openssl/providers/common/ciphers/aes.c
Shane Lontis a672a02a64 Add gcm ciphers (aes and aria) to providers.
The code has been modularized so that it can be shared by algorithms.

A fixed size IV is now used instead of being allocated.
The IV is not set into the low level struct now until the update (it uses an
iv_state for this purpose).

Hardware specific methods have been added to a PROV_GCM_HW object.

The S390 code has been changed to just contain methods that can be accessed in
a modular way. There are equivalent generic methods also for the other
platforms.

Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/9231)
2019-07-31 21:55:16 +10:00

504 lines
16 KiB
C

/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/core_numbers.h>
#include <openssl/core_names.h>
#include <openssl/evp.h>
#include <openssl/params.h>
#include <openssl/rand.h>
#include "internal/cryptlib.h"
#include "internal/provider_algs.h"
#include "ciphers_locl.h"
#include "internal/providercommonerr.h"
static OSSL_OP_cipher_encrypt_init_fn aes_einit;
static OSSL_OP_cipher_decrypt_init_fn aes_dinit;
static OSSL_OP_cipher_update_fn aes_block_update;
static OSSL_OP_cipher_final_fn aes_block_final;
static OSSL_OP_cipher_update_fn aes_stream_update;
static OSSL_OP_cipher_final_fn aes_stream_final;
static OSSL_OP_cipher_cipher_fn aes_cipher;
static OSSL_OP_cipher_freectx_fn aes_freectx;
static OSSL_OP_cipher_dupctx_fn aes_dupctx;
static OSSL_OP_cipher_ctx_get_params_fn aes_ctx_get_params;
static OSSL_OP_cipher_ctx_set_params_fn aes_ctx_set_params;
static int PROV_AES_KEY_generic_init(PROV_AES_KEY *ctx,
const unsigned char *iv,
size_t ivlen,
int enc)
{
if (iv != NULL && ctx->mode != EVP_CIPH_ECB_MODE) {
if (ivlen != AES_BLOCK_SIZE) {
PROVerr(PROV_F_PROV_AES_KEY_GENERIC_INIT, ERR_R_INTERNAL_ERROR);
return 0;
}
memcpy(ctx->iv, iv, AES_BLOCK_SIZE);
}
ctx->enc = enc;
return 1;
}
static int aes_einit(void *vctx, const unsigned char *key, size_t keylen,
const unsigned char *iv, size_t ivlen)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
if (!PROV_AES_KEY_generic_init(ctx, iv, ivlen, 1)) {
/* PROVerr already called */
return 0;
}
if (key != NULL) {
if (keylen != ctx->keylen) {
PROVerr(PROV_F_AES_EINIT, PROV_R_INVALID_KEYLEN);
return 0;
}
return ctx->ciph->init(ctx, key, ctx->keylen);
}
return 1;
}
static int aes_dinit(void *vctx, const unsigned char *key, size_t keylen,
const unsigned char *iv, size_t ivlen)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
if (!PROV_AES_KEY_generic_init(ctx, iv, ivlen, 0)) {
/* PROVerr already called */
return 0;
}
if (key != NULL) {
if (keylen != ctx->keylen) {
PROVerr(PROV_F_AES_DINIT, PROV_R_INVALID_KEYLEN);
return 0;
}
return ctx->ciph->init(ctx, key, ctx->keylen);
}
return 1;
}
static int aes_block_update(void *vctx, unsigned char *out, size_t *outl,
size_t outsize, const unsigned char *in, size_t inl)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
size_t nextblocks = fillblock(ctx->buf, &ctx->bufsz, AES_BLOCK_SIZE, &in,
&inl);
size_t outlint = 0;
/*
* If we're decrypting and we end an update on a block boundary we hold
* the last block back in case this is the last update call and the last
* block is padded.
*/
if (ctx->bufsz == AES_BLOCK_SIZE
&& (ctx->enc || inl > 0 || !ctx->pad)) {
if (outsize < AES_BLOCK_SIZE) {
PROVerr(PROV_F_AES_BLOCK_UPDATE, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->ciph->cipher(ctx, out, ctx->buf, AES_BLOCK_SIZE)) {
PROVerr(PROV_F_AES_BLOCK_UPDATE, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
ctx->bufsz = 0;
outlint = AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
if (nextblocks > 0) {
if (!ctx->enc && ctx->pad && nextblocks == inl) {
if (!ossl_assert(inl >= AES_BLOCK_SIZE)) {
PROVerr(PROV_F_AES_BLOCK_UPDATE, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
nextblocks -= AES_BLOCK_SIZE;
}
outlint += nextblocks;
if (outsize < outlint) {
PROVerr(PROV_F_AES_BLOCK_UPDATE, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->ciph->cipher(ctx, out, in, nextblocks)) {
PROVerr(PROV_F_AES_BLOCK_UPDATE, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
in += nextblocks;
inl -= nextblocks;
}
if (!trailingdata(ctx->buf, &ctx->bufsz, AES_BLOCK_SIZE, &in, &inl)) {
/* PROVerr already called */
return 0;
}
*outl = outlint;
return inl == 0;
}
static int aes_block_final(void *vctx, unsigned char *out, size_t *outl,
size_t outsize)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
if (ctx->enc) {
if (ctx->pad) {
padblock(ctx->buf, &ctx->bufsz, AES_BLOCK_SIZE);
} else if (ctx->bufsz == 0) {
*outl = 0;
return 1;
} else if (ctx->bufsz != AES_BLOCK_SIZE) {
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
if (outsize < AES_BLOCK_SIZE) {
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->ciph->cipher(ctx, out, ctx->buf, AES_BLOCK_SIZE)) {
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
ctx->bufsz = 0;
*outl = AES_BLOCK_SIZE;
return 1;
}
/* Decrypting */
if (ctx->bufsz != AES_BLOCK_SIZE) {
if (ctx->bufsz == 0 && !ctx->pad) {
*outl = 0;
return 1;
}
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_WRONG_FINAL_BLOCK_LENGTH);
return 0;
}
if (!ctx->ciph->cipher(ctx, ctx->buf, ctx->buf, AES_BLOCK_SIZE)) {
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
if (ctx->pad && !unpadblock(ctx->buf, &ctx->bufsz, AES_BLOCK_SIZE)) {
/* PROVerr already called */
return 0;
}
if (outsize < ctx->bufsz) {
PROVerr(PROV_F_AES_BLOCK_FINAL, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
memcpy(out, ctx->buf, ctx->bufsz);
*outl = ctx->bufsz;
ctx->bufsz = 0;
return 1;
}
static int aes_stream_update(void *vctx, unsigned char *out, size_t *outl,
size_t outsize, const unsigned char *in,
size_t inl)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
if (outsize < inl) {
PROVerr(PROV_F_AES_STREAM_UPDATE, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->ciph->cipher(ctx, out, in, inl)) {
PROVerr(PROV_F_AES_STREAM_UPDATE, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
*outl = inl;
return 1;
}
static int aes_stream_final(void *vctx, unsigned char *out, size_t *outl,
size_t outsize)
{
*outl = 0;
return 1;
}
static int aes_cipher(void *vctx,
unsigned char *out, size_t *outl, size_t outsize,
const unsigned char *in, size_t inl)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
if (outsize < inl) {
PROVerr(PROV_F_AES_CIPHER, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->ciph->cipher(ctx, out, in, inl)) {
PROVerr(PROV_F_AES_CIPHER, PROV_R_CIPHER_OPERATION_FAILED);
return 0;
}
*outl = inl;
return 1;
}
static void *aes_new_ctx(void *provctx, size_t mode, size_t kbits,
const PROV_AES_CIPHER *ciph)
{
PROV_AES_KEY *ctx = OPENSSL_zalloc(sizeof(*ctx));
ctx->pad = 1;
ctx->keylen = kbits / 8;
ctx->ciph = ciph;
ctx->mode = mode;
return ctx;
}
int aes_get_params(OSSL_PARAM params[], int md, unsigned long flags,
int kbits, int blkbits, int ivbits)
{
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_MODE);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, md))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_FLAGS);
if (p != NULL) {
if (!OSSL_PARAM_set_ulong(p, flags))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, kbits / 8))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_BLOCK_SIZE);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, blkbits / 8))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, ivbits / 8))
return 0;
}
return 1;
}
#define IMPLEMENT_cipher(lcmode, UCMODE, flags, kbits, blkbits, ivbits) \
static OSSL_OP_cipher_get_params_fn aes_##kbits##_##lcmode##_get_params; \
static int aes_##kbits##_##lcmode##_get_params(OSSL_PARAM params[]) \
{ \
return aes_get_params(params, EVP_CIPH_##UCMODE##_MODE, flags, kbits, \
blkbits, ivbits); \
} \
static OSSL_OP_cipher_newctx_fn aes_##kbits##_##lcmode##_newctx; \
static void *aes_##kbits##_##lcmode##_newctx(void *provctx) \
{ \
return aes_new_ctx(provctx, EVP_CIPH_##UCMODE##_MODE, kbits, \
PROV_AES_CIPHER_##lcmode(kbits / 8)); \
}
/* ECB */
IMPLEMENT_cipher(ecb, ECB, 0, 256, 128, 0)
IMPLEMENT_cipher(ecb, ECB, 0, 192, 128, 0)
IMPLEMENT_cipher(ecb, ECB, 0, 128, 128, 0)
/* CBC */
IMPLEMENT_cipher(cbc, CBC, 0, 256, 128, 128)
IMPLEMENT_cipher(cbc, CBC, 0, 192, 128, 128)
IMPLEMENT_cipher(cbc, CBC, 0, 128, 128, 128)
/* OFB */
IMPLEMENT_cipher(ofb, OFB, 0, 256, 8, 128)
IMPLEMENT_cipher(ofb, OFB, 0, 192, 8, 128)
IMPLEMENT_cipher(ofb, OFB, 0, 128, 8, 128)
/* CFB */
IMPLEMENT_cipher(cfb, CFB, 0, 256, 8, 128)
IMPLEMENT_cipher(cfb, CFB, 0, 192, 8, 128)
IMPLEMENT_cipher(cfb, CFB, 0, 128, 8, 128)
IMPLEMENT_cipher(cfb1, CFB, 0, 256, 8, 128)
IMPLEMENT_cipher(cfb1, CFB, 0, 192, 8, 128)
IMPLEMENT_cipher(cfb1, CFB, 0, 128, 8, 128)
IMPLEMENT_cipher(cfb8, CFB, 0, 256, 8, 128)
IMPLEMENT_cipher(cfb8, CFB, 0, 192, 8, 128)
IMPLEMENT_cipher(cfb8, CFB, 0, 128, 8, 128)
/* CTR */
IMPLEMENT_cipher(ctr, CTR, 0, 256, 8, 128)
IMPLEMENT_cipher(ctr, CTR, 0, 192, 8, 128)
IMPLEMENT_cipher(ctr, CTR, 0, 128, 8, 128)
static void aes_freectx(void *vctx)
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
OPENSSL_clear_free(ctx, sizeof(*ctx));
}
static void *aes_dupctx(void *ctx)
{
PROV_AES_KEY *in = (PROV_AES_KEY *)ctx;
PROV_AES_KEY *ret = OPENSSL_malloc(sizeof(*ret));
if (ret == NULL) {
PROVerr(PROV_F_AES_DUPCTX, ERR_R_MALLOC_FAILURE);
return NULL;
}
*ret = *in;
return ret;
}
static int aes_ctx_get_params(void *vctx, OSSL_PARAM params[])
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
OSSL_PARAM *p;
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IVLEN);
if (p != NULL) {
if (!OSSL_PARAM_set_int(p, AES_BLOCK_SIZE))
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_PADDING);
if (p != NULL && !OSSL_PARAM_set_int(p, ctx->pad)) {
PROVerr(PROV_F_AES_CTX_GET_PARAMS, PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_IV);
if (p != NULL
&& !OSSL_PARAM_set_octet_ptr(p, &ctx->iv, AES_BLOCK_SIZE)
&& !OSSL_PARAM_set_octet_string(p, &ctx->iv, AES_BLOCK_SIZE)) {
PROVerr(PROV_F_AES_CTX_GET_PARAMS,
PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_NUM);
if (p != NULL && !OSSL_PARAM_set_size_t(p, ctx->num)) {
PROVerr(PROV_F_AES_CTX_GET_PARAMS,
PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
p = OSSL_PARAM_locate(params, OSSL_CIPHER_PARAM_KEYLEN);
if (p != NULL && !OSSL_PARAM_set_int(p, ctx->keylen)) {
PROVerr(PROV_F_AES_CTX_GET_PARAMS,
PROV_R_FAILED_TO_SET_PARAMETER);
return 0;
}
return 1;
}
static int aes_ctx_set_params(void *vctx, const OSSL_PARAM params[])
{
PROV_AES_KEY *ctx = (PROV_AES_KEY *)vctx;
const OSSL_PARAM *p;
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_PADDING);
if (p != NULL) {
int pad;
if (!OSSL_PARAM_get_int(p, &pad)) {
PROVerr(PROV_F_AES_CTX_SET_PARAMS,
PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
ctx->pad = pad ? 1 : 0;
}
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_NUM);
if (p != NULL) {
int num;
if (!OSSL_PARAM_get_int(p, &num)) {
PROVerr(PROV_F_AES_CTX_SET_PARAMS,
PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
ctx->num = num;
}
p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_KEYLEN);
if (p != NULL) {
int keylen;
if (!OSSL_PARAM_get_int(p, &keylen)) {
PROVerr(PROV_F_AES_CTX_SET_PARAMS,
PROV_R_FAILED_TO_GET_PARAMETER);
return 0;
}
ctx->keylen = keylen;
}
return 1;
}
#define IMPLEMENT_block_funcs(mode, kbits) \
const OSSL_DISPATCH aes##kbits##mode##_functions[] = { \
{ OSSL_FUNC_CIPHER_NEWCTX, (void (*)(void))aes_##kbits##_##mode##_newctx }, \
{ OSSL_FUNC_CIPHER_ENCRYPT_INIT, (void (*)(void))aes_einit }, \
{ OSSL_FUNC_CIPHER_DECRYPT_INIT, (void (*)(void))aes_dinit }, \
{ OSSL_FUNC_CIPHER_UPDATE, (void (*)(void))aes_block_update }, \
{ OSSL_FUNC_CIPHER_FINAL, (void (*)(void))aes_block_final }, \
{ OSSL_FUNC_CIPHER_CIPHER, (void (*)(void))aes_cipher }, \
{ OSSL_FUNC_CIPHER_FREECTX, (void (*)(void))aes_freectx }, \
{ OSSL_FUNC_CIPHER_DUPCTX, (void (*)(void))aes_dupctx }, \
{ OSSL_FUNC_CIPHER_GET_PARAMS, (void (*)(void))aes_##kbits##_##mode##_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_GET_PARAMS, (void (*)(void))aes_ctx_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_SET_PARAMS, (void (*)(void))aes_ctx_set_params }, \
{ 0, NULL } \
};
#define IMPLEMENT_stream_funcs(mode, kbits) \
const OSSL_DISPATCH aes##kbits##mode##_functions[] = { \
{ OSSL_FUNC_CIPHER_NEWCTX, (void (*)(void))aes_##kbits##_##mode##_newctx }, \
{ OSSL_FUNC_CIPHER_ENCRYPT_INIT, (void (*)(void))aes_einit }, \
{ OSSL_FUNC_CIPHER_DECRYPT_INIT, (void (*)(void))aes_dinit }, \
{ OSSL_FUNC_CIPHER_UPDATE, (void (*)(void))aes_stream_update }, \
{ OSSL_FUNC_CIPHER_FINAL, (void (*)(void))aes_stream_final }, \
{ OSSL_FUNC_CIPHER_CIPHER, (void (*)(void))aes_cipher }, \
{ OSSL_FUNC_CIPHER_FREECTX, (void (*)(void))aes_freectx }, \
{ OSSL_FUNC_CIPHER_DUPCTX, (void (*)(void))aes_dupctx }, \
{ OSSL_FUNC_CIPHER_GET_PARAMS, (void (*)(void))aes_##kbits##_##mode##_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_GET_PARAMS, (void (*)(void))aes_ctx_get_params }, \
{ OSSL_FUNC_CIPHER_CTX_SET_PARAMS, (void (*)(void))aes_ctx_set_params }, \
{ 0, NULL } \
};
/* ECB */
IMPLEMENT_block_funcs(ecb, 256)
IMPLEMENT_block_funcs(ecb, 192)
IMPLEMENT_block_funcs(ecb, 128)
/* CBC */
IMPLEMENT_block_funcs(cbc, 256)
IMPLEMENT_block_funcs(cbc, 192)
IMPLEMENT_block_funcs(cbc, 128)
/* OFB */
IMPLEMENT_stream_funcs(ofb, 256)
IMPLEMENT_stream_funcs(ofb, 192)
IMPLEMENT_stream_funcs(ofb, 128)
/* CFB */
IMPLEMENT_stream_funcs(cfb, 256)
IMPLEMENT_stream_funcs(cfb, 192)
IMPLEMENT_stream_funcs(cfb, 128)
IMPLEMENT_stream_funcs(cfb1, 256)
IMPLEMENT_stream_funcs(cfb1, 192)
IMPLEMENT_stream_funcs(cfb1, 128)
IMPLEMENT_stream_funcs(cfb8, 256)
IMPLEMENT_stream_funcs(cfb8, 192)
IMPLEMENT_stream_funcs(cfb8, 128)
/* CTR */
IMPLEMENT_stream_funcs(ctr, 256)
IMPLEMENT_stream_funcs(ctr, 192)
IMPLEMENT_stream_funcs(ctr, 128)