2016-05-17 18:51:34 +00:00
|
|
|
/*
|
2018-05-29 12:07:08 +00:00
|
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
1998-12-21 10:52:47 +00:00
|
|
|
*
|
2018-12-06 12:54:02 +00:00
|
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
2016-05-17 18:51:34 +00:00
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
1998-12-21 10:52:47 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
1999-04-23 22:13:45 +00:00
|
|
|
#include <openssl/crypto.h>
|
2015-05-14 14:56:48 +00:00
|
|
|
#include "internal/cryptlib.h"
|
2017-08-21 21:17:35 +00:00
|
|
|
#include "internal/refcount.h"
|
2014-10-28 23:00:29 +00:00
|
|
|
#include "internal/bn_int.h"
|
2016-03-18 18:30:20 +00:00
|
|
|
#include <openssl/engine.h>
|
2016-11-21 00:44:01 +00:00
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include "internal/evp_int.h"
|
2016-04-02 13:12:58 +00:00
|
|
|
#include "rsa_locl.h"
|
1998-12-21 10:52:47 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
RSA *RSA_new(void)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2017-04-07 16:07:42 +00:00
|
|
|
return RSA_new_method(NULL);
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1999-06-29 22:22:42 +00:00
|
|
|
|
2000-11-06 22:34:17 +00:00
|
|
|
const RSA_METHOD *RSA_get_method(const RSA *rsa)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
return rsa->meth;
|
|
|
|
}
|
2001-09-25 20:23:40 +00:00
|
|
|
|
|
|
|
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* NB: The caller is specifically setting a method, so it's not up to us
|
|
|
|
* to deal with which ENGINE it comes from.
|
|
|
|
*/
|
|
|
|
const RSA_METHOD *mtmp;
|
|
|
|
mtmp = rsa->meth;
|
|
|
|
if (mtmp->finish)
|
|
|
|
mtmp->finish(rsa);
|
2003-01-30 17:39:26 +00:00
|
|
|
#ifndef OPENSSL_NO_ENGINE
|
2016-02-25 17:09:06 +00:00
|
|
|
ENGINE_finish(rsa->engine);
|
|
|
|
rsa->engine = NULL;
|
2003-01-30 17:39:26 +00:00
|
|
|
#endif
|
2015-01-22 03:40:55 +00:00
|
|
|
rsa->meth = meth;
|
|
|
|
if (meth->init)
|
|
|
|
meth->init(rsa);
|
|
|
|
return 1;
|
|
|
|
}
|
1999-06-29 22:22:42 +00:00
|
|
|
|
2000-10-26 21:07:28 +00:00
|
|
|
RSA *RSA_new_method(ENGINE *engine)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2016-05-17 19:21:46 +00:00
|
|
|
RSA *ret = OPENSSL_zalloc(sizeof(*ret));
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
if (ret == NULL) {
|
|
|
|
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
|
|
|
|
return NULL;
|
|
|
|
}
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2016-05-17 19:21:46 +00:00
|
|
|
ret->references = 1;
|
|
|
|
ret->lock = CRYPTO_THREAD_lock_new();
|
|
|
|
if (ret->lock == NULL) {
|
|
|
|
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_MALLOC_FAILURE);
|
|
|
|
OPENSSL_free(ret);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
ret->meth = RSA_get_default_method();
|
2003-01-30 17:39:26 +00:00
|
|
|
#ifndef OPENSSL_NO_ENGINE
|
2016-05-17 19:21:46 +00:00
|
|
|
ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
|
2015-01-22 03:40:55 +00:00
|
|
|
if (engine) {
|
|
|
|
if (!ENGINE_init(engine)) {
|
|
|
|
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
|
2016-05-17 19:21:46 +00:00
|
|
|
goto err;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
ret->engine = engine;
|
2017-08-22 17:36:49 +00:00
|
|
|
} else {
|
2015-01-22 03:40:55 +00:00
|
|
|
ret->engine = ENGINE_get_default_RSA();
|
2017-08-22 17:36:49 +00:00
|
|
|
}
|
2015-01-22 03:40:55 +00:00
|
|
|
if (ret->engine) {
|
|
|
|
ret->meth = ENGINE_get_RSA(ret->engine);
|
2016-02-25 17:09:06 +00:00
|
|
|
if (ret->meth == NULL) {
|
2015-01-22 03:40:55 +00:00
|
|
|
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
|
2016-05-17 19:21:46 +00:00
|
|
|
goto err;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
}
|
2003-01-30 17:39:26 +00:00
|
|
|
#endif
|
2001-06-23 23:07:34 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
|
|
|
|
if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
|
2016-05-17 19:21:46 +00:00
|
|
|
goto err;
|
2016-03-04 15:43:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
|
2016-05-17 19:21:46 +00:00
|
|
|
RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_INIT_FAIL);
|
|
|
|
goto err;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
2016-03-04 15:43:46 +00:00
|
|
|
|
|
|
|
return ret;
|
2016-05-17 19:21:46 +00:00
|
|
|
|
2018-09-05 09:08:12 +00:00
|
|
|
err:
|
2016-05-17 19:21:46 +00:00
|
|
|
RSA_free(ret);
|
|
|
|
return NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:52:47 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
void RSA_free(RSA *r)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
int i;
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
if (r == NULL)
|
|
|
|
return;
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2016-08-27 14:01:08 +00:00
|
|
|
CRYPTO_DOWN_REF(&r->references, &i, r->lock);
|
2016-01-30 17:04:25 +00:00
|
|
|
REF_PRINT_COUNT("RSA", r);
|
2015-01-22 03:40:55 +00:00
|
|
|
if (i > 0)
|
|
|
|
return;
|
2016-01-30 17:04:25 +00:00
|
|
|
REF_ASSERT_ISNT(i < 0);
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2018-09-05 08:58:55 +00:00
|
|
|
if (r->meth != NULL && r->meth->finish != NULL)
|
2015-01-22 03:40:55 +00:00
|
|
|
r->meth->finish(r);
|
2003-01-30 17:39:26 +00:00
|
|
|
#ifndef OPENSSL_NO_ENGINE
|
2016-02-25 21:34:27 +00:00
|
|
|
ENGINE_finish(r->engine);
|
2003-01-30 17:39:26 +00:00
|
|
|
#endif
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
|
2000-11-26 18:34:45 +00:00
|
|
|
|
2016-03-04 15:43:46 +00:00
|
|
|
CRYPTO_THREAD_lock_free(r->lock);
|
|
|
|
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_free(r->n);
|
|
|
|
BN_free(r->e);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_clear_free(r->d);
|
|
|
|
BN_clear_free(r->p);
|
|
|
|
BN_clear_free(r->q);
|
|
|
|
BN_clear_free(r->dmp1);
|
|
|
|
BN_clear_free(r->dmq1);
|
|
|
|
BN_clear_free(r->iqmp);
|
2016-11-21 01:34:56 +00:00
|
|
|
RSA_PSS_PARAMS_free(r->pss);
|
2017-08-01 18:19:43 +00:00
|
|
|
sk_RSA_PRIME_INFO_pop_free(r->prime_infos, rsa_multip_info_free);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_BLINDING_free(r->blinding);
|
|
|
|
BN_BLINDING_free(r->mt_blinding);
|
2015-08-26 04:25:11 +00:00
|
|
|
OPENSSL_free(r->bignum_data);
|
2015-01-22 03:40:55 +00:00
|
|
|
OPENSSL_free(r);
|
|
|
|
}
|
1998-12-21 10:52:47 +00:00
|
|
|
|
2001-09-03 13:40:07 +00:00
|
|
|
int RSA_up_ref(RSA *r)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2016-03-04 15:43:46 +00:00
|
|
|
int i;
|
|
|
|
|
2016-08-27 14:01:08 +00:00
|
|
|
if (CRYPTO_UP_REF(&r->references, &i, r->lock) <= 0)
|
2016-03-04 15:43:46 +00:00
|
|
|
return 0;
|
2016-01-30 17:04:25 +00:00
|
|
|
|
|
|
|
REF_PRINT_COUNT("RSA", r);
|
|
|
|
REF_ASSERT_ISNT(i < 2);
|
2017-08-22 17:25:23 +00:00
|
|
|
return i > 1 ? 1 : 0;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
2001-08-25 17:24:21 +00:00
|
|
|
|
2000-01-23 23:41:49 +00:00
|
|
|
int RSA_set_ex_data(RSA *r, int idx, void *arg)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2017-08-22 17:25:23 +00:00
|
|
|
return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:56:39 +00:00
|
|
|
|
2000-11-06 22:34:17 +00:00
|
|
|
void *RSA_get_ex_data(const RSA *r, int idx)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2017-08-22 17:25:23 +00:00
|
|
|
return CRYPTO_get_ex_data(&r->ex_data, idx);
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:56:39 +00:00
|
|
|
|
2018-10-04 23:19:30 +00:00
|
|
|
/*
|
|
|
|
* Define a scaling constant for our fixed point arithmetic.
|
|
|
|
* This value must be a power of two because the base two logarithm code
|
|
|
|
* makes this assumption. The exponent must also be a multiple of three so
|
|
|
|
* that the scale factor has an exact cube root. Finally, the scale factor
|
|
|
|
* should not be so large that a multiplication of two scaled numbers
|
|
|
|
* overflows a 64 bit unsigned integer.
|
|
|
|
*/
|
|
|
|
static const unsigned int scale = 1 << 18;
|
|
|
|
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
|
|
|
|
|
|
|
|
/* Define some constants, none exceed 32 bits */
|
|
|
|
static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
|
|
|
|
static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
|
|
|
|
static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
|
|
|
|
static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
|
|
|
|
|
|
|
|
/*
|
2019-01-24 02:22:48 +00:00
|
|
|
* Multiply two scaled integers together and rescale the result.
|
2018-10-04 23:19:30 +00:00
|
|
|
*/
|
|
|
|
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
|
|
|
|
{
|
|
|
|
return a * b / scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the cube root of a 64 bit scaled integer.
|
|
|
|
* Although the cube root of a 64 bit number does fit into a 32 bit unsigned
|
|
|
|
* integer, this is not guaranteed after scaling, so this function has a
|
|
|
|
* 64 bit return. This uses the shifting nth root algorithm with some
|
|
|
|
* algebraic simplifications.
|
|
|
|
*/
|
|
|
|
static uint64_t icbrt64(uint64_t x)
|
|
|
|
{
|
|
|
|
uint64_t r = 0;
|
|
|
|
uint64_t b;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
for (s = 63; s >= 0; s -= 3) {
|
|
|
|
r <<= 1;
|
|
|
|
b = 3 * r * (r + 1) + 1;
|
|
|
|
if ((x >> s) >= b) {
|
|
|
|
x -= b << s;
|
|
|
|
r++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return r * cbrt_scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the natural logarithm of a 64 bit scaled integer.
|
|
|
|
* This is done by calculating a base two logarithm and scaling.
|
|
|
|
* The maximum logarithm (base 2) is 64 and this reduces base e, so
|
|
|
|
* a 32 bit result should not overflow. The argument passed must be
|
|
|
|
* greater than unity so we don't need to handle negative results.
|
|
|
|
*/
|
|
|
|
static uint32_t ilog_e(uint64_t v)
|
|
|
|
{
|
|
|
|
uint32_t i, r = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Scale down the value into the range 1 .. 2.
|
|
|
|
*
|
|
|
|
* If fractional numbers need to be processed, another loop needs
|
|
|
|
* to go here that checks v < scale and if so multiplies it by 2 and
|
|
|
|
* reduces r by scale. This also means making r signed.
|
|
|
|
*/
|
|
|
|
while (v >= 2 * scale) {
|
|
|
|
v >>= 1;
|
|
|
|
r += scale;
|
|
|
|
}
|
|
|
|
for (i = scale / 2; i != 0; i /= 2) {
|
|
|
|
v = mul2(v, v);
|
|
|
|
if (v >= 2 * scale) {
|
|
|
|
v >>= 1;
|
|
|
|
r += i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
r = (r * (uint64_t)scale) / log_e;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
|
|
|
|
* Modulus Lengths.
|
|
|
|
*
|
|
|
|
* E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
|
|
|
|
* \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
|
|
|
|
* The two cube roots are merged together here.
|
|
|
|
*/
|
2018-07-04 23:28:51 +00:00
|
|
|
uint16_t rsa_compute_security_bits(int n)
|
2018-10-04 23:19:30 +00:00
|
|
|
{
|
|
|
|
uint64_t x;
|
|
|
|
uint32_t lx;
|
|
|
|
uint16_t y;
|
|
|
|
|
|
|
|
/* Look for common values as listed in SP 800-56B rev 2 Appendix D */
|
|
|
|
switch (n) {
|
|
|
|
case 2048:
|
|
|
|
return 112;
|
|
|
|
case 3072:
|
|
|
|
return 128;
|
|
|
|
case 4096:
|
|
|
|
return 152;
|
|
|
|
case 6144:
|
|
|
|
return 176;
|
|
|
|
case 8192:
|
|
|
|
return 200;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* The first incorrect result (i.e. not accurate or off by one low) occurs
|
|
|
|
* for n = 699668. The true value here is 1200. Instead of using this n
|
|
|
|
* as the check threshold, the smallest n such that the correct result is
|
|
|
|
* 1200 is used instead.
|
|
|
|
*/
|
|
|
|
if (n >= 687737)
|
|
|
|
return 1200;
|
|
|
|
if (n < 8)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
x = n * (uint64_t)log_2;
|
|
|
|
lx = ilog_e(x);
|
|
|
|
y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
|
|
|
|
/ log_2);
|
|
|
|
return (y + 4) & ~7;
|
|
|
|
}
|
|
|
|
|
2014-01-18 14:51:40 +00:00
|
|
|
int RSA_security_bits(const RSA *rsa)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2017-11-24 20:31:11 +00:00
|
|
|
int bits = BN_num_bits(rsa->n);
|
|
|
|
|
|
|
|
if (rsa->version == RSA_ASN1_VERSION_MULTI) {
|
|
|
|
/* This ought to mean that we have private key at hand. */
|
|
|
|
int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
|
|
|
|
|
|
|
|
if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits))
|
|
|
|
return 0;
|
|
|
|
}
|
2018-10-04 23:19:30 +00:00
|
|
|
return rsa_compute_security_bits(bits);
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
2016-04-02 13:12:58 +00:00
|
|
|
|
|
|
|
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
|
|
|
|
{
|
2016-06-14 13:48:16 +00:00
|
|
|
/* If the fields n and e in r are NULL, the corresponding input
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
* parameters MUST be non-NULL for n and e. d may be
|
|
|
|
* left NULL (in case only the public key is used).
|
|
|
|
*/
|
2016-06-16 09:07:32 +00:00
|
|
|
if ((r->n == NULL && n == NULL)
|
|
|
|
|| (r->e == NULL && e == NULL))
|
2016-04-02 13:12:58 +00:00
|
|
|
return 0;
|
|
|
|
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
if (n != NULL) {
|
|
|
|
BN_free(r->n);
|
|
|
|
r->n = n;
|
|
|
|
}
|
|
|
|
if (e != NULL) {
|
|
|
|
BN_free(r->e);
|
|
|
|
r->e = e;
|
|
|
|
}
|
|
|
|
if (d != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->d);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->d = d;
|
|
|
|
}
|
2016-04-02 13:12:58 +00:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
|
|
|
|
{
|
2016-06-14 13:48:16 +00:00
|
|
|
/* If the fields p and q in r are NULL, the corresponding input
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
* parameters MUST be non-NULL.
|
|
|
|
*/
|
2016-06-16 09:07:32 +00:00
|
|
|
if ((r->p == NULL && p == NULL)
|
|
|
|
|| (r->q == NULL && q == NULL))
|
2016-04-02 13:12:58 +00:00
|
|
|
return 0;
|
|
|
|
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
if (p != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->p);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->p = p;
|
|
|
|
}
|
|
|
|
if (q != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->q);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->q = q;
|
|
|
|
}
|
2016-04-02 13:12:58 +00:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
|
|
|
|
{
|
2016-06-14 13:48:16 +00:00
|
|
|
/* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
* parameters MUST be non-NULL.
|
|
|
|
*/
|
2016-06-16 09:07:32 +00:00
|
|
|
if ((r->dmp1 == NULL && dmp1 == NULL)
|
|
|
|
|| (r->dmq1 == NULL && dmq1 == NULL)
|
|
|
|
|| (r->iqmp == NULL && iqmp == NULL))
|
2016-04-02 13:12:58 +00:00
|
|
|
return 0;
|
|
|
|
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
if (dmp1 != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->dmp1);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->dmp1 = dmp1;
|
|
|
|
}
|
|
|
|
if (dmq1 != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->dmq1);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->dmq1 = dmq1;
|
|
|
|
}
|
|
|
|
if (iqmp != NULL) {
|
2018-10-11 04:07:26 +00:00
|
|
|
BN_clear_free(r->iqmp);
|
RSA, DSA, DH: Allow some given input to be NULL on already initialised keys
The diverse {RSA,DSA,DH}_set0_* functions are made to allow some
parameters to be NULL IF the corresponding numbers in the given key
structure have already been previously initialised. Specifically,
this allows the addition of private components to be added to a key
that already has the public half, approximately like this:
RSA_get0_key(rsa, NULL, &e, NULL);
RSA_get0_factors(rsa, &p, &q);
/* calculate new d */
RSA_set0_key(rsa, NULL, NULL, d);
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-04-25 18:28:54 +00:00
|
|
|
r->iqmp = iqmp;
|
|
|
|
}
|
2016-04-02 13:12:58 +00:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2017-08-01 18:19:43 +00:00
|
|
|
/*
|
|
|
|
* Is it better to export RSA_PRIME_INFO structure
|
|
|
|
* and related functions to let user pass a triplet?
|
|
|
|
*/
|
|
|
|
int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
|
|
|
|
BIGNUM *coeffs[], int pnum)
|
|
|
|
{
|
|
|
|
STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
|
|
|
|
RSA_PRIME_INFO *pinfo;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
|
|
|
|
if (prime_infos == NULL)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (r->prime_infos != NULL)
|
|
|
|
old = r->prime_infos;
|
|
|
|
|
|
|
|
for (i = 0; i < pnum; i++) {
|
|
|
|
pinfo = rsa_multip_info_new();
|
|
|
|
if (pinfo == NULL)
|
|
|
|
goto err;
|
|
|
|
if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
|
|
|
|
BN_free(pinfo->r);
|
|
|
|
BN_free(pinfo->d);
|
|
|
|
BN_free(pinfo->t);
|
|
|
|
pinfo->r = primes[i];
|
|
|
|
pinfo->d = exps[i];
|
|
|
|
pinfo->t = coeffs[i];
|
|
|
|
} else {
|
|
|
|
rsa_multip_info_free(pinfo);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
(void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
r->prime_infos = prime_infos;
|
|
|
|
|
|
|
|
if (!rsa_multip_calc_product(r)) {
|
|
|
|
r->prime_infos = old;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (old != NULL) {
|
|
|
|
/*
|
|
|
|
* This is hard to deal with, since the old infos could
|
|
|
|
* also be set by this function and r, d, t should not
|
|
|
|
* be freed in that case. So currently, stay consistent
|
|
|
|
* with other *set0* functions: just free it...
|
|
|
|
*/
|
|
|
|
sk_RSA_PRIME_INFO_pop_free(old, rsa_multip_info_free);
|
|
|
|
}
|
|
|
|
|
|
|
|
r->version = RSA_ASN1_VERSION_MULTI;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
err:
|
|
|
|
/* r, d, t should not be freed */
|
|
|
|
sk_RSA_PRIME_INFO_pop_free(prime_infos, rsa_multip_info_free_ex);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-06-14 13:48:16 +00:00
|
|
|
void RSA_get0_key(const RSA *r,
|
|
|
|
const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
|
2016-04-02 13:12:58 +00:00
|
|
|
{
|
|
|
|
if (n != NULL)
|
|
|
|
*n = r->n;
|
|
|
|
if (e != NULL)
|
|
|
|
*e = r->e;
|
|
|
|
if (d != NULL)
|
|
|
|
*d = r->d;
|
|
|
|
}
|
|
|
|
|
2016-06-14 13:48:16 +00:00
|
|
|
void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
|
2016-04-02 13:12:58 +00:00
|
|
|
{
|
|
|
|
if (p != NULL)
|
|
|
|
*p = r->p;
|
|
|
|
if (q != NULL)
|
|
|
|
*q = r->q;
|
|
|
|
}
|
|
|
|
|
2017-08-01 18:19:43 +00:00
|
|
|
int RSA_get_multi_prime_extra_count(const RSA *r)
|
|
|
|
{
|
|
|
|
int pnum;
|
|
|
|
|
|
|
|
pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
|
|
|
|
if (pnum <= 0)
|
|
|
|
pnum = 0;
|
|
|
|
return pnum;
|
|
|
|
}
|
|
|
|
|
|
|
|
int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
|
|
|
|
{
|
|
|
|
int pnum, i;
|
|
|
|
RSA_PRIME_INFO *pinfo;
|
|
|
|
|
|
|
|
if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return other primes
|
|
|
|
* it's caller's responsibility to allocate oth_primes[pnum]
|
|
|
|
*/
|
|
|
|
for (i = 0; i < pnum; i++) {
|
|
|
|
pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
|
|
|
|
primes[i] = pinfo->r;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2016-04-02 13:12:58 +00:00
|
|
|
void RSA_get0_crt_params(const RSA *r,
|
2016-06-14 13:48:16 +00:00
|
|
|
const BIGNUM **dmp1, const BIGNUM **dmq1,
|
|
|
|
const BIGNUM **iqmp)
|
2016-04-02 13:12:58 +00:00
|
|
|
{
|
|
|
|
if (dmp1 != NULL)
|
|
|
|
*dmp1 = r->dmp1;
|
|
|
|
if (dmq1 != NULL)
|
|
|
|
*dmq1 = r->dmq1;
|
|
|
|
if (iqmp != NULL)
|
|
|
|
*iqmp = r->iqmp;
|
|
|
|
}
|
|
|
|
|
2017-08-01 18:19:43 +00:00
|
|
|
int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
|
|
|
|
const BIGNUM *coeffs[])
|
|
|
|
{
|
|
|
|
int pnum;
|
|
|
|
|
|
|
|
if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* return other primes */
|
|
|
|
if (exps != NULL || coeffs != NULL) {
|
|
|
|
RSA_PRIME_INFO *pinfo;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* it's the user's job to guarantee the buffer length */
|
|
|
|
for (i = 0; i < pnum; i++) {
|
|
|
|
pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
|
|
|
|
if (exps != NULL)
|
|
|
|
exps[i] = pinfo->d;
|
|
|
|
if (coeffs != NULL)
|
|
|
|
coeffs[i] = pinfo->t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2018-05-27 07:01:28 +00:00
|
|
|
const BIGNUM *RSA_get0_n(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->n;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_e(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->e;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_d(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->d;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_p(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->p;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_q(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->q;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_dmp1(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->dmp1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_dmq1(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->dmq1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BIGNUM *RSA_get0_iqmp(const RSA *r)
|
|
|
|
{
|
|
|
|
return r->iqmp;
|
|
|
|
}
|
|
|
|
|
2016-04-02 13:12:58 +00:00
|
|
|
void RSA_clear_flags(RSA *r, int flags)
|
|
|
|
{
|
|
|
|
r->flags &= ~flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
int RSA_test_flags(const RSA *r, int flags)
|
|
|
|
{
|
|
|
|
return r->flags & flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RSA_set_flags(RSA *r, int flags)
|
|
|
|
{
|
|
|
|
r->flags |= flags;
|
|
|
|
}
|
|
|
|
|
2017-08-01 18:19:43 +00:00
|
|
|
int RSA_get_version(RSA *r)
|
|
|
|
{
|
|
|
|
/* { two-prime(0), multi(1) } */
|
|
|
|
return r->version;
|
|
|
|
}
|
|
|
|
|
2016-06-26 19:55:03 +00:00
|
|
|
ENGINE *RSA_get0_engine(const RSA *r)
|
2016-04-02 13:12:58 +00:00
|
|
|
{
|
|
|
|
return r->engine;
|
|
|
|
}
|
2016-11-21 00:44:01 +00:00
|
|
|
|
|
|
|
int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
|
|
|
|
{
|
|
|
|
/* If key type not RSA or RSA-PSS return error */
|
|
|
|
if (ctx != NULL && ctx->pmeth != NULL
|
|
|
|
&& ctx->pmeth->pkey_id != EVP_PKEY_RSA
|
|
|
|
&& ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
|
|
|
|
return -1;
|
|
|
|
return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
|
|
|
|
}
|