openssl/ssl/ssl_ciph.c
Kurt Roeckx c85c1e08ce Disable export and SSLv2 ciphers by default
They are moved to the COMPLEMENTOFDEFAULT instead.

Reviewed-by: Dr. Stephen Henson <steve@openssl.org>
2015-03-14 18:46:31 +01:00

1402 lines
45 KiB
C

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
#include <stdio.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_eFZA_IDX 5
#define SSL_ENC_NULL_IDX 6
#define SSL_ENC_AES128_IDX 7
#define SSL_ENC_AES256_IDX 8
#define SSL_ENC_CAMELLIA128_IDX 9
#define SSL_ENC_CAMELLIA256_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_NUM_IDX 12
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL,
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_NUM_IDX 2
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
NULL, NULL,
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st {
SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* Don't include eNULL unless specifically enabled. */
/*
* Don't include ECC in ALL because these ciphers are not yet official.
*/
/* must be first */
{0, SSL_TXT_ALL, 0, SSL_ALL & ~SSL_eNULL & ~SSL_kECDH & ~SSL_kECDHE,
SSL_ALL, 0, 0, 0, SSL_ALL, SSL_ALL},
/*
* TODO: COMPLEMENT OF ALL do not have ECC cipher suites handled properly.
*/
/* COMPLEMENT OF ALL */
{0, SSL_TXT_CMPALL, 0, SSL_eNULL, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_CMPDEF, 0, SSL_ADH, SSL_EXP_MASK, 0, 0, 0, SSL_AUTH_MASK, 0},
/* VRS Kerberos5 */
{0, SSL_TXT_kKRB5, 0, SSL_kKRB5, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_kDHr, 0, SSL_kDHr, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_kDHd, 0, SSL_kDHd, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_kEDH, 0, SSL_kEDH, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_kFZA, 0, SSL_kFZA, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_DH, 0, SSL_DH, 0, 0, 0, 0, SSL_MKEY_MASK, 0},
{0, SSL_TXT_ECC, 0, (SSL_kECDH | SSL_kECDHE), 0, 0, 0, 0, SSL_MKEY_MASK,
0},
{0, SSL_TXT_EDH, 0, SSL_EDH, 0, 0, 0, 0, SSL_MKEY_MASK | SSL_AUTH_MASK,
0},
/* VRS Kerberos5 */
{0, SSL_TXT_aKRB5, 0, SSL_aKRB5, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_aRSA, 0, SSL_aRSA, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_aDSS, 0, SSL_aDSS, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_aFZA, 0, SSL_aFZA, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_aNULL, 0, SSL_aNULL, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_aDH, 0, SSL_aDH, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_DSS, 0, SSL_DSS, 0, 0, 0, 0, SSL_AUTH_MASK, 0},
{0, SSL_TXT_DES, 0, SSL_DES, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_3DES, 0, SSL_3DES, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_RC4, 0, SSL_RC4, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_RC2, 0, SSL_RC2, 0, 0, 0, 0, SSL_ENC_MASK, 0},
#ifndef OPENSSL_NO_IDEA
{0, SSL_TXT_IDEA, 0, SSL_IDEA, 0, 0, 0, 0, SSL_ENC_MASK, 0},
#endif
{0, SSL_TXT_SEED, 0, SSL_SEED, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_eNULL, 0, SSL_eNULL, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_eFZA, 0, SSL_eFZA, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_AES, 0, SSL_AES, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_CAMELLIA, 0, SSL_CAMELLIA, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_MD5, 0, SSL_MD5, 0, 0, 0, 0, SSL_MAC_MASK, 0},
{0, SSL_TXT_SHA1, 0, SSL_SHA1, 0, 0, 0, 0, SSL_MAC_MASK, 0},
{0, SSL_TXT_SHA, 0, SSL_SHA, 0, 0, 0, 0, SSL_MAC_MASK, 0},
{0, SSL_TXT_NULL, 0, SSL_NULL, 0, 0, 0, 0, SSL_ENC_MASK, 0},
{0, SSL_TXT_KRB5, 0, SSL_KRB5, 0, 0, 0, 0, SSL_AUTH_MASK | SSL_MKEY_MASK,
0},
{0, SSL_TXT_RSA, 0, SSL_RSA, 0, 0, 0, 0, SSL_AUTH_MASK | SSL_MKEY_MASK,
0},
{0, SSL_TXT_ADH, 0, SSL_ADH, 0, 0, 0, 0, SSL_AUTH_MASK | SSL_MKEY_MASK,
0},
{0, SSL_TXT_FZA, 0, SSL_FZA, 0, 0, 0, 0,
SSL_AUTH_MASK | SSL_MKEY_MASK | SSL_ENC_MASK, 0},
{0, SSL_TXT_SSLV2, 0, SSL_SSLV2, 0, 0, 0, 0, SSL_SSL_MASK, 0},
{0, SSL_TXT_SSLV3, 0, SSL_SSLV3, 0, 0, 0, 0, SSL_SSL_MASK, 0},
{0, SSL_TXT_TLSV1, 0, SSL_TLSV1, 0, 0, 0, 0, SSL_SSL_MASK, 0},
{0, SSL_TXT_EXP, 0, 0, SSL_EXPORT, 0, 0, 0, 0, SSL_EXP_MASK},
{0, SSL_TXT_EXPORT, 0, 0, SSL_EXPORT, 0, 0, 0, 0, SSL_EXP_MASK},
{0, SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0, 0, 0, 0, SSL_STRONG_MASK},
{0, SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0, 0, 0, 0, SSL_STRONG_MASK},
{0, SSL_TXT_LOW, 0, 0, SSL_LOW, 0, 0, 0, 0, SSL_STRONG_MASK},
{0, SSL_TXT_MEDIUM, 0, 0, SSL_MEDIUM, 0, 0, 0, 0, SSL_STRONG_MASK},
{0, SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0, 0, 0, 0, SSL_STRONG_MASK},
{0, SSL_TXT_FIPS, 0, 0, SSL_FIPS, 0, 0, 0, 0, SSL_FIPS | SSL_STRONG_NONE},
};
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX] = EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX] =
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX] = EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX] = EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX] =
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX] =
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] =
EVP_get_cipherbyname(SN_camellia_128_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] =
EVP_get_cipherbyname(SN_camellia_256_cbc);
ssl_cipher_methods[SSL_ENC_SEED_IDX] = EVP_get_cipherbyname(SN_seed_cbc);
ssl_digest_methods[SSL_MD_MD5_IDX] = EVP_get_digestbyname(SN_md5);
ssl_digest_methods[SSL_MD_SHA1_IDX] = EVP_get_digestbyname(SN_sha1);
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
static void load_builtin_compressions(void)
{
int got_write_lock = 0;
CRYPTO_r_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL) {
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
got_write_lock = 1;
if (ssl_comp_methods == NULL) {
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL) {
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL) {
comp->method = COMP_zlib();
if (comp->method && comp->method->type == NID_undef)
OPENSSL_free(comp);
else {
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods, comp);
}
}
sk_SSL_COMP_sort(ssl_comp_methods);
}
MemCheck_on();
}
}
if (got_write_lock)
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
else
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, SSL_COMP **comp)
{
int i;
SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return (0);
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
load_builtin_compressions();
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
if (i >= 0)
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
else
*comp = NULL;
}
}
if ((enc == NULL) || (md == NULL))
return (0);
switch (c->algorithms & SSL_ENC_MASK) {
case SSL_DES:
i = SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i = SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i = SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i = SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i = SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i = SSL_ENC_NULL_IDX;
break;
case SSL_AES:
switch (c->alg_bits) {
case 128:
i = SSL_ENC_AES128_IDX;
break;
case 256:
i = SSL_ENC_AES256_IDX;
break;
default:
i = -1;
break;
}
break;
case SSL_CAMELLIA:
switch (c->alg_bits) {
case 128:
i = SSL_ENC_CAMELLIA128_IDX;
break;
case 256:
i = SSL_ENC_CAMELLIA256_IDX;
break;
default:
i = -1;
break;
}
break;
case SSL_SEED:
i = SSL_ENC_SEED_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_ENC_NUM_IDX))
*enc = NULL;
else {
if (i == SSL_ENC_NULL_IDX)
*enc = EVP_enc_null();
else
*enc = ssl_cipher_methods[i];
}
switch (c->algorithms & SSL_MAC_MASK) {
case SSL_MD5:
i = SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i = SSL_MD_SHA1_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_MD_NUM_IDX))
*md = NULL;
else
*md = ssl_digest_methods[i];
if ((*enc != NULL) && (*md != NULL))
return (1);
else
return (0);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL) /* should always be true */
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
struct disabled_masks { /* This is a kludge no longer needed with
* OpenSSL 0.9.9, where 128-bit and 256-bit
* algorithms simply will get separate bits. */
unsigned long mask; /* everything except m256 */
unsigned long m256; /* applies to 256-bit algorithms only */
};
static struct disabled_masks ssl_cipher_get_disabled(void)
{
unsigned long mask;
unsigned long m256;
struct disabled_masks ret;
mask = SSL_kFZA;
#ifdef OPENSSL_NO_RSA
mask |= SSL_aRSA | SSL_kRSA;
#endif
#ifdef OPENSSL_NO_DSA
mask |= SSL_aDSS;
#endif
#ifdef OPENSSL_NO_DH
mask |= SSL_kDHr | SSL_kDHd | SSL_kEDH | SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
mask |= SSL_kKRB5 | SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDH
mask |= SSL_kECDH | SSL_kECDHE;
#endif
#ifdef SSL_FORBID_ENULL
mask |= SSL_eNULL;
#endif
mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX] == NULL) ? SSL_DES : 0;
mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES : 0;
mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX] == NULL) ? SSL_RC4 : 0;
mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX] == NULL) ? SSL_RC2 : 0;
mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA : 0;
mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA : 0;
mask |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED : 0;
mask |= (ssl_digest_methods[SSL_MD_MD5_IDX] == NULL) ? SSL_MD5 : 0;
mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1 : 0;
/* finally consider algorithms where mask and m256 differ */
m256 = mask;
mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES : 0;
mask |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] ==
NULL) ? SSL_CAMELLIA : 0;
m256 |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES : 0;
m256 |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] ==
NULL) ? SSL_CAMELLIA : 0;
ret.mask = mask;
ret.m256 = m256;
return ret;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers, unsigned long mask,
unsigned long m256,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
#define IS_MASKED(c) ((c)->algorithms & (((c)->alg_bits == 256) ? m256 : mask))
/* drop those that use any of that is not available */
#ifdef OPENSSL_FIPS
if ((c != NULL) && c->valid && !IS_MASKED(c)
&& (!FIPS_mode() || (c->algo_strength & SSL_FIPS)))
#else
if ((c != NULL) && c->valid && !IS_MASKED(c))
#endif
{
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
printf("\t%d: %s %lx %lx\n", i, c->name, c->id, c->algorithms);
#endif /* KSSL_DEBUG */
/*
* if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &(co_list[i - 1]);
co_list[i].next = &(co_list[i + 1]);
}
if (co_list_num > 0) {
(*head_p) = &(co_list[0]);
(*head_p)->prev = NULL;
(*head_p)->next = &(co_list[1]);
(*tail_p) = &(co_list[co_list_num - 1]);
(*tail_p)->prev = &(co_list[co_list_num - 2]);
(*tail_p)->next = NULL;
}
}
static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list,
int num_of_group_aliases,
unsigned long mask, CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
SSL_CIPHER **ca_curr;
int i;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either an algorithm, that must be fully
* supported (not match any bit in mask) or represent a cipher
* strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
if ((i == 0) || /* always fetch "ALL" */
!(cipher_aliases[i].algorithms & mask)) {
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long cipher_id,
unsigned long ssl_version,
unsigned long algorithms,
unsigned long mask,
unsigned long algo_strength,
unsigned long mask_strength, int rule,
int strength_bits, CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2;
SSL_CIPHER *cp;
unsigned long ma, ma_s;
#ifdef CIPHER_DEBUG
printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n",
rule, algorithms, mask, algo_strength, mask_strength,
strength_bits);
#endif
curr = head = *head_p;
curr2 = head;
tail2 = tail = *tail_p;
for (;;) {
if ((curr == NULL) || (curr == tail2))
break;
curr = curr2;
curr2 = curr->next;
cp = curr->cipher;
/* Special case: only satisfied by COMPLEMENTOFDEFAULT */
if (algo_strength == SSL_EXP_MASK) {
if ((SSL_C_IS_EXPORT(cp) || cp->algorithms & SSL_SSLV2
|| cp->algorithms & SSL_aNULL)
&& !(cp->algorithms & (SSL_kECDHE|SSL_kECDH)))
goto ok;
else
continue;
}
/*
* If explicit cipher suite, match only that one for its own protocol
* version. Usual selection criteria will be used for similar
* ciphersuites from other version!
*/
if (cipher_id && (cp->algorithms & SSL_SSL_MASK) == ssl_version) {
if (cp->id != cipher_id)
continue;
}
/*
* Selection criteria is either the number of strength_bits
* or the algorithm used.
*/
else if (strength_bits == -1) {
ma = mask & cp->algorithms;
ma_s = mask_strength & cp->algo_strength;
#ifdef CIPHER_DEBUG
printf
("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n",
cp->name, cp->algorithms, cp->algo_strength, mask,
mask_strength);
printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n",
ma, ma_s, ma & algorithms, ma_s & algo_strength);
#endif
/*
* Select: if none of the mask bit was met from the
* cipher or not all of the bits were met, the
* selection does not apply.
*/
if (((ma == 0) && (ma_s == 0)) ||
((ma & algorithms) != ma) || ((ma_s & algo_strength) != ma_s))
continue; /* does not apply */
} else if (strength_bits != cp->strength_bits)
continue; /* does not apply */
ok:
#ifdef CIPHER_DEBUG
printf("Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
if (!curr->active) {
int add_this_cipher = 1;
if (((cp->algorithms & (SSL_kECDHE | SSL_kECDH | SSL_aECDSA))
!= 0)) {
/*
* Make sure "ECCdraft" ciphersuites are activated only
* if *explicitly* requested, but not implicitly (such as
* as part of the "AES" alias).
*/
add_this_cipher =
(mask & (SSL_kECDHE | SSL_kECDH | SSL_aECDSA)) != 0
|| cipher_id != 0;
}
if (add_this_cipher) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL)
curr->active = 0;
else if (rule == CIPHER_KILL) {
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses) {
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
return (0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i,
co_list, head_p, tail_p);
OPENSSL_free(number_uses);
return (1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
SSL_CIPHER **ca_list)
{
unsigned long algorithms, mask, algo_strength, mask_strength;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
unsigned long cipher_id = 0, ssl_version = 0;
char ch;
retval = 1;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
algorithms = mask = algo_strength = mask_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) || (ch == '-'))
#else
while (isalnum(ch) || (ch == '-'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else
multi = 0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
ssl_version = 0;
while (ca_list[j]) {
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
/*-
* New algorithms:
* 1 - any old restrictions apply outside new mask
* 2 - any new restrictions apply outside old mask
* 3 - enforce old & new where masks intersect
*/
algorithms = (algorithms & ~ca_list[j]->mask) | /* 1 */
(ca_list[j]->algorithms & ~mask) | /* 2 */
(algorithms & ca_list[j]->algorithms); /* 3 */
mask |= ca_list[j]->mask;
algo_strength = (algo_strength & ~ca_list[j]->mask_strength) |
(ca_list[j]->algo_strength & ~mask_strength) |
(algo_strength & ca_list[j]->algo_strength);
mask_strength |= ca_list[j]->mask_strength;
/* explicit ciphersuite found */
if (ca_list[j]->valid) {
cipher_id = ca_list[j]->id;
ssl_version = ca_list[j]->algorithms & SSL_SSL_MASK;
break;
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(co_list, head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id, ssl_version, algorithms, mask,
algo_strength, mask_strength, rule, -1,
co_list, head_p, tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return (retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
**cipher_list, STACK_OF(SSL_CIPHER)
**cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mask;
unsigned long disabled_m256;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
{
struct disabled_masks d;
d = ssl_cipher_get_disabled();
disabled_mask = d.mask;
disabled_m256 = d.m256;
}
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list =
(CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL) {
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask,
disabled_m256, co_list, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list =
(SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) *
num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
(disabled_mask & disabled_m256), head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
co_list, &head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail,
ca_list);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return (NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return (NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
#ifdef OPENSSL_FIPS
if (curr->active
&& (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS))
#else
if (curr->active)
#endif
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
printf("<%s>\n", curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return (cipherstack);
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
int is_export, pkl, kl;
const char *ver, *exp_str;
const char *kx, *au, *enc, *mac;
unsigned long alg, alg2;
#ifdef KSSL_DEBUG
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n";
#else
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg = cipher->algorithms;
alg2 = cipher->algorithm2;
is_export = SSL_C_IS_EXPORT(cipher);
pkl = SSL_C_EXPORT_PKEYLENGTH(cipher);
kl = SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str = is_export ? " export" : "";
if (alg & SSL_SSLV2)
ver = "SSLv2";
else if (alg & SSL_SSLV3)
ver = "SSLv3";
else
ver = "unknown";
switch (alg & SSL_MKEY_MASK) {
case SSL_kRSA:
kx = is_export ? (pkl == 512 ? "RSA(512)" : "RSA(1024)") : "RSA";
break;
case SSL_kDHr:
kx = "DH/RSA";
break;
case SSL_kDHd:
kx = "DH/DSS";
break;
case SSL_kKRB5: /* VRS */
case SSL_KRB5: /* VRS */
kx = "KRB5";
break;
case SSL_kFZA:
kx = "Fortezza";
break;
case SSL_kEDH:
kx = is_export ? (pkl == 512 ? "DH(512)" : "DH(1024)") : "DH";
break;
case SSL_kECDH:
case SSL_kECDHE:
kx = is_export ? "ECDH(<=163)" : "ECDH";
break;
default:
kx = "unknown";
}
switch (alg & SSL_AUTH_MASK) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aDH:
au = "DH";
break;
case SSL_aKRB5: /* VRS */
case SSL_KRB5: /* VRS */
au = "KRB5";
break;
case SSL_aFZA:
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
default:
au = "unknown";
break;
}
switch (alg & SSL_ENC_MASK) {
case SSL_DES:
enc = (is_export && kl == 5) ? "DES(40)" : "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = is_export ? (kl == 5 ? "RC4(40)" : "RC4(56)")
: ((alg2 & SSL2_CF_8_BYTE_ENC) ? "RC4(64)" : "RC4(128)");
break;
case SSL_RC2:
enc = is_export ? (kl == 5 ? "RC2(40)" : "RC2(56)") : "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eFZA:
enc = "Fortezza";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES:
switch (cipher->strength_bits) {
case 128:
enc = "AES(128)";
break;
case 192:
enc = "AES(192)";
break;
case 256:
enc = "AES(256)";
break;
default:
enc = "AES(?" "?" "?)";
break;
}
break;
case SSL_CAMELLIA:
switch (cipher->strength_bits) {
case 128:
enc = "Camellia(128)";
break;
case 256:
enc = "Camellia(256)";
break;
default:
enc = "Camellia(?" "?" "?)";
break;
}
break;
case SSL_SEED:
enc = "SEED(128)";
break;
default:
enc = "unknown";
break;
}
switch (alg & SSL_MAC_MASK) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
default:
mac = "unknown";
break;
}
if (buf == NULL) {
len = 128;
buf = OPENSSL_malloc(len);
if (buf == NULL)
return ("OPENSSL_malloc Error");
} else if (len < 128)
return ("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str, alg);
#else
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str);
#endif /* KSSL_DEBUG */
return (buf);
}
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return ("(NONE)");
i = (int)(c->id >> 24L);
if (i == 3)
return ("TLSv1/SSLv3");
else if (i == 2)
return ("SSLv2");
else
return ("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return (c->name);
return ("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return (ret);
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return (NULL);
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return (ctmp);
}
return (NULL);
}
#ifdef OPENSSL_NO_COMP
void *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
int SSL_COMP_add_compression_method(int id, void *cm)
{
return 1;
}
const char *SSL_COMP_get_name(const void *comp)
{
return NULL;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return (ssl_comp_methods);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_DUPLICATE_COMPRESSION_ID);
return (1);
} else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
return (1);
} else {
MemCheck_on();
return (0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}
#endif