openssl/crypto/rand/rand_lib.c
Dr. Matthias St. Pierre 5bc6bcf82d DRBG: implement a get_nonce() callback
Fixes #5849

In pull request #5503 a fallback was added which adds a random nonce of
security_strength/2 bits if no nonce callback is provided. This change raised
the entropy requirements form 256 to 384 bit, which can cause problems on some
platforms (e.g. VMS, see issue #5849).

The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1:

  A nonce may be required in the construction of a seed during instantiation
  in order to provide a security cushion to block certain attacks.
  The nonce shall be either:

  a) A value with at least (security_strength/2) bits of entropy, or

  b) A value that is expected to repeat no more often than a
     (security_strength/2)-bit random string would be expected to repeat.

  Each nonce shall be unique to the cryptographic module in which instantiation
  is performed, but need not be secret. When used, the nonce shall be considered
  to be a critical security parameter.

This commit implements a nonce of type b) in order to lower the entropy
requirements during instantiation back to 256 bits.

The formulation "shall be unique to the cryptographic module" above implies
that the nonce needs to be unique among (with high probability) among all
DRBG instances in "space" and "time". We try to achieve this goal by creating a
nonce of the following form

    nonce = app-specific-data || high-resolution-utc-timestamp || counter

Where || denotes concatenation. The application specific data can be something
like the process or group id of the application. A utc timestamp is used because
it increases monotonically, provided the system time is synchronized. This approach
may not be perfect yet for a FIPS evaluation, but it should be good enough for the
moment.

This commit also harmonizes the implementation of the get_nonce() and the
get_additional_data() callbacks and moves the platform specific parts from
rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-13 20:49:28 +02:00

765 lines
20 KiB
C

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/opensslconf.h>
#include "internal/rand_int.h"
#include <openssl/engine.h>
#include "internal/thread_once.h"
#include "rand_lcl.h"
#include "e_os.h"
#ifndef OPENSSL_NO_ENGINE
/* non-NULL if default_RAND_meth is ENGINE-provided */
static ENGINE *funct_ref;
static CRYPTO_RWLOCK *rand_engine_lock;
#endif
static CRYPTO_RWLOCK *rand_meth_lock;
static const RAND_METHOD *default_RAND_meth;
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
int rand_fork_count;
static CRYPTO_RWLOCK *rand_nonce_lock;
static int rand_nonce_count;
#ifdef OPENSSL_RAND_SEED_RDTSC
/*
* IMPORTANT NOTE: It is not currently possible to use this code
* because we are not sure about the amount of randomness it provides.
* Some SP900 tests have been run, but there is internal skepticism.
* So for now this code is not used.
*/
# error "RDTSC enabled? Should not be possible!"
/*
* Acquire entropy from high-speed clock
*
* Since we get some randomness from the low-order bits of the
* high-speed clock, it can help.
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
{
unsigned char c;
int i;
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
for (i = 0; i < TSC_READ_COUNT; i++) {
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
rand_pool_add(pool, &c, 1, 4);
}
}
return rand_pool_entropy_available(pool);
}
#endif
#ifdef OPENSSL_RAND_SEED_RDCPU
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
extern unsigned int OPENSSL_ia32cap_P[];
/*
* Acquire entropy using Intel-specific cpu instructions
*
* Uses the RDSEED instruction if available, otherwise uses
* RDRAND if available.
*
* For the differences between RDSEED and RDRAND, and why RDSEED
* is the preferred choice, see https://goo.gl/oK3KcN
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
{
size_t bytes_needed;
unsigned char *buffer;
bytes_needed = rand_pool_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
/* Whichever comes first, use RDSEED, RDRAND or nothing */
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
== bytes_needed) {
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
}
} else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
== bytes_needed) {
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
}
} else {
rand_pool_add_end(pool, 0, 0);
}
}
}
return rand_pool_entropy_available(pool);
}
#endif
/*
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
*
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's RAND_DRBG_generate().
*
* Otherwise, the entropy is polled from the system entropy sources
* using rand_pool_acquire_entropy().
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
int prediction_resistance)
{
size_t ret = 0;
size_t entropy_available = 0;
RAND_POOL *pool;
if (drbg->parent && drbg->strength > drbg->parent->strength) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
return 0;
}
pool = rand_pool_new(entropy, min_len, max_len);
if (pool == NULL)
return 0;
if (drbg->pool) {
rand_pool_add(pool,
rand_pool_buffer(drbg->pool),
rand_pool_length(drbg->pool),
rand_pool_entropy(drbg->pool));
rand_pool_free(drbg->pool);
drbg->pool = NULL;
}
if (drbg->parent) {
size_t bytes_needed = rand_pool_bytes_needed(pool, 8);
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/*
* Get random from parent, include our state as additional input.
* Our lock is already held, but we need to lock our parent before
* generating bits from it. (Note: taking the lock will be a no-op
* if locking if drbg->parent->lock == NULL.)
*/
rand_drbg_lock(drbg->parent);
if (RAND_DRBG_generate(drbg->parent,
buffer, bytes_needed,
prediction_resistance,
(unsigned char *)drbg, sizeof(*drbg)) != 0)
bytes = bytes_needed;
rand_drbg_unlock(drbg->parent);
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
}
} else {
if (prediction_resistance) {
/*
* We don't have any entropy sources that comply with the NIST
* standard to provide prediction resistance (see NIST SP 800-90C,
* Section 5.4).
*/
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
goto err;
}
/* Get entropy by polling system entropy sources. */
entropy_available = rand_pool_acquire_entropy(pool);
}
if (entropy_available > 0) {
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
}
err:
rand_pool_free(pool);
return ret;
}
/*
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
*
*/
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
unsigned char *out, size_t outlen)
{
OPENSSL_secure_clear_free(out, outlen);
}
/*
* Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
*
*/
size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
size_t ret = 0;
RAND_POOL *pool;
struct {
void * instance;
int count;
} data = { 0 };
pool = rand_pool_new(0, min_len, max_len);
if (pool == NULL)
return 0;
if (rand_pool_add_nonce_data(pool) == 0)
goto err;
data.instance = drbg;
CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
goto err;
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
err:
rand_pool_free(pool);
return ret;
}
/*
* Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
*
*/
void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
unsigned char *out, size_t outlen)
{
OPENSSL_secure_clear_free(out, outlen);
}
/*
* Generate additional data that can be used for the drbg. The data does
* not need to contain entropy, but it's useful if it contains at least
* some bits that are unpredictable.
*
* Returns 0 on failure.
*
* On success it allocates a buffer at |*pout| and returns the length of
* the data. The buffer should get freed using OPENSSL_secure_clear_free().
*/
size_t rand_drbg_get_additional_data(unsigned char **pout, size_t max_len)
{
size_t ret = 0;
RAND_POOL *pool;
pool = rand_pool_new(0, 0, max_len);
if (pool == NULL)
return 0;
if (rand_pool_add_additional_data(pool) == 0)
goto err;
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
err:
rand_pool_free(pool);
return ret;
}
void rand_drbg_cleanup_additional_data(unsigned char *out, size_t outlen)
{
OPENSSL_secure_clear_free(out, outlen);
}
void rand_fork()
{
rand_fork_count++;
}
DEFINE_RUN_ONCE_STATIC(do_rand_init)
{
int ret = 1;
#ifndef OPENSSL_NO_ENGINE
rand_engine_lock = CRYPTO_THREAD_lock_new();
ret &= rand_engine_lock != NULL;
#endif
rand_meth_lock = CRYPTO_THREAD_lock_new();
ret &= rand_meth_lock != NULL;
rand_nonce_lock = CRYPTO_THREAD_lock_new();
ret &= rand_meth_lock != NULL;
return ret;
}
void rand_cleanup_int(void)
{
const RAND_METHOD *meth = default_RAND_meth;
if (meth != NULL && meth->cleanup != NULL)
meth->cleanup();
RAND_set_rand_method(NULL);
#ifndef OPENSSL_NO_ENGINE
CRYPTO_THREAD_lock_free(rand_engine_lock);
#endif
CRYPTO_THREAD_lock_free(rand_meth_lock);
CRYPTO_THREAD_lock_free(rand_nonce_lock);
}
/*
* RAND_poll() reseeds the default RNG using random input
*
* The random input is obtained from polling various entropy
* sources which depend on the operating system and are
* configurable via the --with-rand-seed configure option.
*/
int RAND_poll(void)
{
int ret = 0;
RAND_POOL *pool = NULL;
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth == RAND_OpenSSL()) {
/* fill random pool and seed the master DRBG */
RAND_DRBG *drbg = RAND_DRBG_get0_master();
if (drbg == NULL)
return 0;
rand_drbg_lock(drbg);
ret = rand_drbg_restart(drbg, NULL, 0, 0);
rand_drbg_unlock(drbg);
return ret;
} else {
/* fill random pool and seed the current legacy RNG */
pool = rand_pool_new(RAND_DRBG_STRENGTH,
RAND_DRBG_STRENGTH / 8,
DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8));
if (pool == NULL)
return 0;
if (rand_pool_acquire_entropy(pool) == 0)
goto err;
if (meth->add == NULL
|| meth->add(rand_pool_buffer(pool),
rand_pool_length(pool),
(rand_pool_entropy(pool) / 8.0)) == 0)
goto err;
ret = 1;
}
err:
rand_pool_free(pool);
return ret;
}
/*
* Allocate memory and initialize a new random pool
*/
RAND_POOL *rand_pool_new(int entropy, size_t min_len, size_t max_len)
{
RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
if (pool == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
pool->min_len = min_len;
pool->max_len = max_len;
pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
if (pool->buffer == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
pool->requested_entropy = entropy;
return pool;
err:
OPENSSL_free(pool);
return NULL;
}
/*
* Free |pool|, securely erasing its buffer.
*/
void rand_pool_free(RAND_POOL *pool)
{
if (pool == NULL)
return;
OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
OPENSSL_free(pool);
}
/*
* Return the |pool|'s buffer to the caller (readonly).
*/
const unsigned char *rand_pool_buffer(RAND_POOL *pool)
{
return pool->buffer;
}
/*
* Return the |pool|'s entropy to the caller.
*/
size_t rand_pool_entropy(RAND_POOL *pool)
{
return pool->entropy;
}
/*
* Return the |pool|'s buffer length to the caller.
*/
size_t rand_pool_length(RAND_POOL *pool)
{
return pool->len;
}
/*
* Detach the |pool| buffer and return it to the caller.
* It's the responsibility of the caller to free the buffer
* using OPENSSL_secure_clear_free().
*/
unsigned char *rand_pool_detach(RAND_POOL *pool)
{
unsigned char *ret = pool->buffer;
pool->buffer = NULL;
return ret;
}
/*
* If every byte of the input contains |entropy_per_bytes| bits of entropy,
* how many bytes does one need to obtain at least |bits| bits of entropy?
*/
#define ENTROPY_TO_BYTES(bits, entropy_per_bytes) \
(((bits) + ((entropy_per_bytes) - 1))/(entropy_per_bytes))
/*
* Checks whether the |pool|'s entropy is available to the caller.
* This is the case when entropy count and buffer length are high enough.
* Returns
*
* |entropy| if the entropy count and buffer size is large enough
* 0 otherwise
*/
size_t rand_pool_entropy_available(RAND_POOL *pool)
{
if (pool->entropy < pool->requested_entropy)
return 0;
if (pool->len < pool->min_len)
return 0;
return pool->entropy;
}
/*
* Returns the (remaining) amount of entropy needed to fill
* the random pool.
*/
size_t rand_pool_entropy_needed(RAND_POOL *pool)
{
if (pool->entropy < pool->requested_entropy)
return pool->requested_entropy - pool->entropy;
return 0;
}
/*
* Returns the number of bytes needed to fill the pool, assuming
* the input has 'entropy_per_byte' entropy bits per byte.
* In case of an error, 0 is returned.
*/
size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte)
{
size_t bytes_needed;
size_t entropy_needed = rand_pool_entropy_needed(pool);
if (entropy_per_byte < 1 || entropy_per_byte > 8) {
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
return 0;
}
bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_per_byte);
if (bytes_needed > pool->max_len - pool->len) {
/* not enough space left */
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (pool->len < pool->min_len &&
bytes_needed < pool->min_len - pool->len)
/* to meet the min_len requirement */
bytes_needed = pool->min_len - pool->len;
return bytes_needed;
}
/* Returns the remaining number of bytes available */
size_t rand_pool_bytes_remaining(RAND_POOL *pool)
{
return pool->max_len - pool->len;
}
/*
* Add random bytes to the random pool.
*
* It is expected that the |buffer| contains |len| bytes of
* random input which contains at least |entropy| bits of
* randomness.
*
* Returns 1 if the added amount is adequate, otherwise 0
*/
int rand_pool_add(RAND_POOL *pool,
const unsigned char *buffer, size_t len, size_t entropy)
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
return 0;
}
if (len > 0) {
memcpy(pool->buffer + pool->len, buffer, len);
pool->len += len;
pool->entropy += entropy;
}
return 1;
}
/*
* Start to add random bytes to the random pool in-place.
*
* Reserves the next |len| bytes for adding random bytes in-place
* and returns a pointer to the buffer.
* The caller is allowed to copy up to |len| bytes into the buffer.
* If |len| == 0 this is considered a no-op and a NULL pointer
* is returned without producing an error message.
*
* After updating the buffer, rand_pool_add_end() needs to be called
* to finish the udpate operation (see next comment).
*/
unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
{
if (len == 0)
return NULL;
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
return NULL;
}
return pool->buffer + pool->len;
}
/*
* Finish to add random bytes to the random pool in-place.
*
* Finishes an in-place update of the random pool started by
* rand_pool_add_begin() (see previous comment).
* It is expected that |len| bytes of random input have been added
* to the buffer which contain at least |entropy| bits of randomness.
* It is allowed to add less bytes than originally reserved.
*/
int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (len > 0) {
pool->len += len;
pool->entropy += entropy;
}
return 1;
}
int RAND_set_rand_method(const RAND_METHOD *meth)
{
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
CRYPTO_THREAD_write_lock(rand_meth_lock);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(funct_ref);
funct_ref = NULL;
#endif
default_RAND_meth = meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return 1;
}
const RAND_METHOD *RAND_get_rand_method(void)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return NULL;
CRYPTO_THREAD_write_lock(rand_meth_lock);
if (default_RAND_meth == NULL) {
#ifndef OPENSSL_NO_ENGINE
ENGINE *e;
/* If we have an engine that can do RAND, use it. */
if ((e = ENGINE_get_default_RAND()) != NULL
&& (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
funct_ref = e;
default_RAND_meth = tmp_meth;
} else {
ENGINE_finish(e);
default_RAND_meth = &rand_meth;
}
#else
default_RAND_meth = &rand_meth;
#endif
}
tmp_meth = default_RAND_meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return tmp_meth;
}
#ifndef OPENSSL_NO_ENGINE
int RAND_set_rand_engine(ENGINE *engine)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
if (engine != NULL) {
if (!ENGINE_init(engine))
return 0;
tmp_meth = ENGINE_get_RAND(engine);
if (tmp_meth == NULL) {
ENGINE_finish(engine);
return 0;
}
}
CRYPTO_THREAD_write_lock(rand_engine_lock);
/* This function releases any prior ENGINE so call it first */
RAND_set_rand_method(tmp_meth);
funct_ref = engine;
CRYPTO_THREAD_unlock(rand_engine_lock);
return 1;
}
#endif
void RAND_seed(const void *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->seed != NULL)
meth->seed(buf, num);
}
void RAND_add(const void *buf, int num, double randomness)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->add != NULL)
meth->add(buf, num, randomness);
}
/*
* This function is not part of RAND_METHOD, so if we're not using
* the default method, then just call RAND_bytes(). Otherwise make
* sure we're instantiated and use the private DRBG.
*/
int RAND_priv_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
RAND_DRBG *drbg;
int ret;
if (meth != RAND_OpenSSL())
return RAND_bytes(buf, num);
drbg = RAND_DRBG_get0_private();
if (drbg == NULL)
return 0;
ret = RAND_DRBG_bytes(drbg, buf, num);
return ret;
}
int RAND_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->bytes != NULL)
return meth->bytes(buf, num);
RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
return -1;
}
#if OPENSSL_API_COMPAT < 0x10100000L
int RAND_pseudo_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->pseudorand != NULL)
return meth->pseudorand(buf, num);
return -1;
}
#endif
int RAND_status(void)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->status != NULL)
return meth->status();
return 0;
}