openssl/ssl/ssl_ciph.c
Matt Caswell a5184a6c89 Ensure all EVP calls have their returns checked where appropriate
There are lots of calls to EVP functions from within libssl There were
various places where we should probably check the return value but don't.
This adds these checks.

Reviewed-by: Richard Levitte <levitte@openssl.org>
(cherry picked from commit 56d9134675)

Conflicts:
	ssl/s3_enc.c
	ssl/s3_srvr.c
2015-11-20 15:56:42 +00:00

1911 lines
62 KiB
C

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_COMP
# include <openssl/comp.h>
#endif
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_NULL_IDX 5
#define SSL_ENC_AES128_IDX 6
#define SSL_ENC_AES256_IDX 7
#define SSL_ENC_CAMELLIA128_IDX 8
#define SSL_ENC_CAMELLIA256_IDX 9
#define SSL_ENC_GOST89_IDX 10
#define SSL_ENC_SEED_IDX 11
#define SSL_ENC_AES128GCM_IDX 12
#define SSL_ENC_AES256GCM_IDX 13
#define SSL_ENC_NUM_IDX 14
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
static STACK_OF(SSL_COMP) *ssl_comp_methods = NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_GOST94_IDX 2
#define SSL_MD_GOST89MAC_IDX 3
#define SSL_MD_SHA256_IDX 4
#define SSL_MD_SHA384_IDX 5
/*
* Constant SSL_MAX_DIGEST equal to size of digests array should be defined
* in the ssl_locl.h
*/
#define SSL_MD_NUM_IDX SSL_MAX_DIGEST
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
NULL, NULL, NULL, NULL, NULL, NULL
};
/*
* PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
* is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
* found
*/
static int ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
EVP_PKEY_HMAC, EVP_PKEY_HMAC
};
static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = {
0, 0, 0, 0, 0, 0
};
static int ssl_handshake_digest_flag[SSL_MD_NUM_IDX] = {
SSL_HANDSHAKE_MAC_MD5, SSL_HANDSHAKE_MAC_SHA,
SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256,
SSL_HANDSHAKE_MAC_SHA384
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st {
const SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next, *prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[] = {
/* "ALL" doesn't include eNULL (must be specifically enabled) */
{0, SSL_TXT_ALL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, 0},
/* "COMPLEMENTOFALL" */
{0, SSL_TXT_CMPALL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
/*
* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
* ALL!)
*/
{0, SSL_TXT_CMPDEF, 0, 0, SSL_aNULL, ~SSL_eNULL, 0, ~SSL_SSLV2,
SSL_EXP_MASK, 0, 0, 0},
/*
* key exchange aliases (some of those using only a single bit here
* combine multiple key exchange algs according to the RFCs, e.g. kEDH
* combines DHE_DSS and DHE_RSA)
*/
{0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0},
/* no such ciphersuites supported! */
{0, SSL_TXT_kDHr, 0, SSL_kDHr, 0, 0, 0, 0, 0, 0, 0, 0},
/* no such ciphersuites supported! */
{0, SSL_TXT_kDHd, 0, SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0},
/* no such ciphersuites supported! */
{0, SSL_TXT_kDH, 0, SSL_kDHr | SSL_kDHd, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kEDH, 0, SSL_kEDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_DH, 0, SSL_kDHr | SSL_kDHd | SSL_kEDH, 0, 0, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_kKRB5, 0, SSL_kKRB5, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDHr, 0, SSL_kECDHr, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDHe, 0, SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kECDH, 0, SSL_kECDHr | SSL_kECDHe, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kEECDH, 0, SSL_kEECDH, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ECDH, 0, SSL_kECDHr | SSL_kECDHe | SSL_kEECDH, 0, 0, 0, 0, 0,
0, 0, 0},
{0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kSRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_kGOST, 0, SSL_kGOST, 0, 0, 0, 0, 0, 0, 0, 0},
/* server authentication aliases */
{0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aDSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_DSS, 0, 0, SSL_aDSS, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aKRB5, 0, 0, SSL_aKRB5, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
/* no such ciphersuites supported! */
{0, SSL_TXT_aDH, 0, 0, SSL_aDH, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aECDH, 0, 0, SSL_aECDH, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST94, 0, 0, SSL_aGOST94, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST01, 0, 0, SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aGOST, 0, 0, SSL_aGOST94 | SSL_aGOST01, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_aSRP, 0, 0, SSL_aSRP, 0, 0, 0, 0, 0, 0, 0},
/* aliases combining key exchange and server authentication */
{0, SSL_TXT_EDH, 0, SSL_kEDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_EECDH, 0, SSL_kEECDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_NULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_KRB5, 0, SSL_kKRB5, SSL_aKRB5, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_ADH, 0, SSL_kEDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AECDH, 0, SSL_kEECDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_PSK, 0, SSL_kPSK, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_SRP, 0, SSL_kSRP, 0, 0, 0, 0, 0, 0, 0, 0},
/* symmetric encryption aliases */
{0, SSL_TXT_DES, 0, 0, 0, SSL_DES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_RC2, 0, 0, 0, SSL_RC2, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_IDEA, 0, 0, 0, SSL_IDEA, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_SEED, 0, 0, 0, SSL_SEED, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_eNULL, 0, 0, 0, SSL_eNULL, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM, 0, 0, 0, 0, 0,
0},
{0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0,
0, 0},
{0, SSL_TXT_CAMELLIA128, 0, 0, 0, SSL_CAMELLIA128, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_CAMELLIA256, 0, 0, 0, SSL_CAMELLIA256, 0, 0, 0, 0, 0, 0},
{0, SSL_TXT_CAMELLIA, 0, 0, 0, SSL_CAMELLIA128 | SSL_CAMELLIA256, 0, 0, 0,
0, 0, 0},
/* MAC aliases */
{0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0},
{0, SSL_TXT_GOST94, 0, 0, 0, 0, SSL_GOST94, 0, 0, 0, 0, 0},
{0, SSL_TXT_GOST89MAC, 0, 0, 0, 0, SSL_GOST89MAC, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0},
{0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0},
/* protocol version aliases */
{0, SSL_TXT_SSLV2, 0, 0, 0, 0, 0, SSL_SSLV2, 0, 0, 0, 0},
{0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL_SSLV3, 0, 0, 0, 0},
{0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, SSL_TLSV1, 0, 0, 0, 0},
{0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, SSL_TLSV1_2, 0, 0, 0, 0},
/* export flag */
{0, SSL_TXT_EXP, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0},
{0, SSL_TXT_EXPORT, 0, 0, 0, 0, 0, 0, SSL_EXPORT, 0, 0, 0},
/* strength classes */
{0, SSL_TXT_EXP40, 0, 0, 0, 0, 0, 0, SSL_EXP40, 0, 0, 0},
{0, SSL_TXT_EXP56, 0, 0, 0, 0, 0, 0, SSL_EXP56, 0, 0, 0},
{0, SSL_TXT_LOW, 0, 0, 0, 0, 0, 0, SSL_LOW, 0, 0, 0},
{0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0},
{0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0},
/* FIPS 140-2 approved ciphersuite */
{0, SSL_TXT_FIPS, 0, 0, 0, ~SSL_eNULL, 0, 0, SSL_FIPS, 0, 0, 0},
};
/*
* Search for public key algorithm with given name and return its pkey_id if
* it is available. Otherwise return 0
*/
#ifdef OPENSSL_NO_ENGINE
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) > 0) {
return pkey_id;
}
return 0;
}
#else
static int get_optional_pkey_id(const char *pkey_name)
{
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng = NULL;
int pkey_id = 0;
ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
if (ameth) {
if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
ameth) <= 0)
pkey_id = 0;
}
if (tmpeng)
ENGINE_finish(tmpeng);
return pkey_id;
}
#endif
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX] = EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX] =
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX] = EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX] = EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX] = NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX] =
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX] =
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] =
EVP_get_cipherbyname(SN_camellia_128_cbc);
ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] =
EVP_get_cipherbyname(SN_camellia_256_cbc);
ssl_cipher_methods[SSL_ENC_GOST89_IDX] =
EVP_get_cipherbyname(SN_gost89_cnt);
ssl_cipher_methods[SSL_ENC_SEED_IDX] = EVP_get_cipherbyname(SN_seed_cbc);
ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] =
EVP_get_cipherbyname(SN_aes_128_gcm);
ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] =
EVP_get_cipherbyname(SN_aes_256_gcm);
ssl_digest_methods[SSL_MD_MD5_IDX] = EVP_get_digestbyname(SN_md5);
ssl_mac_secret_size[SSL_MD_MD5_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0);
ssl_digest_methods[SSL_MD_SHA1_IDX] = EVP_get_digestbyname(SN_sha1);
ssl_mac_secret_size[SSL_MD_SHA1_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0);
ssl_digest_methods[SSL_MD_GOST94_IDX] =
EVP_get_digestbyname(SN_id_GostR3411_94);
if (ssl_digest_methods[SSL_MD_GOST94_IDX]) {
ssl_mac_secret_size[SSL_MD_GOST94_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]);
OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0);
}
ssl_digest_methods[SSL_MD_GOST89MAC_IDX] =
EVP_get_digestbyname(SN_id_Gost28147_89_MAC);
ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("gost-mac");
if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
}
ssl_digest_methods[SSL_MD_SHA256_IDX] = EVP_get_digestbyname(SN_sha256);
ssl_mac_secret_size[SSL_MD_SHA256_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]);
ssl_digest_methods[SSL_MD_SHA384_IDX] = EVP_get_digestbyname(SN_sha384);
ssl_mac_secret_size[SSL_MD_SHA384_IDX] =
EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]);
}
#ifndef OPENSSL_NO_COMP
static int sk_comp_cmp(const SSL_COMP *const *a, const SSL_COMP *const *b)
{
return ((*a)->id - (*b)->id);
}
static void load_builtin_compressions(void)
{
int got_write_lock = 0;
CRYPTO_r_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL) {
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
got_write_lock = 1;
if (ssl_comp_methods == NULL) {
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods = sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL) {
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL) {
comp->method = COMP_zlib();
if (comp->method && comp->method->type == NID_undef)
OPENSSL_free(comp);
else {
comp->id = SSL_COMP_ZLIB_IDX;
comp->name = comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods, comp);
}
}
sk_SSL_COMP_sort(ssl_comp_methods);
}
MemCheck_on();
}
}
if (got_write_lock)
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
else
CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
}
#endif
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
const EVP_MD **md, int *mac_pkey_type,
int *mac_secret_size, SSL_COMP **comp)
{
int i;
const SSL_CIPHER *c;
c = s->cipher;
if (c == NULL)
return (0);
if (comp != NULL) {
SSL_COMP ctmp;
#ifndef OPENSSL_NO_COMP
load_builtin_compressions();
#endif
*comp = NULL;
ctmp.id = s->compress_meth;
if (ssl_comp_methods != NULL) {
i = sk_SSL_COMP_find(ssl_comp_methods, &ctmp);
if (i >= 0)
*comp = sk_SSL_COMP_value(ssl_comp_methods, i);
else
*comp = NULL;
}
}
if ((enc == NULL) || (md == NULL))
return (0);
switch (c->algorithm_enc) {
case SSL_DES:
i = SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i = SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i = SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i = SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i = SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i = SSL_ENC_NULL_IDX;
break;
case SSL_AES128:
i = SSL_ENC_AES128_IDX;
break;
case SSL_AES256:
i = SSL_ENC_AES256_IDX;
break;
case SSL_CAMELLIA128:
i = SSL_ENC_CAMELLIA128_IDX;
break;
case SSL_CAMELLIA256:
i = SSL_ENC_CAMELLIA256_IDX;
break;
case SSL_eGOST2814789CNT:
i = SSL_ENC_GOST89_IDX;
break;
case SSL_SEED:
i = SSL_ENC_SEED_IDX;
break;
case SSL_AES128GCM:
i = SSL_ENC_AES128GCM_IDX;
break;
case SSL_AES256GCM:
i = SSL_ENC_AES256GCM_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_ENC_NUM_IDX))
*enc = NULL;
else {
if (i == SSL_ENC_NULL_IDX)
*enc = EVP_enc_null();
else
*enc = ssl_cipher_methods[i];
}
switch (c->algorithm_mac) {
case SSL_MD5:
i = SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i = SSL_MD_SHA1_IDX;
break;
case SSL_SHA256:
i = SSL_MD_SHA256_IDX;
break;
case SSL_SHA384:
i = SSL_MD_SHA384_IDX;
break;
case SSL_GOST94:
i = SSL_MD_GOST94_IDX;
break;
case SSL_GOST89MAC:
i = SSL_MD_GOST89MAC_IDX;
break;
default:
i = -1;
break;
}
if ((i < 0) || (i >= SSL_MD_NUM_IDX)) {
*md = NULL;
if (mac_pkey_type != NULL)
*mac_pkey_type = NID_undef;
if (mac_secret_size != NULL)
*mac_secret_size = 0;
if (c->algorithm_mac == SSL_AEAD)
mac_pkey_type = NULL;
} else {
*md = ssl_digest_methods[i];
if (mac_pkey_type != NULL)
*mac_pkey_type = ssl_mac_pkey_id[i];
if (mac_secret_size != NULL)
*mac_secret_size = ssl_mac_secret_size[i];
}
if ((*enc != NULL) &&
(*md != NULL || (EVP_CIPHER_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
&& (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
const EVP_CIPHER *evp;
if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
s->ssl_version < TLS1_VERSION)
return 1;
#ifdef OPENSSL_FIPS
if (FIPS_mode())
return 1;
#endif
if (c->algorithm_enc == SSL_RC4 &&
c->algorithm_mac == SSL_MD5 &&
(evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES128 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
else if (c->algorithm_enc == SSL_AES256 &&
c->algorithm_mac == SSL_SHA1 &&
(evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
*enc = evp, *md = NULL;
return (1);
} else
return (0);
}
int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md)
{
if (idx < 0 || idx >= SSL_MD_NUM_IDX) {
return 0;
}
*mask = ssl_handshake_digest_flag[idx];
if (*mask)
*md = ssl_digest_methods[idx];
else
*md = NULL;
return 1;
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail)
return;
if (curr == *head)
*head = curr->next;
if (curr->prev != NULL)
curr->prev->next = curr->next;
if (curr->next != NULL)
curr->next->prev = curr->prev;
(*tail)->next = curr;
curr->prev = *tail;
curr->next = NULL;
*tail = curr;
}
static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *head)
return;
if (curr == *tail)
*tail = curr->prev;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
(*head)->prev = curr;
curr->next = *head;
curr->prev = NULL;
*head = curr;
}
static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth,
unsigned long *enc, unsigned long *mac,
unsigned long *ssl)
{
*mkey = 0;
*auth = 0;
*enc = 0;
*mac = 0;
*ssl = 0;
#ifdef OPENSSL_NO_RSA
*mkey |= SSL_kRSA;
*auth |= SSL_aRSA;
#endif
#ifdef OPENSSL_NO_DSA
*auth |= SSL_aDSS;
#endif
*mkey |= SSL_kDHr | SSL_kDHd; /* no such ciphersuites supported! */
*auth |= SSL_aDH;
#ifdef OPENSSL_NO_DH
*mkey |= SSL_kDHr | SSL_kDHd | SSL_kEDH;
*auth |= SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
*mkey |= SSL_kKRB5;
*auth |= SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDSA
*auth |= SSL_aECDSA;
#endif
#ifdef OPENSSL_NO_ECDH
*mkey |= SSL_kECDHe | SSL_kECDHr;
*auth |= SSL_aECDH;
#endif
#ifdef OPENSSL_NO_PSK
*mkey |= SSL_kPSK;
*auth |= SSL_aPSK;
#endif
#ifdef OPENSSL_NO_SRP
*mkey |= SSL_kSRP;
#endif
/*
* Check for presence of GOST 34.10 algorithms, and if they do not
* present, disable appropriate auth and key exchange
*/
if (!get_optional_pkey_id("gost94")) {
*auth |= SSL_aGOST94;
}
if (!get_optional_pkey_id("gost2001")) {
*auth |= SSL_aGOST01;
}
/*
* Disable GOST key exchange if no GOST signature algs are available *
*/
if ((*auth & (SSL_aGOST94 | SSL_aGOST01)) == (SSL_aGOST94 | SSL_aGOST01)) {
*mkey |= SSL_kGOST;
}
#ifdef SSL_FORBID_ENULL
*enc |= SSL_eNULL;
#endif
*enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX] == NULL) ? SSL_DES : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX] == NULL) ? SSL_RC4 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_RC2_IDX] == NULL) ? SSL_RC2 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128 : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] ==
NULL) ? SSL_AES128GCM : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] ==
NULL) ? SSL_AES256GCM : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] ==
NULL) ? SSL_CAMELLIA128 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] ==
NULL) ? SSL_CAMELLIA256 : 0;
*enc |=
(ssl_cipher_methods[SSL_ENC_GOST89_IDX] ==
NULL) ? SSL_eGOST2814789CNT : 0;
*enc |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED : 0;
*mac |= (ssl_digest_methods[SSL_MD_MD5_IDX] == NULL) ? SSL_MD5 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256 : 0;
*mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384 : 0;
*mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94 : 0;
*mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL
|| ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] ==
NID_undef) ? SSL_GOST89MAC : 0;
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers,
unsigned long disabled_mkey,
unsigned long disabled_auth,
unsigned long disabled_enc,
unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int i, co_list_num;
const SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++) {
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if ((c != NULL) && c->valid &&
#ifdef OPENSSL_FIPS
(!FIPS_mode() || (c->algo_strength & SSL_FIPS)) &&
#endif
!(c->algorithm_mkey & disabled_mkey) &&
!(c->algorithm_auth & disabled_auth) &&
!(c->algorithm_enc & disabled_enc) &&
!(c->algorithm_mac & disabled_mac) &&
!(c->algorithm_ssl & disabled_ssl)) {
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
fprintf(stderr, "\t%d: %s %lx %lx %lx\n", i, c->name, c->id,
c->algorithm_mkey, c->algorithm_auth);
#endif /* KSSL_DEBUG */
/*
* if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
if (co_list_num > 0) {
co_list[0].prev = NULL;
if (co_list_num > 1) {
co_list[0].next = &co_list[1];
for (i = 1; i < co_list_num - 1; i++) {
co_list[i].prev = &co_list[i - 1];
co_list[i].next = &co_list[i + 1];
}
co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
}
co_list[co_list_num - 1].next = NULL;
*head_p = &co_list[0];
*tail_p = &co_list[co_list_num - 1];
}
}
static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
int num_of_group_aliases,
unsigned long disabled_mkey,
unsigned long disabled_auth,
unsigned long disabled_enc,
unsigned long disabled_mac,
unsigned long disabled_ssl,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
const SSL_CIPHER **ca_curr;
int i;
unsigned long mask_mkey = ~disabled_mkey;
unsigned long mask_auth = ~disabled_auth;
unsigned long mask_enc = ~disabled_enc;
unsigned long mask_mac = ~disabled_mac;
unsigned long mask_ssl = ~disabled_ssl;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL) {
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either one or more algorithms, some of which
* in any affected category must be supported (set in enabled_mask),
* or represent a cipher strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++) {
unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;
if (algorithm_mkey)
if ((algorithm_mkey & mask_mkey) == 0)
continue;
if (algorithm_auth)
if ((algorithm_auth & mask_auth) == 0)
continue;
if (algorithm_enc)
if ((algorithm_enc & mask_enc) == 0)
continue;
if (algorithm_mac)
if ((algorithm_mac & mask_mac) == 0)
continue;
if (algorithm_ssl)
if ((algorithm_ssl & mask_ssl) == 0)
continue;
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long cipher_id,
unsigned long alg_mkey,
unsigned long alg_auth,
unsigned long alg_enc,
unsigned long alg_mac,
unsigned long alg_ssl,
unsigned long algo_strength, int rule,
int strength_bits, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *next, *last;
const SSL_CIPHER *cp;
int reverse = 0;
#ifdef CIPHER_DEBUG
fprintf(stderr,
"Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n",
rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl,
algo_strength, strength_bits);
#endif
if (rule == CIPHER_DEL)
reverse = 1; /* needed to maintain sorting between
* currently deleted ciphers */
head = *head_p;
tail = *tail_p;
if (reverse) {
next = tail;
last = head;
} else {
next = head;
last = tail;
}
curr = NULL;
for (;;) {
if (curr == last)
break;
curr = next;
if (curr == NULL)
break;
next = reverse ? curr->prev : curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the value of strength_bits
* or the algorithms used.
*/
if (strength_bits >= 0) {
if (strength_bits != cp->strength_bits)
continue;
} else {
#ifdef CIPHER_DEBUG
fprintf(stderr,
"\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n",
cp->name, cp->algorithm_mkey, cp->algorithm_auth,
cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl,
cp->algo_strength);
#endif
if (algo_strength == SSL_EXP_MASK && SSL_C_IS_EXPORT(cp))
goto ok;
if (alg_ssl == ~SSL_SSLV2 && cp->algorithm_ssl == SSL_SSLV2)
goto ok;
if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
continue;
if (alg_auth && !(alg_auth & cp->algorithm_auth))
continue;
if (alg_enc && !(alg_enc & cp->algorithm_enc))
continue;
if (alg_mac && !(alg_mac & cp->algorithm_mac))
continue;
if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
continue;
if ((algo_strength & SSL_EXP_MASK)
&& !(algo_strength & SSL_EXP_MASK & cp->algo_strength))
continue;
if ((algo_strength & SSL_STRONG_MASK)
&& !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
continue;
}
ok:
#ifdef CIPHER_DEBUG
fprintf(stderr, "Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD) {
/* reverse == 0 */
if (!curr->active) {
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD) {
/* reverse == 0 */
if (curr->active) {
ll_append_tail(&head, curr, &tail);
}
} else if (rule == CIPHER_DEL) {
/* reverse == 1 */
if (curr->active) {
/*
* most recently deleted ciphersuites get best positions for
* any future CIPHER_ADD (note that the CIPHER_DEL loop works
* in reverse to maintain the order)
*/
ll_append_head(&head, curr, &tail);
curr->active = 0;
}
} else if (rule == CIPHER_KILL) {
/* reverse == 0 */
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL) {
if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses) {
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT, ERR_R_MALLOC_FAILURE);
return (0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL) {
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
tail_p);
OPENSSL_free(number_uses);
return (1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p,
const SSL_CIPHER **ca_list)
{
unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl,
algo_strength;
const char *l, *buf;
int j, multi, found, rule, retval, ok, buflen;
unsigned long cipher_id = 0;
char ch;
retval = 1;
l = rule_str;
for (;;) {
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-') {
rule = CIPHER_DEL;
l++;
} else if (ch == '+') {
rule = CIPHER_ORD;
l++;
} else if (ch == '!') {
rule = CIPHER_KILL;
l++;
} else if (ch == '@') {
rule = CIPHER_SPECIAL;
l++;
} else {
rule = CIPHER_ADD;
}
if (ITEM_SEP(ch)) {
l++;
continue;
}
alg_mkey = 0;
alg_auth = 0;
alg_enc = 0;
alg_mac = 0;
alg_ssl = 0;
algo_strength = 0;
for (;;) {
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while (((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.'))
#else
while (isalnum(ch) || (ch == '-') || (ch == '.'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0) {
/*
* We hit something we cannot deal with,
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL) {
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+') {
multi = 1;
l++;
} else
multi = 0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
cipher_id = 0;
while (ca_list[j]) {
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0')) {
found = 1;
break;
} else
j++;
}
if (!found)
break; /* ignore this entry */
if (ca_list[j]->algorithm_mkey) {
if (alg_mkey) {
alg_mkey &= ca_list[j]->algorithm_mkey;
if (!alg_mkey) {
found = 0;
break;
}
} else
alg_mkey = ca_list[j]->algorithm_mkey;
}
if (ca_list[j]->algorithm_auth) {
if (alg_auth) {
alg_auth &= ca_list[j]->algorithm_auth;
if (!alg_auth) {
found = 0;
break;
}
} else
alg_auth = ca_list[j]->algorithm_auth;
}
if (ca_list[j]->algorithm_enc) {
if (alg_enc) {
alg_enc &= ca_list[j]->algorithm_enc;
if (!alg_enc) {
found = 0;
break;
}
} else
alg_enc = ca_list[j]->algorithm_enc;
}
if (ca_list[j]->algorithm_mac) {
if (alg_mac) {
alg_mac &= ca_list[j]->algorithm_mac;
if (!alg_mac) {
found = 0;
break;
}
} else
alg_mac = ca_list[j]->algorithm_mac;
}
if (ca_list[j]->algo_strength & SSL_EXP_MASK) {
if (algo_strength & SSL_EXP_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_EXP_MASK) |
~SSL_EXP_MASK;
if (!(algo_strength & SSL_EXP_MASK)) {
found = 0;
break;
}
} else
algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK;
}
if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
if (algo_strength & SSL_STRONG_MASK) {
algo_strength &=
(ca_list[j]->algo_strength & SSL_STRONG_MASK) |
~SSL_STRONG_MASK;
if (!(algo_strength & SSL_STRONG_MASK)) {
found = 0;
break;
}
} else
algo_strength |=
ca_list[j]->algo_strength & SSL_STRONG_MASK;
}
if (ca_list[j]->valid) {
/*
* explicit ciphersuite found; its protocol version does not
* become part of the search pattern!
*/
cipher_id = ca_list[j]->id;
} else {
/*
* not an explicit ciphersuite; only in this case, the
* protocol version is considered part of the search pattern
*/
if (ca_list[j]->algorithm_ssl) {
if (alg_ssl) {
alg_ssl &= ca_list[j]->algorithm_ssl;
if (!alg_ssl) {
found = 0;
break;
}
} else
alg_ssl = ca_list[j]->algorithm_ssl;
}
}
if (!multi)
break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL) { /* special command */
ok = 0;
if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
} else if (found) {
ssl_cipher_apply_rule(cipher_id,
alg_mkey, alg_auth, alg_enc, alg_mac,
alg_ssl, algo_strength, rule, -1, head_p,
tail_p);
} else {
while ((*l != '\0') && !ITEM_SEP(*l))
l++;
}
if (*l == '\0')
break; /* done */
}
return (retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, STACK_OF(SSL_CIPHER)
**cipher_list, STACK_OF(SSL_CIPHER)
**cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac,
disabled_ssl;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
const SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc,
&disabled_mac, &disabled_ssl);
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
fprintf(stderr, "ssl_create_cipher_list() for %d ciphers\n",
num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list =
(CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL) {
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, disabled_ssl, co_list, &head,
&tail);
/* Now arrange all ciphers by preference: */
/*
* Everything else being equal, prefer ephemeral ECDH over other key
* exchange mechanisms
*/
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
&tail);
/* AES is our preferred symmetric cipher */
ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head,
&tail);
/* Temporarily enable everything else for sorting */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
/* Low priority for MD5 */
ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Move anonymous ciphers to the end. Usually, these will remain
* disabled. (For applications that allow them, they aren't too bad, but
* we prefer authenticated ciphers.)
*/
ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* Move ciphers without forward secrecy to the end */
ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1,
* &head, &tail);
*/
ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
ssl_cipher_apply_rule(0, SSL_kKRB5, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/* RC4 is sort-of broken -- move the the end */
ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
&tail);
/*
* Now sort by symmetric encryption strength. The above ordering remains
* in force within each class
*/
if (!ssl_cipher_strength_sort(&head, &tail)) {
OPENSSL_free(co_list);
return NULL;
}
/* Now disable everything (maintaining the ordering!) */
ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL) {
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
return (NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
disabled_mkey, disabled_auth, disabled_enc,
disabled_mac, disabled_ssl, head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str, "DEFAULT", 7) == 0) {
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
&head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list);
OPENSSL_free((void *)ca_list); /* Not needed anymore */
if (!ok) { /* Rule processing failure */
OPENSSL_free(co_list);
return (NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
OPENSSL_free(co_list);
return (NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next) {
#ifdef OPENSSL_FIPS
if (curr->active
&& (!FIPS_mode() || curr->cipher->algo_strength & SSL_FIPS))
#else
if (curr->active)
#endif
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
fprintf(stderr, "<%s>\n", curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL) {
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_sort(*cipher_list_by_id);
return (cipherstack);
}
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
{
int is_export, pkl, kl;
const char *ver, *exp_str;
const char *kx, *au, *enc, *mac;
unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2;
#ifdef KSSL_DEBUG
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx/%lx/%lx/%lx/%lx\n";
#else
static const char *format =
"%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg_mkey = cipher->algorithm_mkey;
alg_auth = cipher->algorithm_auth;
alg_enc = cipher->algorithm_enc;
alg_mac = cipher->algorithm_mac;
alg_ssl = cipher->algorithm_ssl;
alg2 = cipher->algorithm2;
is_export = SSL_C_IS_EXPORT(cipher);
pkl = SSL_C_EXPORT_PKEYLENGTH(cipher);
kl = SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str = is_export ? " export" : "";
if (alg_ssl & SSL_SSLV2)
ver = "SSLv2";
else if (alg_ssl & SSL_SSLV3)
ver = "SSLv3";
else if (alg_ssl & SSL_TLSV1_2)
ver = "TLSv1.2";
else
ver = "unknown";
switch (alg_mkey) {
case SSL_kRSA:
kx = is_export ? (pkl == 512 ? "RSA(512)" : "RSA(1024)") : "RSA";
break;
case SSL_kDHr:
kx = "DH/RSA";
break;
case SSL_kDHd:
kx = "DH/DSS";
break;
case SSL_kKRB5:
kx = "KRB5";
break;
case SSL_kEDH:
kx = is_export ? (pkl == 512 ? "DH(512)" : "DH(1024)") : "DH";
break;
case SSL_kECDHr:
kx = "ECDH/RSA";
break;
case SSL_kECDHe:
kx = "ECDH/ECDSA";
break;
case SSL_kEECDH:
kx = "ECDH";
break;
case SSL_kPSK:
kx = "PSK";
break;
case SSL_kSRP:
kx = "SRP";
break;
case SSL_kGOST:
kx = "GOST";
break;
default:
kx = "unknown";
}
switch (alg_auth) {
case SSL_aRSA:
au = "RSA";
break;
case SSL_aDSS:
au = "DSS";
break;
case SSL_aDH:
au = "DH";
break;
case SSL_aKRB5:
au = "KRB5";
break;
case SSL_aECDH:
au = "ECDH";
break;
case SSL_aNULL:
au = "None";
break;
case SSL_aECDSA:
au = "ECDSA";
break;
case SSL_aPSK:
au = "PSK";
break;
case SSL_aSRP:
au = "SRP";
break;
case SSL_aGOST94:
au = "GOST94";
break;
case SSL_aGOST01:
au = "GOST01";
break;
default:
au = "unknown";
break;
}
switch (alg_enc) {
case SSL_DES:
enc = (is_export && kl == 5) ? "DES(40)" : "DES(56)";
break;
case SSL_3DES:
enc = "3DES(168)";
break;
case SSL_RC4:
enc = is_export ? (kl == 5 ? "RC4(40)" : "RC4(56)")
: ((alg2 & SSL2_CF_8_BYTE_ENC) ? "RC4(64)" : "RC4(128)");
break;
case SSL_RC2:
enc = is_export ? (kl == 5 ? "RC2(40)" : "RC2(56)") : "RC2(128)";
break;
case SSL_IDEA:
enc = "IDEA(128)";
break;
case SSL_eNULL:
enc = "None";
break;
case SSL_AES128:
enc = "AES(128)";
break;
case SSL_AES256:
enc = "AES(256)";
break;
case SSL_AES128GCM:
enc = "AESGCM(128)";
break;
case SSL_AES256GCM:
enc = "AESGCM(256)";
break;
case SSL_CAMELLIA128:
enc = "Camellia(128)";
break;
case SSL_CAMELLIA256:
enc = "Camellia(256)";
break;
case SSL_SEED:
enc = "SEED(128)";
break;
case SSL_eGOST2814789CNT:
enc = "GOST89(256)";
break;
default:
enc = "unknown";
break;
}
switch (alg_mac) {
case SSL_MD5:
mac = "MD5";
break;
case SSL_SHA1:
mac = "SHA1";
break;
case SSL_SHA256:
mac = "SHA256";
break;
case SSL_SHA384:
mac = "SHA384";
break;
case SSL_AEAD:
mac = "AEAD";
break;
case SSL_GOST89MAC:
mac = "GOST89";
break;
case SSL_GOST94:
mac = "GOST94";
break;
default:
mac = "unknown";
break;
}
if (buf == NULL) {
len = 128;
buf = OPENSSL_malloc(len);
if (buf == NULL)
return ("OPENSSL_malloc Error");
} else if (len < 128)
return ("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl);
#else
BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac,
exp_str);
#endif /* KSSL_DEBUG */
return (buf);
}
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL)
return ("(NONE)");
i = (int)(c->id >> 24L);
if (i == 3)
return ("TLSv1/SSLv3");
else if (i == 2)
return ("SSLv2");
else
return ("unknown");
}
/* return the actual cipher being used */
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return (c->name);
return ("(NONE)");
}
/* number of bits for symmetric cipher */
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret = 0;
if (c != NULL) {
if (alg_bits != NULL)
*alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return (ret);
}
unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c)
{
return c->id;
}
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i, nn;
if ((n == 0) || (sk == NULL))
return (NULL);
nn = sk_SSL_COMP_num(sk);
for (i = 0; i < nn; i++) {
ctmp = sk_SSL_COMP_value(sk, i);
if (ctmp->id == n)
return (ctmp);
}
return (NULL);
}
#ifdef OPENSSL_NO_COMP
void *SSL_COMP_get_compression_methods(void)
{
return NULL;
}
int SSL_COMP_add_compression_method(int id, void *cm)
{
return 1;
}
const char *SSL_COMP_get_name(const void *comp)
{
return NULL;
}
#else
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return (ssl_comp_methods);
}
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/*-
* According to draft-ietf-tls-compression-04.txt, the
* compression number ranges should be the following:
*
* 0 to 63: methods defined by the IETF
* 64 to 192: external party methods assigned by IANA
* 193 to 255: reserved for private use
*/
if (id < 193 || id > 255) {
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp = (SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id = id;
comp->method = cm;
load_builtin_compressions();
if (ssl_comp_methods && sk_SSL_COMP_find(ssl_comp_methods, comp) >= 0) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,
SSL_R_DUPLICATE_COMPRESSION_ID);
return (1);
} else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods, comp)) {
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD, ERR_R_MALLOC_FAILURE);
return (1);
} else {
MemCheck_on();
return (0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}
#endif