openssl/crypto/engine/eng_cryptodev.c
Matt Caswell 44ab2dfdf9 Rename EVP_CIPHER_CTX_cipher_data to EVP_CIPHER_CTX_get_cipher_data
We had the function EVP_CIPHER_CTX_cipher_data which is newly added for
1.1.0. As we now also need an EVP_CIPHER_CTX_set_cipher_data it makes
more sense for the former to be called EVP_CIPHER_CTX_get_cipher_data.

Reviewed-by: Tim Hudson <tjh@openssl.org>
2016-03-07 21:42:09 +00:00

1708 lines
51 KiB
C

/*
* Copyright (c) 2002 Bob Beck <beck@openbsd.org>
* Copyright (c) 2002 Theo de Raadt
* Copyright (c) 2002 Markus Friedl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <openssl/objects.h>
#include <internal/engine.h>
#include <openssl/evp.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#if (defined(__unix__) || defined(unix)) && !defined(USG) && \
(defined(OpenBSD) || defined(__FreeBSD__))
# include <sys/param.h>
# if (OpenBSD >= 200112) || ((__FreeBSD_version >= 470101 && __FreeBSD_version < 500000) || __FreeBSD_version >= 500041)
# define HAVE_CRYPTODEV
# endif
# if (OpenBSD >= 200110)
# define HAVE_SYSLOG_R
# endif
#endif
#include <sys/types.h>
#ifdef HAVE_CRYPTODEV
# include <crypto/cryptodev.h>
# include <sys/ioctl.h>
# include <errno.h>
# include <stdio.h>
# include <unistd.h>
# include <fcntl.h>
# include <stdarg.h>
# include <syslog.h>
# include <errno.h>
# include <string.h>
#endif
#ifndef OPENSSL_NO_DH
# include <openssl/dh.h>
#endif
#include <openssl/dsa.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#ifndef HAVE_CRYPTODEV
void engine_load_cryptodev_internal(void)
{
/* This is a NOP on platforms without /dev/crypto */
return;
}
#else
struct dev_crypto_state {
struct session_op d_sess;
int d_fd;
# ifdef USE_CRYPTODEV_DIGESTS
char dummy_mac_key[HASH_MAX_LEN];
unsigned char digest_res[HASH_MAX_LEN];
char *mac_data;
int mac_len;
# endif
};
static u_int32_t cryptodev_asymfeat = 0;
static int get_asym_dev_crypto(void);
static int open_dev_crypto(void);
static int get_dev_crypto(void);
static int get_cryptodev_ciphers(const int **cnids);
# ifdef USE_CRYPTODEV_DIGESTS
static int get_cryptodev_digests(const int **cnids);
# endif
static int cryptodev_usable_ciphers(const int **nids);
static int cryptodev_usable_digests(const int **nids);
static int cryptodev_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl);
static int cryptodev_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
static int cryptodev_cleanup(EVP_CIPHER_CTX *ctx);
static int cryptodev_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
static int cryptodev_engine_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid);
static int bn2crparam(const BIGNUM *a, struct crparam *crp);
static int crparam2bn(struct crparam *crp, BIGNUM *a);
static void zapparams(struct crypt_kop *kop);
static int cryptodev_asym(struct crypt_kop *kop, int rlen, BIGNUM *r,
int slen, BIGNUM *s);
static int cryptodev_bn_mod_exp(BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
static int cryptodev_rsa_nocrt_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx);
static int cryptodev_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx);
static int cryptodev_dsa_bn_mod_exp(DSA *dsa, BIGNUM *r, BIGNUM *a,
const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *m_ctx);
static int cryptodev_dsa_dsa_mod_exp(DSA *dsa, BIGNUM *t1, BIGNUM *g,
BIGNUM *u1, BIGNUM *pub_key, BIGNUM *u2,
BIGNUM *p, BN_CTX *ctx,
BN_MONT_CTX *mont);
static DSA_SIG *cryptodev_dsa_do_sign(const unsigned char *dgst, int dlen,
DSA *dsa);
static int cryptodev_dsa_verify(const unsigned char *dgst, int dgst_len,
DSA_SIG *sig, DSA *dsa);
#ifndef OPENSSL_NO_DH
static int cryptodev_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx);
static int cryptodev_dh_compute_key(unsigned char *key, const BIGNUM *pub_key,
DH *dh);
#endif
static int cryptodev_ctrl(ENGINE *e, int cmd, long i, void *p,
void (*f) (void));
void engine_load_cryptodev_internal(void);
static const ENGINE_CMD_DEFN cryptodev_defns[] = {
{0, NULL, NULL, 0}
};
static struct {
int id;
int nid;
int ivmax;
int keylen;
} ciphers[] = {
{
CRYPTO_ARC4, NID_rc4, 0, 16,
},
{
CRYPTO_DES_CBC, NID_des_cbc, 8, 8,
},
{
CRYPTO_3DES_CBC, NID_des_ede3_cbc, 8, 24,
},
{
CRYPTO_AES_CBC, NID_aes_128_cbc, 16, 16,
},
{
CRYPTO_AES_CBC, NID_aes_192_cbc, 16, 24,
},
{
CRYPTO_AES_CBC, NID_aes_256_cbc, 16, 32,
},
# ifdef CRYPTO_AES_CTR
{
CRYPTO_AES_CTR, NID_aes_128_ctr, 14, 16,
},
{
CRYPTO_AES_CTR, NID_aes_192_ctr, 14, 24,
},
{
CRYPTO_AES_CTR, NID_aes_256_ctr, 14, 32,
},
# endif
{
CRYPTO_BLF_CBC, NID_bf_cbc, 8, 16,
},
{
CRYPTO_CAST_CBC, NID_cast5_cbc, 8, 16,
},
{
CRYPTO_SKIPJACK_CBC, NID_undef, 0, 0,
},
{
0, NID_undef, 0, 0,
},
};
# ifdef USE_CRYPTODEV_DIGESTS
static struct {
int id;
int nid;
int keylen;
} digests[] = {
{
CRYPTO_MD5_HMAC, NID_hmacWithMD5, 16
},
{
CRYPTO_SHA1_HMAC, NID_hmacWithSHA1, 20
},
{
CRYPTO_RIPEMD160_HMAC, NID_ripemd160, 16
/* ? */
},
{
CRYPTO_MD5_KPDK, NID_undef, 0
},
{
CRYPTO_SHA1_KPDK, NID_undef, 0
},
{
CRYPTO_MD5, NID_md5, 16
},
{
CRYPTO_SHA1, NID_sha1, 20
},
{
0, NID_undef, 0
},
};
# endif
/*
* Return a fd if /dev/crypto seems usable, 0 otherwise.
*/
static int open_dev_crypto(void)
{
static int fd = -1;
if (fd == -1) {
if ((fd = open("/dev/crypto", O_RDWR, 0)) == -1)
return (-1);
/* close on exec */
if (fcntl(fd, F_SETFD, 1) == -1) {
close(fd);
fd = -1;
return (-1);
}
}
return (fd);
}
static int get_dev_crypto(void)
{
int fd, retfd;
if ((fd = open_dev_crypto()) == -1)
return (-1);
# ifndef CRIOGET_NOT_NEEDED
if (ioctl(fd, CRIOGET, &retfd) == -1)
return (-1);
/* close on exec */
if (fcntl(retfd, F_SETFD, 1) == -1) {
close(retfd);
return (-1);
}
# else
retfd = fd;
# endif
return (retfd);
}
static void put_dev_crypto(int fd)
{
# ifndef CRIOGET_NOT_NEEDED
close(fd);
# endif
}
/* Caching version for asym operations */
static int get_asym_dev_crypto(void)
{
static int fd = -1;
if (fd == -1)
fd = get_dev_crypto();
return fd;
}
/*
* Find out what ciphers /dev/crypto will let us have a session for.
* XXX note, that some of these openssl doesn't deal with yet!
* returning them here is harmless, as long as we return NULL
* when asked for a handler in the cryptodev_engine_ciphers routine
*/
static int get_cryptodev_ciphers(const int **cnids)
{
static int nids[CRYPTO_ALGORITHM_MAX];
struct session_op sess;
int fd, i, count = 0;
if ((fd = get_dev_crypto()) < 0) {
*cnids = NULL;
return (0);
}
memset(&sess, 0, sizeof(sess));
sess.key = (caddr_t) "123456789abcdefghijklmno";
for (i = 0; ciphers[i].id && count < CRYPTO_ALGORITHM_MAX; i++) {
if (ciphers[i].nid == NID_undef)
continue;
sess.cipher = ciphers[i].id;
sess.keylen = ciphers[i].keylen;
sess.mac = 0;
if (ioctl(fd, CIOCGSESSION, &sess) != -1 &&
ioctl(fd, CIOCFSESSION, &sess.ses) != -1)
nids[count++] = ciphers[i].nid;
}
put_dev_crypto(fd);
if (count > 0)
*cnids = nids;
else
*cnids = NULL;
return (count);
}
# ifdef USE_CRYPTODEV_DIGESTS
/*
* Find out what digests /dev/crypto will let us have a session for.
* XXX note, that some of these openssl doesn't deal with yet!
* returning them here is harmless, as long as we return NULL
* when asked for a handler in the cryptodev_engine_digests routine
*/
static int get_cryptodev_digests(const int **cnids)
{
static int nids[CRYPTO_ALGORITHM_MAX];
struct session_op sess;
int fd, i, count = 0;
if ((fd = get_dev_crypto()) < 0) {
*cnids = NULL;
return (0);
}
memset(&sess, 0, sizeof(sess));
sess.mackey = (caddr_t) "123456789abcdefghijklmno";
for (i = 0; digests[i].id && count < CRYPTO_ALGORITHM_MAX; i++) {
if (digests[i].nid == NID_undef)
continue;
sess.mac = digests[i].id;
sess.mackeylen = digests[i].keylen;
sess.cipher = 0;
if (ioctl(fd, CIOCGSESSION, &sess) != -1 &&
ioctl(fd, CIOCFSESSION, &sess.ses) != -1)
nids[count++] = digests[i].nid;
}
put_dev_crypto(fd);
if (count > 0)
*cnids = nids;
else
*cnids = NULL;
return (count);
}
# endif /* 0 */
/*
* Find the useable ciphers|digests from dev/crypto - this is the first
* thing called by the engine init crud which determines what it
* can use for ciphers from this engine. We want to return
* only what we can do, anything else is handled by software.
*
* If we can't initialize the device to do anything useful for
* any reason, we want to return a NULL array, and 0 length,
* which forces everything to be done is software. By putting
* the initialization of the device in here, we ensure we can
* use this engine as the default, and if for whatever reason
* /dev/crypto won't do what we want it will just be done in
* software
*
* This can (should) be greatly expanded to perhaps take into
* account speed of the device, and what we want to do.
* (although the disabling of particular alg's could be controlled
* by the device driver with sysctl's.) - this is where we
* want most of the decisions made about what we actually want
* to use from /dev/crypto.
*/
static int cryptodev_usable_ciphers(const int **nids)
{
return (get_cryptodev_ciphers(nids));
}
static int cryptodev_usable_digests(const int **nids)
{
# ifdef USE_CRYPTODEV_DIGESTS
return (get_cryptodev_digests(nids));
# else
/*
* XXXX just disable all digests for now, because it sucks.
* we need a better way to decide this - i.e. I may not
* want digests on slow cards like hifn on fast machines,
* but might want them on slow or loaded machines, etc.
* will also want them when using crypto cards that don't
* suck moose gonads - would be nice to be able to decide something
* as reasonable default without having hackery that's card dependent.
* of course, the default should probably be just do everything,
* with perhaps a sysctl to turn algorithms off (or have them off
* by default) on cards that generally suck like the hifn.
*/
*nids = NULL;
return (0);
# endif
}
static int
cryptodev_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
struct crypt_op cryp;
struct dev_crypto_state *state = EVP_CIPHER_CTX_get_cipher_data(ctx);
struct session_op *sess = &state->d_sess;
const void *iiv;
unsigned char save_iv[EVP_MAX_IV_LENGTH];
if (state->d_fd < 0)
return (0);
if (!inl)
return (1);
if ((inl % EVP_CIPHER_CTX_block_size(ctx)) != 0)
return (0);
memset(&cryp, 0, sizeof(cryp));
cryp.ses = sess->ses;
cryp.flags = 0;
cryp.len = inl;
cryp.src = (caddr_t) in;
cryp.dst = (caddr_t) out;
cryp.mac = 0;
cryp.op = EVP_CIPHER_CTX_encrypting(ctx) ? COP_ENCRYPT : COP_DECRYPT;
if (EVP_CIPHER_CTX_iv_length(ctx) > 0) {
cryp.iv = *(caddr_t*) EVP_CIPHER_CTX_iv(ctx);
if (!EVP_CIPHER_CTX_encrypting(ctx)) {
iiv = in + inl - EVP_CIPHER_CTX_iv_length(ctx);
memcpy(save_iv, iiv, EVP_CIPHER_CTX_iv_length(ctx));
}
} else
cryp.iv = NULL;
if (ioctl(state->d_fd, CIOCCRYPT, &cryp) == -1) {
/*
* XXX need better error handling this can fail for a number of
* different reasons.
*/
return (0);
}
if (EVP_CIPHER_CTX_iv_length(ctx) > 0) {
if (EVP_CIPHER_CTX_encrypting(ctx))
iiv = out + inl - EVP_CIPHER_CTX_iv_length(ctx);
else
iiv = save_iv;
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iiv,
EVP_CIPHER_CTX_iv_length(ctx));
}
return (1);
}
static int
cryptodev_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
struct dev_crypto_state *state = EVP_CIPHER_CTX_get_cipher_data(ctx);
struct session_op *sess = &state->d_sess;
int cipher = -1, i;
for (i = 0; ciphers[i].id; i++)
if (EVP_CIPHER_CTX_nid(ctx) == ciphers[i].nid &&
EVP_CIPHER_CTX_iv_length(ctx) <= ciphers[i].ivmax &&
EVP_CIPHER_CTX_key_length(ctx) == ciphers[i].keylen) {
cipher = ciphers[i].id;
break;
}
if (!ciphers[i].id) {
state->d_fd = -1;
return (0);
}
memset(sess, 0, sizeof(*sess));
if ((state->d_fd = get_dev_crypto()) < 0)
return (0);
sess->key = (caddr_t) key;
sess->keylen = EVP_CIPHER_CTX_key_length(ctx);
sess->cipher = cipher;
if (ioctl(state->d_fd, CIOCGSESSION, sess) == -1) {
put_dev_crypto(state->d_fd);
state->d_fd = -1;
return (0);
}
return (1);
}
/*
* free anything we allocated earlier when initing a
* session, and close the session.
*/
static int cryptodev_cleanup(EVP_CIPHER_CTX *ctx)
{
int ret = 0;
struct dev_crypto_state *state = EVP_CIPHER_CTX_get_cipher_data(ctx);
struct session_op *sess = &state->d_sess;
if (state->d_fd < 0)
return (0);
/*
* XXX if this ioctl fails, something's wrong. the invoker may have called
* us with a bogus ctx, or we could have a device that for whatever
* reason just doesn't want to play ball - it's not clear what's right
* here - should this be an error? should it just increase a counter,
* hmm. For right now, we return 0 - I don't believe that to be "right".
* we could call the gorpy openssl lib error handlers that print messages
* to users of the library. hmm..
*/
if (ioctl(state->d_fd, CIOCFSESSION, &sess->ses) == -1) {
ret = 0;
} else {
ret = 1;
}
put_dev_crypto(state->d_fd);
state->d_fd = -1;
return (ret);
}
/*
* libcrypto EVP stuff - this is how we get wired to EVP so the engine
* gets called when libcrypto requests a cipher NID.
*/
/* RC4 */
static EVP_CIPHER *rc4_cipher = NULL;
static const EVP_CIPHER *cryptodev_rc4(void)
{
if (rc4_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_rc4, 1, 16)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 0)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_VARIABLE_LENGTH)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
rc4_cipher = cipher;
}
return rc4_cipher;
}
/* DES CBC EVP */
static EVP_CIPHER *des_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_des_cbc(void)
{
if (des_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_des_cbc, 8, 8)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 8)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
des_cbc_cipher = cipher;
}
return des_cbc_cipher;
}
/* 3DES CBC EVP */
static EVP_CIPHER *des3_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_3des_cbc(void)
{
if (des3_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_des_ede3_cbc, 8, 24)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 8)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
des3_cbc_cipher = cipher;
}
return des3_cbc_cipher;
}
static EVP_CIPHER *bf_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_bf_cbc(void)
{
if (bf_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_bf_cbc, 8, 16)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 8)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
bf_cbc_cipher = cipher;
}
return bf_cbc_cipher;
}
static EVP_CIPHER *cast_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_cast_cbc(void)
{
if (cast_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_cast5_cbc, 8, 16)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 8)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
cast_cbc_cipher = cipher;
}
return cast_cbc_cipher;
}
static EVP_CIPHER *aes_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_cbc(void)
{
if (aes_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_128_cbc, 16, 16)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 16)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_cbc_cipher = cipher;
}
return aes_cbc_cipher;
}
static EVP_CIPHER *aes_192_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_192_cbc(void)
{
if (aes_192_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_192_cbc, 16, 24)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 16)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_192_cbc_cipher = cipher;
}
return aes_192_cbc_cipher;
}
static EVP_CIPHER *aes_256_cbc_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_256_cbc(void)
{
if (aes_256_cbc_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_256_cbc, 16, 32)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 16)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CBC_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_256_cbc_cipher = cipher;
}
return aes_256_cbc_cipher;
}
# ifdef CRYPTO_AES_CTR
static EVP_CIPHER *aes_ctr_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_ctr(void)
{
if (aes_ctr_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_128_ctr, 16, 16)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 14)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CTR_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_ctr_cipher = cipher;
}
return aes_ctr_cipher;
}
static EVP_CIPHER *aes_192_ctr_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_192_ctr(void)
{
if (aes_192_ctr_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_192_ctr, 16, 24)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 14)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CTR_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_192_ctr_cipher = cipher;
}
return aes_192_ctr_cipher;
}
static EVP_CIPHER *aes_256_ctr_cipher = NULL;
static const EVP_CIPHER *cryptodev_aes_256_ctr(void)
{
if (aes_256_ctr_cipher == NULL) {
EVP_CIPHER *cipher;
if ((cipher = EVP_CIPHER_meth_new(NID_aes_256_ctr, 16, 32)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(cipher, 14)
|| !EVP_CIPHER_meth_set_flags(cipher, EVP_CIPH_CTR_MODE)
|| !EVP_CIPHER_meth_set_init(cipher, cryptodev_init_key)
|| !EVP_CIPHER_meth_set_do_cipher(cipher, cryptodev_cipher)
|| !EVP_CIPHER_meth_set_cleanup(cipher, cryptodev_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(cipher, sizeof(struct dev_crypto_state))
|| !EVP_CIPHER_meth_set_set_asn1_params(cipher, EVP_CIPHER_set_asn1_iv)
|| !EVP_CIPHER_meth_set_get_asn1_params(cipher, EVP_CIPHER_get_asn1_iv)) {
EVP_CIPHER_meth_free(cipher);
cipher = NULL;
}
aes_256_ctr_cipher = cipher;
}
return aes_256_ctr_cipher;
}
# endif
/*
* Registered by the ENGINE when used to find out how to deal with
* a particular NID in the ENGINE. this says what we'll do at the
* top level - note, that list is restricted by what we answer with
*/
static int
cryptodev_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
if (!cipher)
return (cryptodev_usable_ciphers(nids));
switch (nid) {
case NID_rc4:
*cipher = cryptodev_rc4();
break;
case NID_des_ede3_cbc:
*cipher = cryptodev_3des_cbc();
break;
case NID_des_cbc:
*cipher = cryptodev_des_cbc();
break;
case NID_bf_cbc:
*cipher = cryptodev_bf_cbc();
break;
case NID_cast5_cbc:
*cipher = cryptodev_cast_cbc();
break;
case NID_aes_128_cbc:
*cipher = cryptodev_aes_cbc();
break;
case NID_aes_192_cbc:
*cipher = cryptodev_aes_192_cbc();
break;
case NID_aes_256_cbc:
*cipher = cryptodev_aes_256_cbc();
break;
# ifdef CRYPTO_AES_CTR
case NID_aes_128_ctr:
*cipher = cryptodev_aes_ctr();
break;
case NID_aes_192_ctr:
*cipher = cryptodev_aes_ctr_192();
break;
case NID_aes_256_ctr:
*cipher = cryptodev_aes_ctr_256();
break;
# endif
default:
*cipher = NULL;
break;
}
return (*cipher != NULL);
}
# ifdef USE_CRYPTODEV_DIGESTS
/* convert digest type to cryptodev */
static int digest_nid_to_cryptodev(int nid)
{
int i;
for (i = 0; digests[i].id; i++)
if (digests[i].nid == nid)
return (digests[i].id);
return (0);
}
static int digest_key_length(int nid)
{
int i;
for (i = 0; digests[i].id; i++)
if (digests[i].nid == nid)
return digests[i].keylen;
return (0);
}
static int cryptodev_digest_init(EVP_MD_CTX *ctx)
{
struct dev_crypto_state *state = EVP_MD_CTX_md_data(ctx);
struct session_op *sess = &state->d_sess;
int digest;
if ((digest = digest_nid_to_cryptodev(EVP_MD_CTX_type(ctx))) == NID_undef) {
printf("cryptodev_digest_init: Can't get digest \n");
return (0);
}
memset(state, 0, sizeof(*state));
if ((state->d_fd = get_dev_crypto()) < 0) {
printf("cryptodev_digest_init: Can't get Dev \n");
return (0);
}
sess->mackey = state->dummy_mac_key;
sess->mackeylen = digest_key_length(EVP_MD_CTX_type(ctx));
sess->mac = digest;
if (ioctl(state->d_fd, CIOCGSESSION, sess) < 0) {
put_dev_crypto(state->d_fd);
state->d_fd = -1;
printf("cryptodev_digest_init: Open session failed\n");
return (0);
}
return (1);
}
static int cryptodev_digest_update(EVP_MD_CTX *ctx, const void *data,
size_t count)
{
struct crypt_op cryp;
struct dev_crypto_state *state = EVP_MD_CTX_md_data(ctx);
struct session_op *sess = &state->d_sess;
char *new_mac_data;
if (!data || state->d_fd < 0) {
printf("cryptodev_digest_update: illegal inputs \n");
return (0);
}
if (!count) {
return (0);
}
if (!EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_ONESHOT)) {
/* if application doesn't support one buffer */
new_mac_data =
OPENSSL_realloc(state->mac_data, state->mac_len + count);
if (!new_mac_data) {
printf("cryptodev_digest_update: realloc failed\n");
return (0);
}
state->mac_data = new_mac_data;
memcpy(state->mac_data + state->mac_len, data, count);
state->mac_len += count;
return (1);
}
memset(&cryp, 0, sizeof(cryp));
cryp.ses = sess->ses;
cryp.flags = 0;
cryp.len = count;
cryp.src = (caddr_t) data;
cryp.dst = NULL;
cryp.mac = (caddr_t) state->digest_res;
if (ioctl(state->d_fd, CIOCCRYPT, &cryp) < 0) {
printf("cryptodev_digest_update: digest failed\n");
return (0);
}
return (1);
}
static int cryptodev_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
{
struct crypt_op cryp;
struct dev_crypto_state *state = EVP_MD_CTX_md_data(ctx);
struct session_op *sess = &state->d_sess;
int ret = 1;
if (!md || state->d_fd < 0) {
printf("cryptodev_digest_final: illegal input\n");
return (0);
}
if (!EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_ONESHOT)) {
/* if application doesn't support one buffer */
memset(&cryp, 0, sizeof(cryp));
cryp.ses = sess->ses;
cryp.flags = 0;
cryp.len = state->mac_len;
cryp.src = state->mac_data;
cryp.dst = NULL;
cryp.mac = (caddr_t) md;
if (ioctl(state->d_fd, CIOCCRYPT, &cryp) < 0) {
printf("cryptodev_digest_final: digest failed\n");
return (0);
}
return 1;
}
memcpy(md, state->digest_res, EVP_MD_CTX_size(ctx));
return (ret);
}
static int cryptodev_digest_cleanup(EVP_MD_CTX *ctx)
{
int ret = 1;
struct dev_crypto_state *state = EVP_MD_CTX_md_data(ctx);
struct session_op *sess = &state->d_sess;
if (state == NULL)
return 0;
if (state->d_fd < 0) {
printf("cryptodev_digest_cleanup: illegal input\n");
return (0);
}
OPENSSL_free(state->mac_data);
state->mac_data = NULL;
state->mac_len = 0;
if (ioctl(state->d_fd, CIOCFSESSION, &sess->ses) < 0) {
printf("cryptodev_digest_cleanup: failed to close session\n");
ret = 0;
} else {
ret = 1;
}
put_dev_crypto(state->d_fd);
state->d_fd = -1;
return (ret);
}
static int cryptodev_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
{
struct dev_crypto_state *fstate = EVP_MD_CTX_md_data(from);
struct dev_crypto_state *dstate = EVP_MD_CTX_md_data(to);
struct session_op *sess;
int digest;
if (dstate == NULL || fstate == NULL)
return 1;
memcpy(dstate, fstate, sizeof(struct dev_crypto_state));
sess = &dstate->d_sess;
digest = digest_nid_to_cryptodev(EVP_MD_CTX_type(to));
sess->mackey = dstate->dummy_mac_key;
sess->mackeylen = digest_key_length(EVP_MD_CTX_type(to));
sess->mac = digest;
dstate->d_fd = get_dev_crypto();
if (ioctl(dstate->d_fd, CIOCGSESSION, sess) < 0) {
put_dev_crypto(dstate->d_fd);
dstate->d_fd = -1;
printf("cryptodev_digest_copy: Open session failed\n");
return (0);
}
if (fstate->mac_len != 0) {
if (fstate->mac_data != NULL) {
dstate->mac_data = OPENSSL_malloc(fstate->mac_len);
if (dstate->mac_data == NULL) {
printf("cryptodev_digest_copy: mac_data allocation failed\n");
return (0);
}
memcpy(dstate->mac_data, fstate->mac_data, fstate->mac_len);
dstate->mac_len = fstate->mac_len;
}
}
return 1;
}
static EVP_MD *sha1_md = NULL;
static const EVP_MD *cryptodev_sha1(void)
{
if (sha1_md == NULL) {
EVP_MD *md;
if ((md = EVP_MD_meth_new(NID_sha1, NID_undef)) == NULL
|| !EVP_MD_meth_set_result_size(md, SHA_DIGEST_LENGTH)
|| !EVP_MD_meth_set_flags(md, EVP_MD_FLAG_ONESHOT)
|| !EVP_MD_meth_set_input_blocksize(md, SHA_CBLOCK)
|| !EVP_MD_meth_set_app_datasize(md,
sizeof(struct dev_crypto_state))
|| !EVP_MD_meth_set_init(md, cryptodev_digest_init)
|| !EVP_MD_meth_set_update(md, cryptodev_digest_update)
|| !EVP_MD_meth_set_final(md, cryptodev_digest_final)
|| !EVP_MD_meth_set_copy(md, cryptodev_digest_copy)
|| !EVP_MD_meth_set_cleanup(md, cryptodev_digest_cleanup)) {
EVP_MD_meth_free(md);
md = NULL;
}
sha1_md = md;
}
return sha1_md;
}
static EVP_MD *md5_md = NULL;
static const EVP_MD *cryptodev_md5(void)
{
if (md5_md == NULL) {
EVP_MD *md;
if ((md = EVP_MD_meth_new(NID_md5, NID_undef)) == NULL
|| !EVP_MD_meth_set_result_size(md, 16 /* MD5_DIGEST_LENGTH */)
|| !EVP_MD_meth_set_flags(md, EVP_MD_FLAG_ONESHOT)
|| !EVP_MD_meth_set_input_blocksize(md, 64 /* MD5_CBLOCK */)
|| !EVP_MD_meth_set_app_datasize(md,
sizeof(struct dev_crypto_state))
|| !EVP_MD_meth_set_init(md, cryptodev_digest_init)
|| !EVP_MD_meth_set_update(md, cryptodev_digest_update)
|| !EVP_MD_meth_set_final(md, cryptodev_digest_final)
|| !EVP_MD_meth_set_copy(md, cryptodev_digest_copy)
|| !EVP_MD_meth_set_cleanup(md, cryptodev_digest_cleanup)) {
EVP_MD_meth_free(md);
md = NULL;
}
md5_md = md;
}
return md5_md;
}
# endif /* USE_CRYPTODEV_DIGESTS */
static int
cryptodev_engine_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid)
{
if (!digest)
return (cryptodev_usable_digests(nids));
switch (nid) {
# ifdef USE_CRYPTODEV_DIGESTS
case NID_md5:
*digest = cryptodev_md5();
break;
case NID_sha1:
*digest = cryptodev_sha1();
break;
default:
# endif /* USE_CRYPTODEV_DIGESTS */
*digest = NULL;
break;
}
return (*digest != NULL);
}
static int cryptodev_engine_destroy(ENGINE *e)
{
EVP_CIPHER_meth_free(rc4_cipher);
rc4_cipher = NULL;
EVP_CIPHER_meth_free(des_cbc_cipher);
des_cbc_cipher = NULL;
EVP_CIPHER_meth_free(des3_cbc_cipher);
des3_cbc_cipher = NULL;
EVP_CIPHER_meth_free(bf_cbc_cipher);
bf_cbc_cipher = NULL;
EVP_CIPHER_meth_free(cast_cbc_cipher);
cast_cbc_cipher = NULL;
EVP_CIPHER_meth_free(aes_cbc_cipher);
aes_cbc_cipher = NULL;
EVP_CIPHER_meth_free(aes_192_cbc_cipher);
aes_192_cbc_cipher = NULL;
EVP_CIPHER_meth_free(aes_256_cbc_cipher);
aes_256_cbc_cipher = NULL;
# ifdef CRYPTO_AES_CTR
EVP_CIPHER_meth_free(aes_ctr_cipher);
aes_ctr_cipher = NULL;
EVP_CIPHER_meth_free(aes_192_ctr_cipher);
aes_192_ctr_cipher = NULL;
EVP_CIPHER_meth_free(aes_256_ctr_cipher);
aes_256_ctr_cipher = NULL;
# endif
# ifdef USE_CRYPTODEV_DIGESTS
EVP_MD_meth_free(sha1_md);
sha1_md = NULL;
EVP_MD_meth_free(md5_md);
md5_md = NULL;
# endif
return 1;
}
/*
* Convert a BIGNUM to the representation that /dev/crypto needs.
* Upon completion of use, the caller is responsible for freeing
* crp->crp_p.
*/
static int bn2crparam(const BIGNUM *a, struct crparam *crp)
{
ssize_t bytes, bits;
u_char *b;
crp->crp_p = NULL;
crp->crp_nbits = 0;
bits = BN_num_bits(a);
bytes = BN_num_bytes(a);
b = OPENSSL_zalloc(bytes);
if (b == NULL)
return (1);
crp->crp_p = (caddr_t) b;
crp->crp_nbits = bits;
BN_bn2bin(a, b);
return (0);
}
/* Convert a /dev/crypto parameter to a BIGNUM */
static int crparam2bn(struct crparam *crp, BIGNUM *a)
{
u_int8_t *pd;
int i, bytes;
bytes = (crp->crp_nbits + 7) / 8;
if (bytes == 0)
return (-1);
if ((pd = OPENSSL_malloc(bytes)) == NULL)
return (-1);
for (i = 0; i < bytes; i++)
pd[i] = crp->crp_p[bytes - i - 1];
BN_bin2bn(pd, bytes, a);
free(pd);
return (0);
}
static void zapparams(struct crypt_kop *kop)
{
int i;
for (i = 0; i < kop->crk_iparams + kop->crk_oparams; i++) {
if (kop->crk_param[i].crp_p)
free(kop->crk_param[i].crp_p);
kop->crk_param[i].crp_p = NULL;
kop->crk_param[i].crp_nbits = 0;
}
}
static int
cryptodev_asym(struct crypt_kop *kop, int rlen, BIGNUM *r, int slen,
BIGNUM *s)
{
int fd, ret = -1;
if ((fd = get_asym_dev_crypto()) < 0)
return (ret);
if (r) {
kop->crk_param[kop->crk_iparams].crp_p = calloc(rlen, sizeof(char));
kop->crk_param[kop->crk_iparams].crp_nbits = rlen * 8;
kop->crk_oparams++;
}
if (s) {
kop->crk_param[kop->crk_iparams + 1].crp_p =
calloc(slen, sizeof(char));
kop->crk_param[kop->crk_iparams + 1].crp_nbits = slen * 8;
kop->crk_oparams++;
}
if (ioctl(fd, CIOCKEY, kop) == 0) {
if (r)
crparam2bn(&kop->crk_param[kop->crk_iparams], r);
if (s)
crparam2bn(&kop->crk_param[kop->crk_iparams + 1], s);
ret = 0;
}
return (ret);
}
static int
cryptodev_bn_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
{
struct crypt_kop kop;
int ret = 1;
/*
* Currently, we know we can do mod exp iff we can do any asymmetric
* operations at all.
*/
if (cryptodev_asymfeat == 0) {
ret = BN_mod_exp(r, a, p, m, ctx);
return (ret);
}
memset(&kop, 0, sizeof(kop));
kop.crk_op = CRK_MOD_EXP;
/* inputs: a^p % m */
if (bn2crparam(a, &kop.crk_param[0]))
goto err;
if (bn2crparam(p, &kop.crk_param[1]))
goto err;
if (bn2crparam(m, &kop.crk_param[2]))
goto err;
kop.crk_iparams = 3;
if (cryptodev_asym(&kop, BN_num_bytes(m), r, 0, NULL)) {
const RSA_METHOD *meth = RSA_PKCS1_OpenSSL();
printf("OCF asym process failed, Running in software\n");
ret = meth->bn_mod_exp(r, a, p, m, ctx, in_mont);
} else if (ECANCELED == kop.crk_status) {
const RSA_METHOD *meth = RSA_PKCS1_OpenSSL();
printf("OCF hardware operation cancelled. Running in Software\n");
ret = meth->bn_mod_exp(r, a, p, m, ctx, in_mont);
}
/* else cryptodev operation worked ok ==> ret = 1 */
err:
zapparams(&kop);
return (ret);
}
static int
cryptodev_rsa_nocrt_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
BN_CTX *ctx)
{
int r;
ctx = BN_CTX_new();
r = cryptodev_bn_mod_exp(r0, I, rsa->d, rsa->n, ctx, NULL);
BN_CTX_free(ctx);
return (r);
}
static int
cryptodev_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
{
struct crypt_kop kop;
int ret = 1;
if (!rsa->p || !rsa->q || !rsa->dmp1 || !rsa->dmq1 || !rsa->iqmp) {
/* XXX 0 means failure?? */
return (0);
}
memset(&kop, 0, sizeof(kop));
kop.crk_op = CRK_MOD_EXP_CRT;
/* inputs: rsa->p rsa->q I rsa->dmp1 rsa->dmq1 rsa->iqmp */
if (bn2crparam(rsa->p, &kop.crk_param[0]))
goto err;
if (bn2crparam(rsa->q, &kop.crk_param[1]))
goto err;
if (bn2crparam(I, &kop.crk_param[2]))
goto err;
if (bn2crparam(rsa->dmp1, &kop.crk_param[3]))
goto err;
if (bn2crparam(rsa->dmq1, &kop.crk_param[4]))
goto err;
if (bn2crparam(rsa->iqmp, &kop.crk_param[5]))
goto err;
kop.crk_iparams = 6;
if (cryptodev_asym(&kop, BN_num_bytes(rsa->n), r0, 0, NULL)) {
const RSA_METHOD *meth = RSA_PKCS1_OpenSSL();
printf("OCF asym process failed, running in Software\n");
ret = (*meth->rsa_mod_exp) (r0, I, rsa, ctx);
} else if (ECANCELED == kop.crk_status) {
const RSA_METHOD *meth = RSA_PKCS1_OpenSSL();
printf("OCF hardware operation cancelled. Running in Software\n");
ret = (*meth->rsa_mod_exp) (r0, I, rsa, ctx);
}
/* else cryptodev operation worked ok ==> ret = 1 */
err:
zapparams(&kop);
return (ret);
}
static RSA_METHOD cryptodev_rsa = {
"cryptodev RSA method",
NULL, /* rsa_pub_enc */
NULL, /* rsa_pub_dec */
NULL, /* rsa_priv_enc */
NULL, /* rsa_priv_dec */
NULL,
NULL,
NULL, /* init */
NULL, /* finish */
0, /* flags */
NULL, /* app_data */
NULL, /* rsa_sign */
NULL /* rsa_verify */
};
static int
cryptodev_dsa_bn_mod_exp(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
{
return (cryptodev_bn_mod_exp(r, a, p, m, ctx, m_ctx));
}
static int
cryptodev_dsa_dsa_mod_exp(DSA *dsa, BIGNUM *t1, BIGNUM *g,
BIGNUM *u1, BIGNUM *pub_key, BIGNUM *u2, BIGNUM *p,
BN_CTX *ctx, BN_MONT_CTX *mont)
{
BIGNUM *t2;
int ret = 0;
t2 = BN_new();
if (t2 == NULL)
goto err;
/* v = ( g^u1 * y^u2 mod p ) mod q */
/* let t1 = g ^ u1 mod p */
ret = 0;
if (!dsa->meth->bn_mod_exp(dsa, t1, dsa->g, u1, dsa->p, ctx, mont))
goto err;
/* let t2 = y ^ u2 mod p */
if (!dsa->meth->bn_mod_exp(dsa, t2, dsa->pub_key, u2, dsa->p, ctx, mont))
goto err;
/* let u1 = t1 * t2 mod p */
if (!BN_mod_mul(u1, t1, t2, dsa->p, ctx))
goto err;
BN_copy(t1, u1);
ret = 1;
err:
BN_free(t2);
return (ret);
}
static DSA_SIG *cryptodev_dsa_do_sign(const unsigned char *dgst, int dlen,
DSA *dsa)
{
struct crypt_kop kop;
BIGNUM *r = NULL, *s = NULL;
DSA_SIG *dsaret = NULL;
if ((r = BN_new()) == NULL)
goto err;
if ((s = BN_new()) == NULL) {
BN_free(r);
goto err;
}
memset(&kop, 0, sizeof(kop));
kop.crk_op = CRK_DSA_SIGN;
/* inputs: dgst dsa->p dsa->q dsa->g dsa->priv_key */
kop.crk_param[0].crp_p = (caddr_t) dgst;
kop.crk_param[0].crp_nbits = dlen * 8;
if (bn2crparam(dsa->p, &kop.crk_param[1]))
goto err;
if (bn2crparam(dsa->q, &kop.crk_param[2]))
goto err;
if (bn2crparam(dsa->g, &kop.crk_param[3]))
goto err;
if (bn2crparam(dsa->priv_key, &kop.crk_param[4]))
goto err;
kop.crk_iparams = 5;
if (cryptodev_asym(&kop, BN_num_bytes(dsa->q), r,
BN_num_bytes(dsa->q), s) == 0) {
dsaret = DSA_SIG_new();
if (dsaret == NULL)
goto err;
dsaret->r = r;
dsaret->s = s;
} else {
const DSA_METHOD *meth = DSA_OpenSSL();
BN_free(r);
BN_free(s);
dsaret = (meth->dsa_do_sign) (dgst, dlen, dsa);
}
err:
kop.crk_param[0].crp_p = NULL;
zapparams(&kop);
return (dsaret);
}
static int
cryptodev_dsa_verify(const unsigned char *dgst, int dlen,
DSA_SIG *sig, DSA *dsa)
{
struct crypt_kop kop;
int dsaret = 1;
memset(&kop, 0, sizeof(kop));
kop.crk_op = CRK_DSA_VERIFY;
/* inputs: dgst dsa->p dsa->q dsa->g dsa->pub_key sig->r sig->s */
kop.crk_param[0].crp_p = (caddr_t) dgst;
kop.crk_param[0].crp_nbits = dlen * 8;
if (bn2crparam(dsa->p, &kop.crk_param[1]))
goto err;
if (bn2crparam(dsa->q, &kop.crk_param[2]))
goto err;
if (bn2crparam(dsa->g, &kop.crk_param[3]))
goto err;
if (bn2crparam(dsa->pub_key, &kop.crk_param[4]))
goto err;
if (bn2crparam(sig->r, &kop.crk_param[5]))
goto err;
if (bn2crparam(sig->s, &kop.crk_param[6]))
goto err;
kop.crk_iparams = 7;
if (cryptodev_asym(&kop, 0, NULL, 0, NULL) == 0) {
/*
* OCF success value is 0, if not zero, change dsaret to fail
*/
if (0 != kop.crk_status)
dsaret = 0;
} else {
const DSA_METHOD *meth = DSA_OpenSSL();
dsaret = (meth->dsa_do_verify) (dgst, dlen, sig, dsa);
}
err:
kop.crk_param[0].crp_p = NULL;
zapparams(&kop);
return (dsaret);
}
static DSA_METHOD cryptodev_dsa = {
"cryptodev DSA method",
NULL,
NULL, /* dsa_sign_setup */
NULL,
NULL, /* dsa_mod_exp */
NULL,
NULL, /* init */
NULL, /* finish */
0, /* flags */
NULL /* app_data */
};
#ifndef OPENSSL_NO_DH
static int
cryptodev_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
BN_MONT_CTX *m_ctx)
{
return (cryptodev_bn_mod_exp(r, a, p, m, ctx, m_ctx));
}
static int
cryptodev_dh_compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh)
{
struct crypt_kop kop;
int dhret = 1;
int fd, keylen;
if ((fd = get_asym_dev_crypto()) < 0) {
const DH_METHOD *meth = DH_OpenSSL();
return ((meth->compute_key) (key, pub_key, dh));
}
keylen = BN_num_bits(dh->p);
memset(&kop, 0, sizeof(kop));
kop.crk_op = CRK_DH_COMPUTE_KEY;
/* inputs: dh->priv_key pub_key dh->p key */
if (bn2crparam(dh->priv_key, &kop.crk_param[0]))
goto err;
if (bn2crparam(pub_key, &kop.crk_param[1]))
goto err;
if (bn2crparam(dh->p, &kop.crk_param[2]))
goto err;
kop.crk_iparams = 3;
kop.crk_param[3].crp_p = (caddr_t) key;
kop.crk_param[3].crp_nbits = keylen * 8;
kop.crk_oparams = 1;
if (ioctl(fd, CIOCKEY, &kop) == -1) {
const DH_METHOD *meth = DH_OpenSSL();
dhret = (meth->compute_key) (key, pub_key, dh);
}
err:
kop.crk_param[3].crp_p = NULL;
zapparams(&kop);
return (dhret);
}
static DH_METHOD cryptodev_dh = {
"cryptodev DH method",
NULL, /* cryptodev_dh_generate_key */
NULL,
NULL,
NULL,
NULL,
0, /* flags */
NULL /* app_data */
};
#endif /* ndef OPENSSL_NO_DH */
/*
* ctrl right now is just a wrapper that doesn't do much
* but I expect we'll want some options soon.
*/
static int
cryptodev_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void))
{
# ifdef HAVE_SYSLOG_R
struct syslog_data sd = SYSLOG_DATA_INIT;
# endif
switch (cmd) {
default:
# ifdef HAVE_SYSLOG_R
syslog_r(LOG_ERR, &sd, "cryptodev_ctrl: unknown command %d", cmd);
# else
syslog(LOG_ERR, "cryptodev_ctrl: unknown command %d", cmd);
# endif
break;
}
return (1);
}
void engine_load_cryptodev_internal(void)
{
ENGINE *engine = ENGINE_new();
int fd;
if (engine == NULL)
return;
if ((fd = get_dev_crypto()) < 0) {
ENGINE_free(engine);
return;
}
/*
* find out what asymmetric crypto algorithms we support
*/
if (ioctl(fd, CIOCASYMFEAT, &cryptodev_asymfeat) == -1) {
put_dev_crypto(fd);
ENGINE_free(engine);
return;
}
put_dev_crypto(fd);
if (!ENGINE_set_id(engine, "cryptodev") ||
!ENGINE_set_name(engine, "BSD cryptodev engine") ||
!ENGINE_set_destroy_function(engine, cryptodev_engine_destroy) ||
!ENGINE_set_ciphers(engine, cryptodev_engine_ciphers) ||
!ENGINE_set_digests(engine, cryptodev_engine_digests) ||
!ENGINE_set_ctrl_function(engine, cryptodev_ctrl) ||
!ENGINE_set_cmd_defns(engine, cryptodev_defns)) {
ENGINE_free(engine);
return;
}
if (ENGINE_set_RSA(engine, &cryptodev_rsa)) {
const RSA_METHOD *rsa_meth = RSA_PKCS1_OpenSSL();
cryptodev_rsa.bn_mod_exp = rsa_meth->bn_mod_exp;
cryptodev_rsa.rsa_mod_exp = rsa_meth->rsa_mod_exp;
cryptodev_rsa.rsa_pub_enc = rsa_meth->rsa_pub_enc;
cryptodev_rsa.rsa_pub_dec = rsa_meth->rsa_pub_dec;
cryptodev_rsa.rsa_priv_enc = rsa_meth->rsa_priv_enc;
cryptodev_rsa.rsa_priv_dec = rsa_meth->rsa_priv_dec;
if (cryptodev_asymfeat & CRF_MOD_EXP) {
cryptodev_rsa.bn_mod_exp = cryptodev_bn_mod_exp;
if (cryptodev_asymfeat & CRF_MOD_EXP_CRT)
cryptodev_rsa.rsa_mod_exp = cryptodev_rsa_mod_exp;
else
cryptodev_rsa.rsa_mod_exp = cryptodev_rsa_nocrt_mod_exp;
}
}
if (ENGINE_set_DSA(engine, &cryptodev_dsa)) {
const DSA_METHOD *meth = DSA_OpenSSL();
memcpy(&cryptodev_dsa, meth, sizeof(DSA_METHOD));
if (cryptodev_asymfeat & CRF_DSA_SIGN)
cryptodev_dsa.dsa_do_sign = cryptodev_dsa_do_sign;
if (cryptodev_asymfeat & CRF_MOD_EXP) {
cryptodev_dsa.bn_mod_exp = cryptodev_dsa_bn_mod_exp;
cryptodev_dsa.dsa_mod_exp = cryptodev_dsa_dsa_mod_exp;
}
if (cryptodev_asymfeat & CRF_DSA_VERIFY)
cryptodev_dsa.dsa_do_verify = cryptodev_dsa_verify;
}
#ifndef OPENSSL_NO_DH
if (ENGINE_set_DH(engine, &cryptodev_dh)) {
const DH_METHOD *dh_meth = DH_OpenSSL();
cryptodev_dh.generate_key = dh_meth->generate_key;
cryptodev_dh.compute_key = dh_meth->compute_key;
cryptodev_dh.bn_mod_exp = dh_meth->bn_mod_exp;
if (cryptodev_asymfeat & CRF_MOD_EXP) {
cryptodev_dh.bn_mod_exp = cryptodev_mod_exp_dh;
if (cryptodev_asymfeat & CRF_DH_COMPUTE_KEY)
cryptodev_dh.compute_key = cryptodev_dh_compute_key;
}
}
#endif
ENGINE_add(engine);
ENGINE_free(engine);
ERR_clear_error();
}
#endif /* HAVE_CRYPTODEV */