else
BIO_printf(bio_err, "not tested\n");
}
/*
* Very basic selection callback: just use any certificate chain reported as
* valid. More sophisticated could prioritise according to local policy.
*/
static int set_cert_cb(SSL *ssl, void *arg)
{
int i, rv;
SSL_EXCERT *exc = arg;
#ifdef CERT_CB_TEST_RETRY
static int retry_cnt;
if (retry_cnt < 5) {
retry_cnt++;
BIO_printf(bio_err,
"Certificate callback retry test: count %d\n",
retry_cnt);
return -1;
}
#endif
SSL_certs_clear(ssl);
if (exc == NULL)
return 1;
/*
* Go to end of list and traverse backwards since we prepend newer
* entries this retains the original order.
*/
while (exc->next != NULL)
exc = exc->next;
i = 0;
while (exc != NULL) {
i++;
rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
get_nameopt());
BIO_puts(bio_err, "\n");
print_chain_flags(ssl, rv);
if (rv & CERT_PKEY_VALID) {
if (!SSL_use_certificate(ssl, exc->cert)
|| !SSL_use_PrivateKey(ssl, exc->key)) {
return 0;
}
/*
* NB: we wouldn't normally do this as it is not efficient
* building chains on each connection better to cache the chain
* in advance.
*/
if (exc->build_chain) {
if (!SSL_build_cert_chain(ssl, 0))
return 0;
} else if (exc->chain != NULL) {
SSL_set1_chain(ssl, exc->chain);
}
}
exc = exc->prev;
}
return 1;
}
void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
{
SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
}
static int ssl_excert_prepend(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
memset(exc, 0, sizeof(*exc));
exc->next = *pexc;
*pexc = exc;
if (exc->next) {
exc->certform = exc->next->certform;
exc->keyform = exc->next->keyform;
exc->next->prev = exc;
} else {
exc->certform = FORMAT_PEM;
exc->keyform = FORMAT_PEM;
}
return 1;
}
void ssl_excert_free(SSL_EXCERT *exc)
{
SSL_EXCERT *curr;
if (exc == NULL)
return;
while (exc) {
X509_free(exc->cert);
EVP_PKEY_free(exc->key);
sk_X509_pop_free(exc->chain, X509_free);
curr = exc;
exc = exc->next;
OPENSSL_free(curr);
}
}
int load_excert(SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
if (exc == NULL)
return 1;
/* If nothing in list, free and set to NULL */
if (exc->certfile == NULL && exc->next == NULL) {
ssl_excert_free(exc);
*pexc = NULL;
return 1;
}
for (; exc; exc = exc->next) {
if (exc->certfile == NULL) {
BIO_printf(bio_err, "Missing filename\n");
return 0;
}
exc->cert = load_cert(exc->certfile, exc->certform,
"Server Certificate");
if (exc->cert == NULL)
return 0;
if (exc->keyfile != NULL) {
exc->key = load_key(exc->keyfile, exc->keyform,
0, NULL, NULL, "Server Key");
} else {
exc->key = load_key(exc->certfile, exc->certform,
0, NULL, NULL, "Server Key");
}
if (exc->key == NULL)
return 0;
if (exc->chainfile != NULL) {
if (!load_certs(exc->chainfile, &exc->chain, FORMAT_PEM, NULL,
"Server Chain"))
return 0;
}
}
return 1;
}
enum range { OPT_X_ENUM };
int args_excert(int opt, SSL_EXCERT **pexc)
{
SSL_EXCERT *exc = *pexc;
assert(opt > OPT_X__FIRST);
assert(opt < OPT_X__LAST);
if (exc == NULL) {
if (!ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, " %s: Error initialising xcert\n",
opt_getprog());
goto err;
}
*pexc = exc;
}
switch ((enum range)opt) {
case OPT_X__FIRST:
case OPT_X__LAST:
return 0;
case OPT_X_CERT:
if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
goto err;
}
*pexc = exc;
exc->certfile = opt_arg();
break;
case OPT_X_KEY:
if (exc->keyfile != NULL) {
BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
goto err;
}
exc->keyfile = opt_arg();
break;
case OPT_X_CHAIN:
if (exc->chainfile != NULL) {
BIO_printf(bio_err, "%s: Chain already specified\n",
opt_getprog());
goto err;
}
exc->chainfile = opt_arg();
break;
case OPT_X_CHAIN_BUILD:
exc->build_chain = 1;
break;
case OPT_X_CERTFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->certform))
return 0;
break;
case OPT_X_KEYFORM:
if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->keyform))
return 0;
break;
}
return 1;
err:
ERR_print_errors(bio_err);
ssl_excert_free(exc);
*pexc = NULL;
return 0;
}
static void print_raw_cipherlist(SSL *s)
{
const unsigned char *rlist;
static const unsigned char scsv_id[] = { 0, 0xFF };
size_t i, rlistlen, num;
if (!SSL_is_server(s))
return;
num = SSL_get0_raw_cipherlist(s, NULL);
OPENSSL_assert(num == 2);
rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
BIO_puts(bio_err, "Client cipher list: ");
for (i = 0; i < rlistlen; i += num, rlist += num) {
const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
if (i)
BIO_puts(bio_err, ":");
if (c != NULL) {
BIO_puts(bio_err, SSL_CIPHER_get_name(c));
} else if (memcmp(rlist, scsv_id, num) == 0) {
BIO_puts(bio_err, "SCSV");
} else {
size_t j;
BIO_puts(bio_err, "0x");
for (j = 0; j < num; j++)
BIO_printf(bio_err, "%02X", rlist[j]);
}
}
BIO_puts(bio_err, "\n");
}
/*
* Hex encoder for TLSA RRdata, not ':' delimited.
*/
static char *hexencode(const unsigned char *data, size_t len)
{
static const char *hex = "0123456789abcdef";
char *out;
char *cp;
size_t outlen = 2 * len + 1;
int ilen = (int) outlen;
if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
opt_getprog(), len);
exit(1);
}
cp = out = app_malloc(ilen, "TLSA hex data buffer");
while (len-- > 0) {
*cp++ = hex[(*data >> 4) & 0x0f];
*cp++ = hex[*data++ & 0x0f];
}
*cp = '\0';
return out;
}
void print_verify_detail(SSL *s, BIO *bio)
{
int mdpth;
EVP_PKEY *mspki;
long verify_err = SSL_get_verify_result(s);
if (verify_err == X509_V_OK) {
const char *peername = SSL_get0_peername(s);
BIO_printf(bio, "Verification: OK\n");
if (peername != NULL)
BIO_printf(bio, "Verified peername: %s\n", peername);
} else {
const char *reason = X509_verify_cert_error_string(verify_err);
BIO_printf(bio, "Verification error: %s\n", reason);
}
if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
uint8_t usage, selector, mtype;
const unsigned char *data = NULL;
size_t dlen = 0;
char *hexdata;
mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
/*
* The TLSA data field can be quite long when it is a certificate,
* public key or even a SHA2-512 digest. Because the initial octets of
* ASN.1 certificates and public keys contain mostly boilerplate OIDs
* and lengths, we show the last 12 bytes of the data instead, as these
* are more likely to distinguish distinct TLSA records.
*/
#define TLSA_TAIL_SIZE 12
if (dlen > TLSA_TAIL_SIZE)
hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
else
hexdata = hexencode(data, dlen);
BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n",
usage, selector, mtype,
(dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata,
(mspki != NULL) ? "signed the certificate" :
mdpth ? "matched TA certificate" : "matched EE certificate",
mdpth);
OPENSSL_free(hexdata);
}
}
void print_ssl_summary(SSL *s)
{
const SSL_CIPHER *c;
X509 *peer;
BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
print_raw_cipherlist(s);
c = SSL_get_current_cipher(s);
BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
do_print_sigalgs(bio_err, s, 0);
peer = SSL_get_peer_certificate(s);
if (peer != NULL) {
int nid;
BIO_puts(bio_err, "Peer certificate: ");
X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
0, get_nameopt());
BIO_puts(bio_err, "\n");
if (SSL_get_peer_signature_nid(s, &nid))
BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
if (SSL_get_peer_signature_type_nid(s, &nid))
BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
print_verify_detail(s, bio_err);
} else {
BIO_puts(bio_err, "No peer certificate\n");
}
X509_free(peer);
#ifndef OPENSSL_NO_EC
ssl_print_point_formats(bio_err, s);
if (SSL_is_server(s))
ssl_print_groups(bio_err, s, 1);
else
ssl_print_tmp_key(bio_err, s);
#else
if (!SSL_is_server(s))
ssl_print_tmp_key(bio_err, s);
#endif
}
int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
SSL_CTX *ctx)
{
int i;
SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
const char *flag = sk_OPENSSL_STRING_value(str, i);
const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
if (arg != NULL)
BIO_printf(bio_err, "Error with command: \"%s %s\"\n",
flag, arg);
else
BIO_printf(bio_err, "Error with command: \"%s\"\n", flag);
ERR_print_errors(bio_err);
return 0;
}
}
if (!SSL_CONF_CTX_finish(cctx)) {
BIO_puts(bio_err, "Error finishing context\n");
ERR_print_errors(bio_err);
return 0;
}
return 1;
}
static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
{
X509_CRL *crl;
int i;
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
crl = sk_X509_CRL_value(crls, i);
X509_STORE_add_crl(st, crl);
}
return 1;
}
int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *st;
st = SSL_CTX_get_cert_store(ctx);
add_crls_store(st, crls);
if (crl_download)
store_setup_crl_download(st);
return 1;
}
int ssl_load_stores(SSL_CTX *ctx,
const char *vfyCApath, const char *vfyCAfile,
const char *chCApath, const char *chCAfile,
STACK_OF(X509_CRL) *crls, int crl_download)
{
X509_STORE *vfy = NULL, *ch = NULL;
int rv = 0;
if (vfyCApath != NULL || vfyCAfile != NULL) {
vfy = X509_STORE_new();
if (vfy == NULL)
goto err;
if (!X509_STORE_load_locations(vfy, vfyCAfile, vfyCApath))
goto err;
add_crls_store(vfy, crls);
SSL_CTX_set1_verify_cert_store(ctx, vfy);
if (crl_download)
store_setup_crl_download(vfy);
}
if (chCApath != NULL || chCAfile != NULL) {
ch = X509_STORE_new();
if (ch == NULL)
goto err;
if (!X509_STORE_load_locations(ch, chCAfile, chCApath))
goto err;
SSL_CTX_set1_chain_cert_store(ctx, ch);
}
rv = 1;
err:
X509_STORE_free(vfy);
X509_STORE_free(ch);
return rv;
}
/* Verbose print out of security callback */
typedef struct {
BIO *out;
int verbose;
int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
void *other, void *ex);
} security_debug_ex;
static STRINT_PAIR callback_types[] = {
{"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
{"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
{"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
#ifndef OPENSSL_NO_DH
{"Temp DH key bits", SSL_SECOP_TMP_DH},
#endif
{"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
{"Shared Curve", SSL_SECOP_CURVE_SHARED},
{"Check Curve", SSL_SECOP_CURVE_CHECK},
{"Supported Signature Algorithm digest", SSL_SECOP_SIGALG_SUPPORTED},
{"Shared Signature Algorithm digest", SSL_SECOP_SIGALG_SHARED},
{"Check Signature Algorithm digest", SSL_SECOP_SIGALG_CHECK},
{"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
{"Certificate chain EE key", SSL_SECOP_EE_KEY},
{"Certificate chain CA key", SSL_SECOP_CA_KEY},
{"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
{"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
{"Certificate chain CA digest", SSL_SECOP_CA_MD},
{"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
{"SSL compression", SSL_SECOP_COMPRESSION},
{"Session ticket", SSL_SECOP_TICKET},
{NULL}
};
static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
int op, int bits, int nid,
void *other, void *ex)
{
security_debug_ex *sdb = ex;
int rv, show_bits = 1, cert_md = 0;
const char *nm;
rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
if (rv == 1 && sdb->verbose < 2)
return 1;
BIO_puts(sdb->out, "Security callback: ");
nm = lookup(op, callback_types, NULL);
switch (op) {
case SSL_SECOP_TICKET:
case SSL_SECOP_COMPRESSION:
show_bits = 0;
nm = NULL;
break;
case SSL_SECOP_VERSION:
BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
show_bits = 0;
nm = NULL;
break;
case SSL_SECOP_CA_MD:
case SSL_SECOP_PEER_CA_MD:
cert_md = 1;
break;
}
if (nm != NULL)
BIO_printf(sdb->out, "%s=", nm);
switch (op & SSL_SECOP_OTHER_TYPE) {
case SSL_SECOP_OTHER_CIPHER:
BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
break;
#ifndef OPENSSL_NO_EC
case SSL_SECOP_OTHER_CURVE:
{
const char *cname;
cname = EC_curve_nid2nist(nid);
if (cname == NULL)
cname = OBJ_nid2sn(nid);
BIO_puts(sdb->out, cname);
}
break;
#endif
#ifndef OPENSSL_NO_DH
case SSL_SECOP_OTHER_DH:
{
DH *dh = other;
BIO_printf(sdb->out, "%d", DH_bits(dh));
break;
}
#endif
case SSL_SECOP_OTHER_CERT:
{
if (cert_md) {
int sig_nid = X509_get_signature_nid(other);
BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
} else {
EVP_PKEY *pkey = X509_get0_pubkey(other);
const char *algname = "";
EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
&algname, EVP_PKEY_get0_asn1(pkey));
BIO_printf(sdb->out, "%s, bits=%d",
algname, EVP_PKEY_bits(pkey));
}
break;
}
case SSL_SECOP_OTHER_SIGALG:
{
const unsigned char *salg = other;
const char *sname = NULL;
switch (salg[1]) {
case TLSEXT_signature_anonymous:
sname = "anonymous";
break;
case TLSEXT_signature_rsa:
sname = "RSA";
break;
case TLSEXT_signature_dsa:
sname = "DSA";
break;
case TLSEXT_signature_ecdsa:
sname = "ECDSA";
break;
}
BIO_puts(sdb->out, OBJ_nid2sn(nid));
if (sname)
BIO_printf(sdb->out, ", algorithm=%s", sname);
else
BIO_printf(sdb->out, ", algid=%d", salg[1]);
break;
}
}
if (show_bits)
BIO_printf(sdb->out, ", security bits=%d", bits);
BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
return rv;
}
void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
{
static security_debug_ex sdb;
sdb.out = bio_err;
sdb.verbose = verbose;
sdb.old_cb = SSL_CTX_get_security_callback(ctx);
SSL_CTX_set_security_callback(ctx, security_callback_debug);
SSL_CTX_set0_security_ex_data(ctx, &sdb);
}
static void keylog_callback(const SSL *ssl, const char *line)
{
if (bio_keylog == NULL) {
BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
return;
}
/*
* There might be concurrent writers to the keylog file, so we must ensure
* that the given line is written at once.
*/
BIO_printf(bio_keylog, "%s\n", line);
(void)BIO_flush(bio_keylog);
}
int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
{
/* Close any open files */
BIO_free_all(bio_keylog);
bio_keylog = NULL;
if (ctx == NULL || keylog_file == NULL) {
/* Keylogging is disabled, OK. */
return 0;
}
/*
* Append rather than write in order to allow concurrent modification.
* Furthermore, this preserves existing keylog files which is useful when
* the tool is run multiple times.
*/
bio_keylog = BIO_new_file(keylog_file, "a");
if (bio_keylog == NULL) {
BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
return 1;
}
/* Write a header for seekable, empty files (this excludes pipes). */
if (BIO_tell(bio_keylog) == 0) {
BIO_puts(bio_keylog,
"# SSL/TLS secrets log file, generated by OpenSSL\n");
(void)BIO_flush(bio_keylog);
}
SSL_CTX_set_keylog_callback(ctx, keylog_callback);
return 0;
}
void print_ca_names(BIO *bio, SSL *s)
{
const char *cs = SSL_is_server(s) ? "server" : "client";
const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
int i;
if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
return;
}
BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs);
for (i = 0; i < sk_X509_NAME_num(sk); i++) {
X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
BIO_write(bio, "\n", 1);
}
}