openssl/crypto/modes/siv128.c
Todd Short 9a3b5b7664 Fixes #7879: AES-SIV to use EVP_MAC APIs
Convert CMAC APIs to EVP_MAC APIs

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7891)
2018-12-13 11:09:15 -05:00

349 lines
9 KiB
C

/*
* Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <stdlib.h>
#include <openssl/crypto.h>
#include "modes_lcl.h"
#ifndef OPENSSL_NO_SIV
__owur static ossl_inline uint32_t rotl8(uint32_t x)
{
return (x << 8) | (x >> 24);
}
__owur static ossl_inline uint32_t rotr8(uint32_t x)
{
return (x >> 8) | (x << 24);
}
__owur static ossl_inline uint64_t byteswap8(uint64_t x)
{
uint32_t high = (uint32_t)(x >> 32);
uint32_t low = (uint32_t)x;
high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00);
low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00);
return ((uint64_t)low) << 32 | (uint64_t)high;
}
__owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i)
{
const union {
long one;
char little;
} is_endian = { 1 };
if (is_endian.little)
return byteswap8(b->word[i]);
return b->word[i];
}
static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x)
{
const union {
long one;
char little;
} is_endian = { 1 };
if (is_endian.little)
b->word[i] = byteswap8(x);
else
b->word[i] = x;
}
static ossl_inline void siv128_xorblock(SIV_BLOCK *x,
SIV_BLOCK const *y)
{
x->word[0] ^= y->word[0];
x->word[1] ^= y->word[1];
}
/*
* Doubles |b|, which is 16 bytes representing an element
* of GF(2**128) modulo the irreducible polynomial
* x**128 + x**7 + x**2 + x + 1.
* Assumes two's-complement arithmetic
*/
static ossl_inline void siv128_dbl(SIV_BLOCK *b)
{
uint64_t high = siv128_getword(b, 0);
uint64_t low = siv128_getword(b, 1);
uint64_t high_carry = high & (((uint64_t)1) << 63);
uint64_t low_carry = low & (((uint64_t)1) << 63);
int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87;
uint64_t high_mask = low_carry >> 63;
high = (high << 1) | high_mask;
low = (low << 1) ^ (uint64_t)low_mask;
siv128_putword(b, 0, high);
siv128_putword(b, 1, low);
}
__owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out,
unsigned char const* in, size_t len)
{
SIV_BLOCK t;
size_t out_len = sizeof(out->byte);
if (!EVP_MAC_CTX_copy(ctx->mac_ctx, ctx->mac_ctx_init))
return 0;
if (len >= SIV_LEN) {
if (!EVP_MAC_update(ctx->mac_ctx, in, len - SIV_LEN))
return 0;
memcpy(&t, in + (len-SIV_LEN), SIV_LEN);
siv128_xorblock(&t, &ctx->d);
if (!EVP_MAC_update(ctx->mac_ctx, t.byte, SIV_LEN))
return 0;
} else {
memset(&t, 0, sizeof(t));
memcpy(&t, in, len);
t.byte[len] = 0x80;
siv128_dbl(&ctx->d);
siv128_xorblock(&t, &ctx->d);
if (!EVP_MAC_update(ctx->mac_ctx, t.byte, SIV_LEN))
return 0;
}
if (!EVP_MAC_final(ctx->mac_ctx, out->byte, &out_len)
|| out_len != SIV_LEN)
return 0;
return 1;
}
__owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out,
unsigned char const *in, size_t len,
SIV_BLOCK *icv)
{
int out_len = (int)len;
if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1))
return 0;
return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len);
}
/*
* Create a new SIV128_CONTEXT
*/
SIV128_CONTEXT *CRYPTO_siv128_new(const unsigned char *key, int klen, EVP_CIPHER* cbc, EVP_CIPHER* ctr)
{
SIV128_CONTEXT *ctx;
int ret;
if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) {
ret = CRYPTO_siv128_init(ctx, key, klen, cbc, ctr);
if (ret)
return ctx;
OPENSSL_free(ctx);
}
return NULL;
}
/*
* Initialise an existing SIV128_CONTEXT
*/
int CRYPTO_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen,
const EVP_CIPHER* cbc, const EVP_CIPHER* ctr)
{
static const unsigned char zero[SIV_LEN] = { 0 };
size_t out_len = SIV_LEN;
memset(&ctx->d, 0, sizeof(ctx->d));
ctx->cipher_ctx = NULL;
ctx->mac_ctx = NULL;
ctx->mac_ctx_init = NULL;
if (key == NULL || cbc == NULL || ctr == NULL
|| (ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL
|| (ctx->mac_ctx_init = EVP_MAC_CTX_new_id(EVP_MAC_CMAC)) == NULL
|| (ctx->mac_ctx = EVP_MAC_CTX_new_id(EVP_MAC_CMAC)) == NULL
|| !EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_CIPHER, cbc)
|| !EVP_MAC_ctrl(ctx->mac_ctx_init, EVP_MAC_CTRL_SET_KEY, key, klen)
|| !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL)
|| !EVP_MAC_CTX_copy(ctx->mac_ctx, ctx->mac_ctx_init)
|| !EVP_MAC_update(ctx->mac_ctx, zero, sizeof(zero))
|| !EVP_MAC_final(ctx->mac_ctx, ctx->d.byte, &out_len)) {
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
EVP_MAC_CTX_free(ctx->mac_ctx_init);
EVP_MAC_CTX_free(ctx->mac_ctx);
return 0;
}
ctx->final_ret = -1;
ctx->crypto_ok = 1;
return 1;
}
/*
* Copy an SIV128_CONTEXT object
*/
int CRYPTO_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src)
{
memcpy(&dest->d, &src->d, sizeof(src->d));
if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx))
return 0;
if (!EVP_MAC_CTX_copy(dest->mac_ctx_init, src->mac_ctx_init))
return 0;
/* no need to copy mac_ctx since it's temp storage */
return 1;
}
/*
* Provide any AAD. This can be called multiple times.
* Per RFC5297, the last piece of associated data
* is the nonce, but it's not treated special
*/
int CRYPTO_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad,
size_t len)
{
SIV_BLOCK mac_out;
size_t out_len = SIV_LEN;
siv128_dbl(&ctx->d);
if (!EVP_MAC_CTX_copy(ctx->mac_ctx, ctx->mac_ctx_init)
|| !EVP_MAC_update(ctx->mac_ctx, aad, len)
|| !EVP_MAC_final(ctx->mac_ctx, mac_out.byte, &out_len)
|| out_len != SIV_LEN)
return 0;
siv128_xorblock(&ctx->d, &mac_out);
return 1;
}
/*
* Provide any data to be encrypted. This can be called once.
*/
int CRYPTO_siv128_encrypt(SIV128_CONTEXT *ctx,
const unsigned char *in, unsigned char *out,
size_t len)
{
SIV_BLOCK q;
/* can only do one crypto operation */
if (ctx->crypto_ok == 0)
return 0;
ctx->crypto_ok--;
if (!siv128_do_s2v_p(ctx, &q, in, len))
return 0;
memcpy(ctx->tag.byte, &q, SIV_LEN);
q.byte[8] &= 0x7f;
q.byte[12] &= 0x7f;
if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q))
return 0;
ctx->final_ret = 0;
return len;
}
/*
* Provide any data to be decrypted. This can be called once.
*/
int CRYPTO_siv128_decrypt(SIV128_CONTEXT *ctx,
const unsigned char *in, unsigned char *out,
size_t len)
{
unsigned char* p;
SIV_BLOCK t, q;
int i;
/* can only do one crypto operation */
if (ctx->crypto_ok == 0)
return 0;
ctx->crypto_ok--;
memcpy(&q, ctx->tag.byte, SIV_LEN);
q.byte[8] &= 0x7f;
q.byte[12] &= 0x7f;
if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)
|| !siv128_do_s2v_p(ctx, &t, out, len))
return 0;
p = ctx->tag.byte;
for (i = 0; i < SIV_LEN; i++)
t.byte[i] ^= p[i];
if ((t.word[0] | t.word[1]) != 0) {
OPENSSL_cleanse(out, len);
return 0;
}
ctx->final_ret = 0;
return len;
}
/*
* Return the already calculated final result.
*/
int CRYPTO_siv128_finish(SIV128_CONTEXT *ctx)
{
return ctx->final_ret;
}
/*
* Set the tag
*/
int CRYPTO_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len)
{
if (len != SIV_LEN)
return 0;
/* Copy the tag from the supplied buffer */
memcpy(ctx->tag.byte, tag, len);
return 1;
}
/*
* Retrieve the calculated tag
*/
int CRYPTO_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len)
{
if (len != SIV_LEN)
return 0;
/* Copy the tag into the supplied buffer */
memcpy(tag, ctx->tag.byte, len);
return 1;
}
/*
* Release all resources
*/
int CRYPTO_siv128_cleanup(SIV128_CONTEXT *ctx)
{
if (ctx != NULL) {
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
ctx->cipher_ctx = NULL;
EVP_MAC_CTX_free(ctx->mac_ctx_init);
ctx->mac_ctx_init = NULL;
EVP_MAC_CTX_free(ctx->mac_ctx);
ctx->mac_ctx = NULL;
OPENSSL_cleanse(&ctx->d, sizeof(ctx->d));
OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag));
ctx->final_ret = -1;
ctx->crypto_ok = 1;
}
return 1;
}
int CRYPTO_siv128_speed(SIV128_CONTEXT *ctx, int arg)
{
ctx->crypto_ok = (arg == 1) ? -1 : 1;
return 1;
}
#endif /* OPENSSL_NO_SIV */