openssl/crypto/ec/curve448/point_448.h

324 lines
10 KiB
C
Raw Normal View History

/*
* Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
* Copyright 2015-2016 Cryptography Research, Inc.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* Originally written by Mike Hamburg
*/
#ifndef __DECAF_POINT_448_H__
# define __DECAF_POINT_448_H__ 1
# include "curve448utils.h"
# include "field.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @cond internal */
# define DECAF_448_SCALAR_LIMBS ((446-1)/DECAF_WORD_BITS+1)
/** @endcond */
/** The number of bits in a scalar */
# define DECAF_448_SCALAR_BITS 446
/** Number of bytes in a serialized point. */
# define DECAF_448_SER_BYTES 56
/** Number of bytes in an elligated point. For now set the same as SER_BYTES
* but could be different for other curves.
*/
# define DECAF_448_HASH_BYTES 56
/** Number of bytes in a serialized scalar. */
# define DECAF_448_SCALAR_BYTES 56
/** Number of bits in the "which" field of an elligator inverse */
# define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3
/** The cofactor the curve would have, if we hadn't removed it */
# define DECAF_448_REMOVED_COFACTOR 4
/** X448 encoding ratio. */
# define DECAF_X448_ENCODE_RATIO 2
/** Number of bytes in an x448 public key */
# define DECAF_X448_PUBLIC_BYTES 56
/** Number of bytes in an x448 private key */
# define DECAF_X448_PRIVATE_BYTES 56
/** Twisted Edwards extended homogeneous coordinates */
typedef struct curve448_point_s {
/** @cond internal */
gf_448_t x, y, z, t;
/** @endcond */
} curve448_point_t[1];
/** Precomputed table based on a point. Can be trivial implementation. */
struct curve448_precomputed_s;
/** Precomputed table based on a point. Can be trivial implementation. */
typedef struct curve448_precomputed_s curve448_precomputed_s;
/** Scalar is stored packed, because we don't need the speed. */
typedef struct curve448_scalar_s {
/** @cond internal */
decaf_word_t limb[DECAF_448_SCALAR_LIMBS];
/** @endcond */
} curve448_scalar_t[1];
/** A scalar equal to 1. */
extern const curve448_scalar_t curve448_scalar_one;
/** A scalar equal to 0. */
extern const curve448_scalar_t curve448_scalar_zero;
/** The identity point on the curve. */
extern const curve448_point_t curve448_point_identity;
/** An arbitrarily chosen base point on the curve. */
extern const curve448_point_t curve448_point_base;
/** Precomputed table for the base point on the curve. */
extern const struct curve448_precomputed_s *curve448_precomputed_base;
/**
* @brief Read a scalar from wire format or from bytes.
*
* @param [in] ser Serialized form of a scalar.
* @param [out] out Deserialized form.
*
* @retval DECAF_SUCCESS The scalar was correctly encoded.
* @retval DECAF_FAILURE The scalar was greater than the modulus,
* and has been reduced modulo that modulus.
*/
__owur decaf_error_t curve448_scalar_decode(curve448_scalar_t out,
const unsigned char
ser[DECAF_448_SCALAR_BYTES]
);
/**
* @brief Read a scalar from wire format or from bytes. Reduces mod
* scalar prime.
*
* @param [in] ser Serialized form of a scalar.
* @param [in] ser_len Length of serialized form.
* @param [out] out Deserialized form.
*/
void curve448_scalar_decode_long(curve448_scalar_t out,
const unsigned char *ser, size_t ser_len);
/**
* @brief Serialize a scalar to wire format.
*
* @param [out] ser Serialized form of a scalar.
* @param [in] s Deserialized scalar.
*/
void curve448_scalar_encode(unsigned char ser[DECAF_448_SCALAR_BYTES],
const curve448_scalar_t s);
/**
* @brief Add two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a+b.
*/
void curve448_scalar_add(curve448_scalar_t out,
const curve448_scalar_t a, const curve448_scalar_t b);
/**
* @brief Subtract two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a-b.
*/
void curve448_scalar_sub(curve448_scalar_t out,
const curve448_scalar_t a, const curve448_scalar_t b);
/**
* @brief Multiply two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a*b.
*/
void curve448_scalar_mul(curve448_scalar_t out,
const curve448_scalar_t a, const curve448_scalar_t b);
/**
* @brief Halve a scalar. The scalars may use the same memory.
* @param [in] a A scalar.
* @param [out] out a/2.
*/
void curve448_scalar_halve(curve448_scalar_t out, const curve448_scalar_t a);
/**
* @brief Copy a scalar. The scalars may use the same memory, in which
* case this function does nothing.
* @param [in] a A scalar.
* @param [out] out Will become a copy of a.
*/
static ossl_inline void curve448_scalar_copy(curve448_scalar_t out,
const curve448_scalar_t a)
{
*out = *a;
}
/**
* @brief Copy a point. The input and output may alias,
* in which case this function does nothing.
*
* @param [out] a A copy of the point.
* @param [in] b Any point.
*/
static ossl_inline void curve448_point_copy(curve448_point_t a,
const curve448_point_t b)
{
*a = *b;
}
/**
* @brief Test whether two points are equal. If yes, return
* DECAF_TRUE, else return DECAF_FALSE.
*
* @param [in] a A point.
* @param [in] b Another point.
* @retval DECAF_TRUE The points are equal.
* @retval DECAF_FALSE The points are not equal.
*/
__owur decaf_bool_t curve448_point_eq(const curve448_point_t a,
const curve448_point_t b);
/**
* @brief Double a point. Equivalent to
* curve448_point_add(two_a,a,a), but potentially faster.
*
* @param [out] two_a The sum a+a.
* @param [in] a A point.
*/
void curve448_point_double(curve448_point_t two_a, const curve448_point_t a);
/**
* @brief RFC 7748 Diffie-Hellman scalarmul. This function uses a different
* (non-Decaf) encoding.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*
* @retval DECAF_SUCCESS The scalarmul succeeded.
* @retval DECAF_FAILURE The scalarmul didn't succeed, because the base
* point is in a small subgroup.
*/
__owur decaf_error_t decaf_x448(uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t base[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
);
/**
* @brief Multiply a point by DECAF_X448_ENCODE_RATIO,
* then encode it like RFC 7748.
*
* This function is mainly used internally, but is exported in case
* it will be useful.
*
* The ratio is necessary because the internal representation doesn't
* track the cofactor information, so on output we must clear the cofactor.
* This would multiply by the cofactor, but in fact internally libdecaf's
* points are always even, so it multiplies by half the cofactor instead.
*
* As it happens, this aligns with the base point definitions; that is,
* if you pass the Decaf/Ristretto base point to this function, the result
* will be DECAF_X448_ENCODE_RATIO times the X448
* base point.
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
out
[DECAF_X448_PUBLIC_BYTES],
const curve448_point_t p);
/** The base point for X448 Diffie-Hellman */
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES];
/**
* @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses
* a different (non-Decaf) encoding.
*
* Does exactly the same thing as decaf_x448_generate_key,
* but has a better name.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] scalar The scalar to multiply by.
*/
void decaf_x448_derive_public_key(uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
);
/**
* @brief Multiply a precomputed base point by a scalar:
* scaled = scalar*base.
* Some implementations do not include precomputed points; for
* those implementations, this function is the same as
* curve448_point_scalarmul
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*/
void curve448_precomputed_scalarmul(curve448_point_t scaled,
const curve448_precomputed_s * base,
const curve448_scalar_t scalar);
/**
* @brief Multiply two base points by two scalars:
* scaled = scalar1*curve448_point_base + scalar2*base2.
*
* Otherwise equivalent to curve448_point_double_scalarmul, but may be
* faster at the expense of being variable time.
*
* @param [out] combo The linear combination scalar1*base + scalar2*base2.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] base2 A second point to be scaled.
* @param [in] scalar2 A second scalar to multiply by.
*
* @warning: This function takes variable time, and may leak the scalars
* used. It is designed for signature verification.
*/
void curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
const curve448_scalar_t scalar1,
const curve448_point_t base2,
const curve448_scalar_t scalar2);
/**
* @brief Test that a point is valid, for debugging purposes.
*
* @param [in] to_test The point to test.
* @retval DECAF_TRUE The point is valid.
* @retval DECAF_FALSE The point is invalid.
*/
__owur decaf_bool_t curve448_point_valid(const curve448_point_t to_test);
/**
* @brief Overwrite scalar with zeros.
*/
void curve448_scalar_destroy(curve448_scalar_t scalar);
/**
* @brief Overwrite point with zeros.
*/
void curve448_point_destroy(curve448_point_t point);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* __DECAF_POINT_448_H__ */