openssl/ssl/d1_lib.c
Matt Caswell 28a31a0a10 Don't change the state of the ETM flags until CCS processing
In 1.1.0 changing the ciphersuite during a renegotiation can result in
a crash leading to a DoS attack. In master this does not occur with TLS
(instead you get an internal error, which is still wrong but not a security
issue) - but the problem still exists in the DTLS code.

The problem is caused by changing the flag indicating whether to use ETM
or not immediately on negotiation of ETM, rather than at CCS. Therefore,
during a renegotiation, if the ETM state is changing (usually due to a
change of ciphersuite), then an error/crash will occur.

Due to the fact that there are separate CCS messages for read and write
we actually now need two flags to determine whether to use ETM or not.

CVE-2017-3733

Reviewed-by: Richard Levitte <levitte@openssl.org>
2017-02-16 09:35:56 +00:00

961 lines
29 KiB
C

/*
* Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#define USE_SOCKETS
#include <openssl/objects.h>
#include <openssl/rand.h>
#include "ssl_locl.h"
#if defined(OPENSSL_SYS_VMS)
# include <sys/timeb.h>
#elif defined(OPENSSL_SYS_VXWORKS)
# include <sys/times.h>
#elif !defined(OPENSSL_SYS_WIN32)
# include <sys/time.h>
#endif
static void get_current_time(struct timeval *t);
static int dtls1_handshake_write(SSL *s);
static size_t dtls1_link_min_mtu(void);
/* XDTLS: figure out the right values */
static const size_t g_probable_mtu[] = { 1500, 512, 256 };
const SSL3_ENC_METHOD DTLSv1_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_DTLS | SSL_ENC_FLAG_EXPLICIT_IV,
dtls1_set_handshake_header,
dtls1_close_construct_packet,
dtls1_handshake_write
};
const SSL3_ENC_METHOD DTLSv1_2_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_DTLS | SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS
| SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS,
dtls1_set_handshake_header,
dtls1_close_construct_packet,
dtls1_handshake_write
};
long dtls1_default_timeout(void)
{
/*
* 2 hours, the 24 hours mentioned in the DTLSv1 spec is way too long for
* http, the cache would over fill
*/
return (60 * 60 * 2);
}
int dtls1_new(SSL *s)
{
DTLS1_STATE *d1;
if (!DTLS_RECORD_LAYER_new(&s->rlayer)) {
return 0;
}
if (!ssl3_new(s))
return (0);
if ((d1 = OPENSSL_zalloc(sizeof(*d1))) == NULL) {
ssl3_free(s);
return (0);
}
d1->buffered_messages = pqueue_new();
d1->sent_messages = pqueue_new();
if (s->server) {
d1->cookie_len = sizeof(s->d1->cookie);
}
d1->link_mtu = 0;
d1->mtu = 0;
if (d1->buffered_messages == NULL || d1->sent_messages == NULL) {
pqueue_free(d1->buffered_messages);
pqueue_free(d1->sent_messages);
OPENSSL_free(d1);
ssl3_free(s);
return (0);
}
s->d1 = d1;
s->method->ssl_clear(s);
return (1);
}
static void dtls1_clear_queues(SSL *s)
{
dtls1_clear_received_buffer(s);
dtls1_clear_sent_buffer(s);
}
void dtls1_clear_received_buffer(SSL *s)
{
pitem *item = NULL;
hm_fragment *frag = NULL;
while ((item = pqueue_pop(s->d1->buffered_messages)) != NULL) {
frag = (hm_fragment *)item->data;
dtls1_hm_fragment_free(frag);
pitem_free(item);
}
}
void dtls1_clear_sent_buffer(SSL *s)
{
pitem *item = NULL;
hm_fragment *frag = NULL;
while ((item = pqueue_pop(s->d1->sent_messages)) != NULL) {
frag = (hm_fragment *)item->data;
dtls1_hm_fragment_free(frag);
pitem_free(item);
}
}
void dtls1_free(SSL *s)
{
DTLS_RECORD_LAYER_free(&s->rlayer);
ssl3_free(s);
dtls1_clear_queues(s);
pqueue_free(s->d1->buffered_messages);
pqueue_free(s->d1->sent_messages);
OPENSSL_free(s->d1);
s->d1 = NULL;
}
void dtls1_clear(SSL *s)
{
pqueue *buffered_messages;
pqueue *sent_messages;
size_t mtu;
size_t link_mtu;
DTLS_RECORD_LAYER_clear(&s->rlayer);
if (s->d1) {
buffered_messages = s->d1->buffered_messages;
sent_messages = s->d1->sent_messages;
mtu = s->d1->mtu;
link_mtu = s->d1->link_mtu;
dtls1_clear_queues(s);
memset(s->d1, 0, sizeof(*s->d1));
if (s->server) {
s->d1->cookie_len = sizeof(s->d1->cookie);
}
if (SSL_get_options(s) & SSL_OP_NO_QUERY_MTU) {
s->d1->mtu = mtu;
s->d1->link_mtu = link_mtu;
}
s->d1->buffered_messages = buffered_messages;
s->d1->sent_messages = sent_messages;
}
ssl3_clear(s);
if (s->method->version == DTLS_ANY_VERSION)
s->version = DTLS_MAX_VERSION;
#ifndef OPENSSL_NO_DTLS1_METHOD
else if (s->options & SSL_OP_CISCO_ANYCONNECT)
s->client_version = s->version = DTLS1_BAD_VER;
#endif
else
s->version = s->method->version;
}
long dtls1_ctrl(SSL *s, int cmd, long larg, void *parg)
{
int ret = 0;
switch (cmd) {
case DTLS_CTRL_GET_TIMEOUT:
if (dtls1_get_timeout(s, (struct timeval *)parg) != NULL) {
ret = 1;
}
break;
case DTLS_CTRL_HANDLE_TIMEOUT:
ret = dtls1_handle_timeout(s);
break;
case DTLS_CTRL_SET_LINK_MTU:
if (larg < (long)dtls1_link_min_mtu())
return 0;
s->d1->link_mtu = larg;
return 1;
case DTLS_CTRL_GET_LINK_MIN_MTU:
return (long)dtls1_link_min_mtu();
case SSL_CTRL_SET_MTU:
/*
* We may not have a BIO set yet so can't call dtls1_min_mtu()
* We'll have to make do with dtls1_link_min_mtu() and max overhead
*/
if (larg < (long)dtls1_link_min_mtu() - DTLS1_MAX_MTU_OVERHEAD)
return 0;
s->d1->mtu = larg;
return larg;
default:
ret = ssl3_ctrl(s, cmd, larg, parg);
break;
}
return (ret);
}
void dtls1_start_timer(SSL *s)
{
#ifndef OPENSSL_NO_SCTP
/* Disable timer for SCTP */
if (BIO_dgram_is_sctp(SSL_get_wbio(s))) {
memset(&s->d1->next_timeout, 0, sizeof(s->d1->next_timeout));
return;
}
#endif
/* If timer is not set, initialize duration with 1 second */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0) {
s->d1->timeout_duration = 1;
}
/* Set timeout to current time */
get_current_time(&(s->d1->next_timeout));
/* Add duration to current time */
s->d1->next_timeout.tv_sec += s->d1->timeout_duration;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
&(s->d1->next_timeout));
}
struct timeval *dtls1_get_timeout(SSL *s, struct timeval *timeleft)
{
struct timeval timenow;
/* If no timeout is set, just return NULL */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0) {
return NULL;
}
/* Get current time */
get_current_time(&timenow);
/* If timer already expired, set remaining time to 0 */
if (s->d1->next_timeout.tv_sec < timenow.tv_sec ||
(s->d1->next_timeout.tv_sec == timenow.tv_sec &&
s->d1->next_timeout.tv_usec <= timenow.tv_usec)) {
memset(timeleft, 0, sizeof(*timeleft));
return timeleft;
}
/* Calculate time left until timer expires */
memcpy(timeleft, &(s->d1->next_timeout), sizeof(struct timeval));
timeleft->tv_sec -= timenow.tv_sec;
timeleft->tv_usec -= timenow.tv_usec;
if (timeleft->tv_usec < 0) {
timeleft->tv_sec--;
timeleft->tv_usec += 1000000;
}
/*
* If remaining time is less than 15 ms, set it to 0 to prevent issues
* because of small divergences with socket timeouts.
*/
if (timeleft->tv_sec == 0 && timeleft->tv_usec < 15000) {
memset(timeleft, 0, sizeof(*timeleft));
}
return timeleft;
}
int dtls1_is_timer_expired(SSL *s)
{
struct timeval timeleft;
/* Get time left until timeout, return false if no timer running */
if (dtls1_get_timeout(s, &timeleft) == NULL) {
return 0;
}
/* Return false if timer is not expired yet */
if (timeleft.tv_sec > 0 || timeleft.tv_usec > 0) {
return 0;
}
/* Timer expired, so return true */
return 1;
}
void dtls1_double_timeout(SSL *s)
{
s->d1->timeout_duration *= 2;
if (s->d1->timeout_duration > 60)
s->d1->timeout_duration = 60;
dtls1_start_timer(s);
}
void dtls1_stop_timer(SSL *s)
{
/* Reset everything */
memset(&s->d1->timeout, 0, sizeof(s->d1->timeout));
memset(&s->d1->next_timeout, 0, sizeof(s->d1->next_timeout));
s->d1->timeout_duration = 1;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
&(s->d1->next_timeout));
/* Clear retransmission buffer */
dtls1_clear_sent_buffer(s);
}
int dtls1_check_timeout_num(SSL *s)
{
size_t mtu;
s->d1->timeout.num_alerts++;
/* Reduce MTU after 2 unsuccessful retransmissions */
if (s->d1->timeout.num_alerts > 2
&& !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
mtu =
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_GET_FALLBACK_MTU, 0, NULL);
if (mtu < s->d1->mtu)
s->d1->mtu = mtu;
}
if (s->d1->timeout.num_alerts > DTLS1_TMO_ALERT_COUNT) {
/* fail the connection, enough alerts have been sent */
SSLerr(SSL_F_DTLS1_CHECK_TIMEOUT_NUM, SSL_R_READ_TIMEOUT_EXPIRED);
return -1;
}
return 0;
}
int dtls1_handle_timeout(SSL *s)
{
/* if no timer is expired, don't do anything */
if (!dtls1_is_timer_expired(s)) {
return 0;
}
dtls1_double_timeout(s);
if (dtls1_check_timeout_num(s) < 0)
return -1;
s->d1->timeout.read_timeouts++;
if (s->d1->timeout.read_timeouts > DTLS1_TMO_READ_COUNT) {
s->d1->timeout.read_timeouts = 1;
}
dtls1_start_timer(s);
return dtls1_retransmit_buffered_messages(s);
}
static void get_current_time(struct timeval *t)
{
#if defined(_WIN32)
SYSTEMTIME st;
union {
unsigned __int64 ul;
FILETIME ft;
} now;
GetSystemTime(&st);
SystemTimeToFileTime(&st, &now.ft);
/* re-bias to 1/1/1970 */
# ifdef __MINGW32__
now.ul -= 116444736000000000ULL;
# else
/* *INDENT-OFF* */
now.ul -= 116444736000000000UI64;
/* *INDENT-ON* */
# endif
t->tv_sec = (long)(now.ul / 10000000);
t->tv_usec = ((int)(now.ul % 10000000)) / 10;
#elif defined(OPENSSL_SYS_VMS)
struct timeb tb;
ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#else
gettimeofday(t, NULL);
#endif
}
#define LISTEN_SUCCESS 2
#define LISTEN_SEND_VERIFY_REQUEST 1
#ifndef OPENSSL_NO_SOCK
int DTLSv1_listen(SSL *s, BIO_ADDR *client)
{
int next, n, ret = 0, clearpkt = 0;
unsigned char cookie[DTLS1_COOKIE_LENGTH];
unsigned char seq[SEQ_NUM_SIZE];
const unsigned char *data;
unsigned char *buf;
size_t fragoff, fraglen, msglen;
unsigned int rectype, versmajor, msgseq, msgtype, clientvers, cookielen;
BIO *rbio, *wbio;
BUF_MEM *bufm;
BIO_ADDR *tmpclient = NULL;
PACKET pkt, msgpkt, msgpayload, session, cookiepkt;
if (s->handshake_func == NULL) {
/* Not properly initialized yet */
SSL_set_accept_state(s);
}
/* Ensure there is no state left over from a previous invocation */
if (!SSL_clear(s))
return -1;
ERR_clear_error();
rbio = SSL_get_rbio(s);
wbio = SSL_get_wbio(s);
if (!rbio || !wbio) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_BIO_NOT_SET);
return -1;
}
/*
* We only peek at incoming ClientHello's until we're sure we are going to
* to respond with a HelloVerifyRequest. If its a ClientHello with a valid
* cookie then we leave it in the BIO for accept to handle.
*/
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_PEEK_MODE, 1, NULL);
/*
* Note: This check deliberately excludes DTLS1_BAD_VER because that version
* requires the MAC to be calculated *including* the first ClientHello
* (without the cookie). Since DTLSv1_listen is stateless that cannot be
* supported. DTLS1_BAD_VER must use cookies in a stateful manner (e.g. via
* SSL_accept)
*/
if ((s->version & 0xff00) != (DTLS1_VERSION & 0xff00)) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_UNSUPPORTED_SSL_VERSION);
return -1;
}
if (s->init_buf == NULL) {
if ((bufm = BUF_MEM_new()) == NULL) {
SSLerr(SSL_F_DTLSV1_LISTEN, ERR_R_MALLOC_FAILURE);
return -1;
}
if (!BUF_MEM_grow(bufm, SSL3_RT_MAX_PLAIN_LENGTH)) {
BUF_MEM_free(bufm);
SSLerr(SSL_F_DTLSV1_LISTEN, ERR_R_MALLOC_FAILURE);
return -1;
}
s->init_buf = bufm;
}
buf = (unsigned char *)s->init_buf->data;
do {
/* Get a packet */
clear_sys_error();
/*
* Technically a ClientHello could be SSL3_RT_MAX_PLAIN_LENGTH
* + DTLS1_RT_HEADER_LENGTH bytes long. Normally init_buf does not store
* the record header as well, but we do here. We've set up init_buf to
* be the standard size for simplicity. In practice we shouldn't ever
* receive a ClientHello as long as this. If we do it will get dropped
* in the record length check below.
*/
n = BIO_read(rbio, buf, SSL3_RT_MAX_PLAIN_LENGTH);
if (n <= 0) {
if (BIO_should_retry(rbio)) {
/* Non-blocking IO */
goto end;
}
return -1;
}
/* If we hit any problems we need to clear this packet from the BIO */
clearpkt = 1;
if (!PACKET_buf_init(&pkt, buf, n)) {
SSLerr(SSL_F_DTLSV1_LISTEN, ERR_R_INTERNAL_ERROR);
return -1;
}
/*
* Parse the received record. If there are any problems with it we just
* dump it - with no alert. RFC6347 says this "Unlike TLS, DTLS is
* resilient in the face of invalid records (e.g., invalid formatting,
* length, MAC, etc.). In general, invalid records SHOULD be silently
* discarded, thus preserving the association; however, an error MAY be
* logged for diagnostic purposes."
*/
/* this packet contained a partial record, dump it */
if (n < DTLS1_RT_HEADER_LENGTH) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_RECORD_TOO_SMALL);
goto end;
}
if (s->msg_callback)
s->msg_callback(0, 0, SSL3_RT_HEADER, buf,
DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg);
/* Get the record header */
if (!PACKET_get_1(&pkt, &rectype)
|| !PACKET_get_1(&pkt, &versmajor)) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_LENGTH_MISMATCH);
goto end;
}
if (rectype != SSL3_RT_HANDSHAKE) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_UNEXPECTED_MESSAGE);
goto end;
}
/*
* Check record version number. We only check that the major version is
* the same.
*/
if (versmajor != DTLS1_VERSION_MAJOR) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_BAD_PROTOCOL_VERSION_NUMBER);
goto end;
}
if (!PACKET_forward(&pkt, 1)
/* Save the sequence number: 64 bits, with top 2 bytes = epoch */
|| !PACKET_copy_bytes(&pkt, seq, SEQ_NUM_SIZE)
|| !PACKET_get_length_prefixed_2(&pkt, &msgpkt)) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_LENGTH_MISMATCH);
goto end;
}
/*
* We allow data remaining at the end of the packet because there could
* be a second record (but we ignore it)
*/
/* This is an initial ClientHello so the epoch has to be 0 */
if (seq[0] != 0 || seq[1] != 0) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_UNEXPECTED_MESSAGE);
goto end;
}
/* Get a pointer to the raw message for the later callback */
data = PACKET_data(&msgpkt);
/* Finished processing the record header, now process the message */
if (!PACKET_get_1(&msgpkt, &msgtype)
|| !PACKET_get_net_3_len(&msgpkt, &msglen)
|| !PACKET_get_net_2(&msgpkt, &msgseq)
|| !PACKET_get_net_3_len(&msgpkt, &fragoff)
|| !PACKET_get_net_3_len(&msgpkt, &fraglen)
|| !PACKET_get_sub_packet(&msgpkt, &msgpayload, fraglen)
|| PACKET_remaining(&msgpkt) != 0) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_LENGTH_MISMATCH);
goto end;
}
if (msgtype != SSL3_MT_CLIENT_HELLO) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_UNEXPECTED_MESSAGE);
goto end;
}
/* Message sequence number can only be 0 or 1 */
if (msgseq > 2) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_INVALID_SEQUENCE_NUMBER);
goto end;
}
/*
* We don't support fragment reassembly for ClientHellos whilst
* listening because that would require server side state (which is
* against the whole point of the ClientHello/HelloVerifyRequest
* mechanism). Instead we only look at the first ClientHello fragment
* and require that the cookie must be contained within it.
*/
if (fragoff != 0 || fraglen > msglen) {
/* Non initial ClientHello fragment (or bad fragment) */
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_FRAGMENTED_CLIENT_HELLO);
goto end;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, data,
fraglen + DTLS1_HM_HEADER_LENGTH, s,
s->msg_callback_arg);
if (!PACKET_get_net_2(&msgpayload, &clientvers)) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_LENGTH_MISMATCH);
goto end;
}
/*
* Verify client version is supported
*/
if (DTLS_VERSION_LT(clientvers, (unsigned int)s->method->version) &&
s->method->version != DTLS_ANY_VERSION) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_WRONG_VERSION_NUMBER);
goto end;
}
if (!PACKET_forward(&msgpayload, SSL3_RANDOM_SIZE)
|| !PACKET_get_length_prefixed_1(&msgpayload, &session)
|| !PACKET_get_length_prefixed_1(&msgpayload, &cookiepkt)) {
/*
* Could be malformed or the cookie does not fit within the initial
* ClientHello fragment. Either way we can't handle it.
*/
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_LENGTH_MISMATCH);
goto end;
}
/*
* Check if we have a cookie or not. If not we need to send a
* HelloVerifyRequest.
*/
if (PACKET_remaining(&cookiepkt) == 0) {
next = LISTEN_SEND_VERIFY_REQUEST;
} else {
/*
* We have a cookie, so lets check it.
*/
if (s->ctx->app_verify_cookie_cb == NULL) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_NO_VERIFY_COOKIE_CALLBACK);
/* This is fatal */
return -1;
}
if (s->ctx->app_verify_cookie_cb(s, PACKET_data(&cookiepkt),
(unsigned int)PACKET_remaining(&cookiepkt)) == 0) {
/*
* We treat invalid cookies in the same was as no cookie as
* per RFC6347
*/
next = LISTEN_SEND_VERIFY_REQUEST;
} else {
/* Cookie verification succeeded */
next = LISTEN_SUCCESS;
}
}
if (next == LISTEN_SEND_VERIFY_REQUEST) {
WPACKET wpkt;
unsigned int version;
size_t wreclen;
/*
* There was no cookie in the ClientHello so we need to send a
* HelloVerifyRequest. If this fails we do not worry about trying
* to resend, we just drop it.
*/
/*
* Dump the read packet, we don't need it any more. Ignore return
* value
*/
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_PEEK_MODE, 0, NULL);
BIO_read(rbio, buf, SSL3_RT_MAX_PLAIN_LENGTH);
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_PEEK_MODE, 1, NULL);
/* Generate the cookie */
if (s->ctx->app_gen_cookie_cb == NULL ||
s->ctx->app_gen_cookie_cb(s, cookie, &cookielen) == 0 ||
cookielen > 255) {
SSLerr(SSL_F_DTLSV1_LISTEN, SSL_R_COOKIE_GEN_CALLBACK_FAILURE);
/* This is fatal */
return -1;
}
/*
* Special case: for hello verify request, client version 1.0 and we
* haven't decided which version to use yet send back using version
* 1.0 header: otherwise some clients will ignore it.
*/
version = (s->method->version == DTLS_ANY_VERSION) ? DTLS1_VERSION
: s->version;
/* Construct the record and message headers */
if (!WPACKET_init(&wpkt, s->init_buf)
|| !WPACKET_put_bytes_u8(&wpkt, SSL3_RT_HANDSHAKE)
|| !WPACKET_put_bytes_u16(&wpkt, version)
/*
* Record sequence number is always the same as in the
* received ClientHello
*/
|| !WPACKET_memcpy(&wpkt, seq, SEQ_NUM_SIZE)
/* End of record, start sub packet for message */
|| !WPACKET_start_sub_packet_u16(&wpkt)
/* Message type */
|| !WPACKET_put_bytes_u8(&wpkt,
DTLS1_MT_HELLO_VERIFY_REQUEST)
/*
* Message length - doesn't follow normal TLS convention:
* the length isn't the last thing in the message header.
* We'll need to fill this in later when we know the
* length. Set it to zero for now
*/
|| !WPACKET_put_bytes_u24(&wpkt, 0)
/*
* Message sequence number is always 0 for a
* HelloVerifyRequest
*/
|| !WPACKET_put_bytes_u16(&wpkt, 0)
/*
* We never fragment a HelloVerifyRequest, so fragment
* offset is 0
*/
|| !WPACKET_put_bytes_u24(&wpkt, 0)
/*
* Fragment length is the same as message length, but
* this *is* the last thing in the message header so we
* can just start a sub-packet. No need to come back
* later for this one.
*/
|| !WPACKET_start_sub_packet_u24(&wpkt)
/* Create the actual HelloVerifyRequest body */
|| !dtls_raw_hello_verify_request(&wpkt, cookie, cookielen)
/* Close message body */
|| !WPACKET_close(&wpkt)
/* Close record body */
|| !WPACKET_close(&wpkt)
|| !WPACKET_get_total_written(&wpkt, &wreclen)
|| !WPACKET_finish(&wpkt)) {
SSLerr(SSL_F_DTLSV1_LISTEN, ERR_R_INTERNAL_ERROR);
WPACKET_cleanup(&wpkt);
/* This is fatal */
return -1;
}
/*
* Fix up the message len in the message header. Its the same as the
* fragment len which has been filled in by WPACKET, so just copy
* that. Destination for the message len is after the record header
* plus one byte for the message content type. The source is the
* last 3 bytes of the message header
*/
memcpy(&buf[DTLS1_RT_HEADER_LENGTH + 1],
&buf[DTLS1_RT_HEADER_LENGTH + DTLS1_HM_HEADER_LENGTH - 3],
3);
if (s->msg_callback)
s->msg_callback(1, 0, SSL3_RT_HEADER, buf,
DTLS1_RT_HEADER_LENGTH, s, s->msg_callback_arg);
if ((tmpclient = BIO_ADDR_new()) == NULL) {
SSLerr(SSL_F_DTLSV1_LISTEN, ERR_R_MALLOC_FAILURE);
goto end;
}
/*
* This is unnecessary if rbio and wbio are one and the same - but
* maybe they're not. We ignore errors here - some BIOs do not
* support this.
*/
if (BIO_dgram_get_peer(rbio, tmpclient) > 0) {
(void)BIO_dgram_set_peer(wbio, tmpclient);
}
BIO_ADDR_free(tmpclient);
tmpclient = NULL;
/* TODO(size_t): convert this call */
if (BIO_write(wbio, buf, wreclen) < (int)wreclen) {
if (BIO_should_retry(wbio)) {
/*
* Non-blocking IO...but we're stateless, so we're just
* going to drop this packet.
*/
goto end;
}
return -1;
}
if (BIO_flush(wbio) <= 0) {
if (BIO_should_retry(wbio)) {
/*
* Non-blocking IO...but we're stateless, so we're just
* going to drop this packet.
*/
goto end;
}
return -1;
}
}
} while (next != LISTEN_SUCCESS);
/*
* Set expected sequence numbers to continue the handshake.
*/
s->d1->handshake_read_seq = 1;
s->d1->handshake_write_seq = 1;
s->d1->next_handshake_write_seq = 1;
DTLS_RECORD_LAYER_set_write_sequence(&s->rlayer, seq);
/*
* We are doing cookie exchange, so make sure we set that option in the
* SSL object
*/
SSL_set_options(s, SSL_OP_COOKIE_EXCHANGE);
/*
* Tell the state machine that we've done the initial hello verify
* exchange
*/
ossl_statem_set_hello_verify_done(s);
/*
* Some BIOs may not support this. If we fail we clear the client address
*/
if (BIO_dgram_get_peer(rbio, client) <= 0)
BIO_ADDR_clear(client);
ret = 1;
clearpkt = 0;
end:
BIO_ADDR_free(tmpclient);
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_PEEK_MODE, 0, NULL);
if (clearpkt) {
/* Dump this packet. Ignore return value */
BIO_read(rbio, buf, SSL3_RT_MAX_PLAIN_LENGTH);
}
return ret;
}
#endif
static int dtls1_handshake_write(SSL *s)
{
return dtls1_do_write(s, SSL3_RT_HANDSHAKE);
}
int dtls1_shutdown(SSL *s)
{
int ret;
#ifndef OPENSSL_NO_SCTP
BIO *wbio;
wbio = SSL_get_wbio(s);
if (wbio != NULL && BIO_dgram_is_sctp(wbio) &&
!(s->shutdown & SSL_SENT_SHUTDOWN)) {
ret = BIO_dgram_sctp_wait_for_dry(wbio);
if (ret < 0)
return -1;
if (ret == 0)
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN, 1,
NULL);
}
#endif
ret = ssl3_shutdown(s);
#ifndef OPENSSL_NO_SCTP
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN, 0, NULL);
#endif
return ret;
}
int dtls1_query_mtu(SSL *s)
{
if (s->d1->link_mtu) {
s->d1->mtu =
s->d1->link_mtu - BIO_dgram_get_mtu_overhead(SSL_get_wbio(s));
s->d1->link_mtu = 0;
}
/* AHA! Figure out the MTU, and stick to the right size */
if (s->d1->mtu < dtls1_min_mtu(s)) {
if (!(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
s->d1->mtu =
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
/*
* I've seen the kernel return bogus numbers when it doesn't know
* (initial write), so just make sure we have a reasonable number
*/
if (s->d1->mtu < dtls1_min_mtu(s)) {
/* Set to min mtu */
s->d1->mtu = dtls1_min_mtu(s);
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU,
(long)s->d1->mtu, NULL);
}
} else
return 0;
}
return 1;
}
static size_t dtls1_link_min_mtu(void)
{
return (g_probable_mtu[(sizeof(g_probable_mtu) /
sizeof(g_probable_mtu[0])) - 1]);
}
size_t dtls1_min_mtu(SSL *s)
{
return dtls1_link_min_mtu() - BIO_dgram_get_mtu_overhead(SSL_get_wbio(s));
}
size_t DTLS_get_data_mtu(const SSL *s)
{
size_t mac_overhead, int_overhead, blocksize, ext_overhead;
const SSL_CIPHER *ciph = SSL_get_current_cipher(s);
size_t mtu = s->d1->mtu;
if (ciph == NULL)
return 0;
if (!ssl_cipher_get_overhead(ciph, &mac_overhead, &int_overhead,
&blocksize, &ext_overhead))
return 0;
if (SSL_READ_ETM(s))
ext_overhead += mac_overhead;
else
int_overhead += mac_overhead;
/* Subtract external overhead (e.g. IV/nonce, separate MAC) */
if (ext_overhead + DTLS1_RT_HEADER_LENGTH >= mtu)
return 0;
mtu -= ext_overhead + DTLS1_RT_HEADER_LENGTH;
/* Round encrypted payload down to cipher block size (for CBC etc.)
* No check for overflow since 'mtu % blocksize' cannot exceed mtu. */
if (blocksize)
mtu -= (mtu % blocksize);
/* Subtract internal overhead (e.g. CBC padding len byte) */
if (int_overhead >= mtu)
return 0;
mtu -= int_overhead;
return mtu;
}