distribution/BUILDING.md
2022-08-02 07:48:05 -04:00

7.5 KiB

Developing and Building JELOS

JELOS is a fairly unique distribution as it is built to order and only enough of the operating system and applications are built for the purpose of booting and executing emulators and ports. Developers and others who would like to contribute to our project should read and agree to the Contributor Covenant Code of Conduct and Contributing to JELOS guides before submitting your first contribution.

Filesystem Structure

We have a simple filesystem structure adopted from parent distributions CoreELEC, LibreELEC, etc.

.
├── build.JELOS-DEVICE.ARCHITECTURE
├── config
├── distributions
├── Dockerfile
├── licenses
├── Makefile
├── packages
├── post-update
├── projects
├── release
├── scripts
├── sources
└── tools

build.JELOS-DEVICE.ARCHITECTURE

Build roots for each device and that devices architecture(s). For ARM devices JELOS builds and uses a 32bit root for several of the cores used in the 64bit distribution.

config

Contains functions utilized during the build process including architecture specific build flags, optimizations, and functions used throughout the build workflow.

distributions

Distributions contains distribution specific build flags and parameters and splash screens.

Dockerfile

Used to build the Ubuntu container used to build JELOS. The container is hosted at https://hub.docker.com/u/justenoughlinuxos

licenses

All of the licenses used throughout the distribution packages are hosted here. If you're adding a package that contains a license, make sure it is available in this directory before submitting the PR.

Makefile

Used to build one or more JELOS images, or to build and deploy the Ubuntu container.

packages

All of the package set that is used to develop and build JELOS are hosted within the packages directory. The package structure documentation is available in PACKAGE.md

post-update

Anything that is necessary to be run on a device after an upgrade should be added here. Be sure to apply a guard to test that the change needs to be executed before execution.

projects

Hardware specific parameters are stored in the projects folder, anything that should not be included on every device during a world build should be isolated to the specific project or device here.

release

The output directory for all of the build images.

scripts

This directory contains all of the scripts used to fetch, extract, build, and release the distribution. Review Makefile for more details.

sources

As the distribution is being built, package source are fetched and hosted in this directory. They will persist after a make clean.

tools

The tools directory contains utility scripts that can be used during the development process, including a simple tool to burn an image to a usb drive or sdcard.

Building JELOS

Building JELOS requires an Ubuntu 20.04 host with approximately 800GB of free space for a full world build. Other Linux distributions may be used when building using Docker.

Building with Docker

Building JELOS is easy, the fastest and most recommended method is to use Docker. At this time building the distribution using Docker is only known to work on a Linux system. To build JELOS use the table below.

Device Dependency Docker Command
RG552 PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-RG552
RG503 PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-RG503
RG353P RG503 PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-RG353P
RG351P PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-RG351P
RG351V RG351P PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-351V
RG351MP RG351P PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-RG351MP
x86_64 PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-X86_64
ALL DEVICES PYTHON_EGG_CACHE="`pwd`/.egg_cache" make docker-world

Devices that list a dependency require the dependency to be built first as that build will be used as the root of the device you are building.

Building Manually

To build JELOS manually, you will need several prerequisite packages installed.

sudo apt install gcc make git unzip wget \
                xz-utils libsdl2-dev libsdl2-mixer-dev libfreeimage-dev libfreetype6-dev libcurl4-openssl-dev \
                rapidjson-dev libasound2-dev libgl1-mesa-dev build-essential libboost-all-dev cmake fonts-droid-fallback \
                libvlc-dev libvlccore-dev vlc-bin texinfo premake4 golang libssl-dev curl patchelf \
                xmlstarlet patchutils gawk gperf xfonts-utils default-jre python xsltproc libjson-perl \
                lzop libncurses5-dev device-tree-compiler u-boot-tools rsync p7zip libparse-yapp-perl \
                zip binutils-aarch64-linux-gnu dos2unix p7zip-full libvpx-dev bsdmainutils bc meson p7zip-full \
                qemu-user-binfmt zstd parted

Next, build the version of JELOS for your device. See the table above for dependencies. If you're building for the RG351V, RG351P will be built first to provide the build root dependency. To execute a build, run make {device}

make RG351V

Building a single package

It is also possible to build individual packages.

DEVICE=RG351V ARCH=aarch64 ./scripts/clean busybox
DEVICE=RG351V ARCH=aarch64 ./scripts/build busybox

Note: Emulation Station package build requires additional steps because its source code located in a separate repository, see instructions inside, link.

Special env variables

For development build, you can use the following env variables to customize the image. Some of them can be included in your .bashrc startup shell script.

SSH keys

export JELOS_SSH_KEYS_FILE=~/.ssh/jelos/authorized_keys

WiFi SSID and password

export JELOS_WIFI_SSID=MYWIFI
export JELOS_WIFI_KEY=secret

Screenscraper, GamesDB, and RetroAchievements

To enable Screenscraper, GamesDB, and RetroAchievements, register at each site and apply the api keys in ~/developer_settings.conf. This configuration is picked up by EmulationStation during the build.

export SCREENSCRAPER_DEV_LOGIN="devid=DEVID&devpassword=DEVPASSWORD
export GAMESDB_APIKEY="APIKEY"
export CHEEVOS_DEV_LOGIN="z=DEVID&y=DEVPASSWORD"

Creating a patch for a package

It is common to have imported package source code modifed to fit the use case. It's recommended to use a special shell script to built it in case you need to iterate over it. See below.

cd sources/wireguard-linux-compat
tar -xvJf wireguard-linux-compat-v1.0.20211208.tar.xz
mv wireguard-linux-compat-v1.0.20211208 wireguard-linux-compat
cp -rf wireguard-linux-compat wireguard-linux-compat.orig

# Make your changes to wireguard-linux-compat
mkdir ../../packages/network/wireguard-linux-compat/patches/RG503
# run from the sources dir
diff -rupN wireguard-linux-compat wireguard-linux-compat.orig ../../packages/network/wireguard-linux-compat/patches/RG503/mychanges.patch

After patch is generated, one can rebuild an individual package, see section above. The build system will automatically pick up patch files from patches directory. For testing, one can either copy the built binary to the console or burn the whole image on SD card.