openssl/crypto/kdf/sskdf.c
Bernd Edlinger 7a228c391e Replace long dash characters with normal ascii minus
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9321)
2019-07-09 14:03:44 +02:00

525 lines
16 KiB
C

/*
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
* Section 4.1.
*
* The Single Step KDF algorithm is given by:
*
* Result(0) = empty bit string (i.e., the null string).
* For i = 1 to reps, do the following:
* Increment counter by 1.
* Result(i) = Result(i - 1) || H(counter || Z || FixedInfo).
* DKM = LeftmostBits(Result(reps), L))
*
* NOTES:
* Z is a shared secret required to produce the derived key material.
* counter is a 4 byte buffer.
* FixedInfo is a bit string containing context specific data.
* DKM is the output derived key material.
* L is the required size of the DKM.
* reps = [L / H_outputBits]
* H(x) is the auxiliary function that can be either a hash, HMAC or KMAC.
* H_outputBits is the length of the output of the auxiliary function H(x).
*
* Currently there is not a comprehensive list of test vectors for this
* algorithm, especially for H(x) = HMAC and H(x) = KMAC.
* Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests.
*/
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include "internal/cryptlib.h"
#include "internal/evp_int.h"
#include "kdf_local.h"
struct evp_kdf_impl_st {
const EVP_MAC *mac; /* H(x) = HMAC_hash OR H(x) = KMAC */
const EVP_MD *md; /* H(x) = hash OR when H(x) = HMAC_hash */
unsigned char *secret;
size_t secret_len;
unsigned char *info;
size_t info_len;
unsigned char *salt;
size_t salt_len;
size_t out_len; /* optional KMAC parameter */
};
#define SSKDF_MAX_INLEN (1<<30)
#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4)
#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4)
/* KMAC uses a Customisation string of 'KDF' */
static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 };
/*
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
* Section 4. One-Step Key Derivation using H(x) = hash(x)
* Note: X9.63 also uses this code with the only difference being that the
* counter is appended to the secret 'z'.
* i.e.
* result[i] = Hash(counter || z || info) for One Step OR
* result[i] = Hash(z || counter || info) for X9.63.
*/
static int SSKDF_hash_kdm(const EVP_MD *kdf_md,
const unsigned char *z, size_t z_len,
const unsigned char *info, size_t info_len,
unsigned int append_ctr,
unsigned char *derived_key, size_t derived_key_len)
{
int ret = 0, hlen;
size_t counter, out_len, len = derived_key_len;
unsigned char c[4];
unsigned char mac[EVP_MAX_MD_SIZE];
unsigned char *out = derived_key;
EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|| derived_key_len > SSKDF_MAX_INLEN
|| derived_key_len == 0)
return 0;
hlen = EVP_MD_size(kdf_md);
if (hlen <= 0)
return 0;
out_len = (size_t)hlen;
ctx = EVP_MD_CTX_create();
ctx_init = EVP_MD_CTX_create();
if (ctx == NULL || ctx_init == NULL)
goto end;
if (!EVP_DigestInit(ctx_init, kdf_md))
goto end;
for (counter = 1;; counter++) {
c[0] = (unsigned char)((counter >> 24) & 0xff);
c[1] = (unsigned char)((counter >> 16) & 0xff);
c[2] = (unsigned char)((counter >> 8) & 0xff);
c[3] = (unsigned char)(counter & 0xff);
if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init)
&& (append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
&& EVP_DigestUpdate(ctx, z, z_len)
&& (!append_ctr || EVP_DigestUpdate(ctx, c, sizeof(c)))
&& EVP_DigestUpdate(ctx, info, info_len)))
goto end;
if (len >= out_len) {
if (!EVP_DigestFinal_ex(ctx, out, NULL))
goto end;
out += out_len;
len -= out_len;
if (len == 0)
break;
} else {
if (!EVP_DigestFinal_ex(ctx, mac, NULL))
goto end;
memcpy(out, mac, len);
break;
}
}
ret = 1;
end:
EVP_MD_CTX_destroy(ctx);
EVP_MD_CTX_destroy(ctx_init);
OPENSSL_cleanse(mac, sizeof(mac));
return ret;
}
static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom,
size_t custom_len, size_t kmac_out_len,
size_t derived_key_len, unsigned char **out)
{
/* Only KMAC has custom data - so return if not KMAC */
if (custom == NULL)
return 1;
if (EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM, custom, custom_len) <= 0)
return 0;
/* By default only do one iteration if kmac_out_len is not specified */
if (kmac_out_len == 0)
kmac_out_len = derived_key_len;
/* otherwise check the size is valid */
else if (!(kmac_out_len == derived_key_len
|| kmac_out_len == 20
|| kmac_out_len == 28
|| kmac_out_len == 32
|| kmac_out_len == 48
|| kmac_out_len == 64))
return 0;
if (EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SIZE, kmac_out_len) <= 0)
return 0;
/*
* For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so
* alloc a buffer for this case.
*/
if (kmac_out_len > EVP_MAX_MD_SIZE) {
*out = OPENSSL_zalloc(kmac_out_len);
if (*out == NULL)
return 0;
}
return 1;
}
/*
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
* Section 4. One-Step Key Derivation using MAC: i.e either
* H(x) = HMAC-hash(salt, x) OR
* H(x) = KMAC#(salt, x, outbits, CustomString='KDF')
*/
static int SSKDF_mac_kdm(const EVP_MAC *kdf_mac, const EVP_MD *hmac_md,
const unsigned char *kmac_custom,
size_t kmac_custom_len, size_t kmac_out_len,
const unsigned char *salt, size_t salt_len,
const unsigned char *z, size_t z_len,
const unsigned char *info, size_t info_len,
unsigned char *derived_key, size_t derived_key_len)
{
int ret = 0;
size_t counter, out_len, len;
unsigned char c[4];
unsigned char mac_buf[EVP_MAX_MD_SIZE];
unsigned char *out = derived_key;
EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL;
unsigned char *mac = mac_buf, *kmac_buffer = NULL;
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|| derived_key_len > SSKDF_MAX_INLEN
|| derived_key_len == 0)
return 0;
ctx_init = EVP_MAC_CTX_new(kdf_mac);
if (ctx_init == NULL)
goto end;
if (hmac_md != NULL &&
EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_MD, hmac_md) <= 0)
goto end;
if (EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_KEY, salt, salt_len) <= 0)
goto end;
if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len,
derived_key_len, &kmac_buffer))
goto end;
if (kmac_buffer != NULL)
mac = kmac_buffer;
if (!EVP_MAC_init(ctx_init))
goto end;
out_len = EVP_MAC_size(ctx_init); /* output size */
if (out_len <= 0)
goto end;
len = derived_key_len;
for (counter = 1;; counter++) {
c[0] = (unsigned char)((counter >> 24) & 0xff);
c[1] = (unsigned char)((counter >> 16) & 0xff);
c[2] = (unsigned char)((counter >> 8) & 0xff);
c[3] = (unsigned char)(counter & 0xff);
ctx = EVP_MAC_CTX_dup(ctx_init);
if (!(ctx != NULL
&& EVP_MAC_update(ctx, c, sizeof(c))
&& EVP_MAC_update(ctx, z, z_len)
&& EVP_MAC_update(ctx, info, info_len)))
goto end;
if (len >= out_len) {
if (!EVP_MAC_final(ctx, out, NULL))
goto end;
out += out_len;
len -= out_len;
if (len == 0)
break;
} else {
if (!EVP_MAC_final(ctx, mac, NULL))
goto end;
memcpy(out, mac, len);
break;
}
EVP_MAC_CTX_free(ctx);
ctx = NULL;
}
ret = 1;
end:
if (kmac_buffer != NULL)
OPENSSL_clear_free(kmac_buffer, kmac_out_len);
else
OPENSSL_cleanse(mac_buf, sizeof(mac_buf));
EVP_MAC_CTX_free(ctx);
EVP_MAC_CTX_free(ctx_init);
return ret;
}
static EVP_KDF_IMPL *sskdf_new(void)
{
EVP_KDF_IMPL *impl;
if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE);
return impl;
}
static void sskdf_reset(EVP_KDF_IMPL *impl)
{
OPENSSL_clear_free(impl->secret, impl->secret_len);
OPENSSL_clear_free(impl->info, impl->info_len);
OPENSSL_clear_free(impl->salt, impl->salt_len);
memset(impl, 0, sizeof(*impl));
}
static void sskdf_free(EVP_KDF_IMPL *impl)
{
sskdf_reset(impl);
OPENSSL_free(impl);
}
static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
{
const unsigned char *p;
size_t len;
p = va_arg(args, const unsigned char *);
len = va_arg(args, size_t);
if (len == 0 || p == NULL)
return 1;
OPENSSL_free(*out);
*out = OPENSSL_memdup(p, len);
if (*out == NULL)
return 0;
*out_len = len;
return 1;
}
static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
{
const EVP_MD *md;
const EVP_MAC *mac;
switch (cmd) {
case EVP_KDF_CTRL_SET_KEY:
return sskdf_set_buffer(args, &impl->secret, &impl->secret_len);
case EVP_KDF_CTRL_SET_SSKDF_INFO:
return sskdf_set_buffer(args, &impl->info, &impl->info_len);
case EVP_KDF_CTRL_SET_MD:
md = va_arg(args, const EVP_MD *);
if (md == NULL)
return 0;
impl->md = md;
return 1;
case EVP_KDF_CTRL_SET_MAC:
mac = va_arg(args, const EVP_MAC *);
if (mac == NULL)
return 0;
impl->mac = mac;
return 1;
case EVP_KDF_CTRL_SET_SALT:
return sskdf_set_buffer(args, &impl->salt, &impl->salt_len);
case EVP_KDF_CTRL_SET_MAC_SIZE:
impl->out_len = va_arg(args, size_t);
return 1;
default:
return -2;
}
}
/* Pass a mac to a ctrl */
static int sskdf_mac2ctrl(EVP_KDF_IMPL *impl,
int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
int cmd, const char *mac_name)
{
const EVP_MAC *mac;
if (mac_name == NULL || (mac = EVP_get_macbyname(mac_name)) == NULL) {
KDFerr(KDF_F_SSKDF_MAC2CTRL, KDF_R_INVALID_MAC_TYPE);
return 0;
}
return call_ctrl(ctrl, impl, cmd, mac);
}
static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
const char *value)
{
if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
value);
if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
value);
if (strcmp(type, "info") == 0)
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
value);
if (strcmp(type, "hexinfo") == 0)
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
value);
if (strcmp(type, "digest") == 0)
return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
if (strcmp(type, "mac") == 0)
return sskdf_mac2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value);
if (strcmp(type, "salt") == 0)
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
if (strcmp(type, "hexsalt") == 0)
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
if (strcmp(type, "maclen") == 0) {
int val = atoi(value);
if (val < 0) {
KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR);
return 0;
}
return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE,
(size_t)val);
}
return -2;
}
static size_t sskdf_size(EVP_KDF_IMPL *impl)
{
int len;
if (impl->md == NULL) {
KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
return 0;
}
len = EVP_MD_size(impl->md);
return (len <= 0) ? 0 : (size_t)len;
}
static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
{
if (impl->secret == NULL) {
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET);
return 0;
}
if (impl->mac != NULL) {
/* H(x) = KMAC or H(x) = HMAC */
int ret;
const unsigned char *custom = NULL;
size_t custom_len = 0;
int nid;
int default_salt_len;
nid = EVP_MAC_nid(impl->mac);
if (nid == EVP_MAC_HMAC) {
/* H(x) = HMAC(x, salt, hash) */
if (impl->md == NULL) {
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
return 0;
}
default_salt_len = EVP_MD_block_size(impl->md);
if (default_salt_len <= 0)
return 0;
} else if (nid == EVP_MAC_KMAC128 || nid == EVP_MAC_KMAC256) {
/* H(x) = KMACzzz(x, salt, custom) */
custom = kmac_custom_str;
custom_len = sizeof(kmac_custom_str);
if (nid == EVP_MAC_KMAC128)
default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE;
else
default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE;
} else {
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE);
return 0;
}
/* If no salt is set then use a default_salt of zeros */
if (impl->salt == NULL || impl->salt_len <= 0) {
impl->salt = OPENSSL_zalloc(default_salt_len);
if (impl->salt == NULL) {
KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE);
return 0;
}
impl->salt_len = default_salt_len;
}
ret = SSKDF_mac_kdm(impl->mac, impl->md,
custom, custom_len, impl->out_len,
impl->salt, impl->salt_len,
impl->secret, impl->secret_len,
impl->info, impl->info_len, key, keylen);
return ret;
} else {
/* H(x) = hash */
if (impl->md == NULL) {
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
return 0;
}
return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
impl->info, impl->info_len, 0, key, keylen);
}
}
static int x963kdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
{
if (impl->secret == NULL) {
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_SECRET);
return 0;
}
if (impl->mac != NULL) {
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_NOT_SUPPORTED);
return 0;
} else {
/* H(x) = hash */
if (impl->md == NULL) {
KDFerr(KDF_F_X963KDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
return 0;
}
return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
impl->info, impl->info_len, 1, key, keylen);
}
}
const EVP_KDF ss_kdf_meth = {
EVP_KDF_SS,
sskdf_new,
sskdf_free,
sskdf_reset,
sskdf_ctrl,
sskdf_ctrl_str,
sskdf_size,
sskdf_derive
};
const EVP_KDF x963_kdf_meth = {
EVP_KDF_X963,
sskdf_new,
sskdf_free,
sskdf_reset,
sskdf_ctrl,
sskdf_ctrl_str,
sskdf_size,
x963kdf_derive
};