openssl/ssl/statem/statem_srvr.c

3568 lines
116 KiB
C
Raw Normal View History

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include "../ssl_locl.h"
#include "statem_locl.h"
#include "internal/constant_time_locl.h"
#include <openssl/buffer.h>
#include <openssl/rand.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/x509.h>
#include <openssl/dh.h>
#include <openssl/bn.h>
#include <openssl/md5.h>
static int tls_construct_encrypted_extensions(SSL *s, WPACKET *pkt);
static STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s,
PACKET *cipher_suites,
STACK_OF(SSL_CIPHER)
**skp, int sslv2format,
int *al);
/*
* ossl_statem_server13_read_transition() encapsulates the logic for the allowed
* handshake state transitions when a TLSv1.3 server is reading messages from
* the client. The message type that the client has sent is provided in |mt|.
* The current state is in |s->statem.hand_state|.
*
* Return values are 1 for success (transition allowed) and 0 on error
* (transition not allowed)
*/
static int ossl_statem_server13_read_transition(SSL *s, int mt)
{
OSSL_STATEM *st = &s->statem;
/*
* TODO(TLS1.3): This is still based on the TLSv1.2 state machine. Over time
* we will update this to look more like real TLSv1.3
*/
/*
* Note: There is no case for TLS_ST_BEFORE because at that stage we have
* not negotiated TLSv1.3 yet, so that case is handled by
* ossl_statem_server_read_transition()
*/
switch (st->hand_state) {
default:
break;
case TLS_ST_SW_FINISHED:
if (s->s3->tmp.cert_request) {
if (mt == SSL3_MT_CERTIFICATE) {
st->hand_state = TLS_ST_SR_CERT;
return 1;
}
} else {
if (mt == SSL3_MT_FINISHED) {
st->hand_state = TLS_ST_SR_FINISHED;
return 1;
}
}
break;
case TLS_ST_SR_CERT:
if (s->session->peer == NULL) {
if (mt == SSL3_MT_FINISHED) {
st->hand_state = TLS_ST_SR_FINISHED;
return 1;
}
} else {
if (mt == SSL3_MT_CERTIFICATE_VERIFY) {
st->hand_state = TLS_ST_SR_CERT_VRFY;
return 1;
}
}
break;
case TLS_ST_SR_CERT_VRFY:
if (mt == SSL3_MT_FINISHED) {
st->hand_state = TLS_ST_SR_FINISHED;
return 1;
}
break;
}
/* No valid transition found */
ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_UNEXPECTED_MESSAGE);
SSLerr(SSL_F_OSSL_STATEM_SERVER13_READ_TRANSITION,
SSL_R_UNEXPECTED_MESSAGE);
return 0;
}
/*
* ossl_statem_server_read_transition() encapsulates the logic for the allowed
* handshake state transitions when the server is reading messages from the
* client. The message type that the client has sent is provided in |mt|. The
* current state is in |s->statem.hand_state|.
*
* Return values are 1 for success (transition allowed) and 0 on error
* (transition not allowed)
*/
int ossl_statem_server_read_transition(SSL *s, int mt)
{
OSSL_STATEM *st = &s->statem;
if (SSL_IS_TLS13(s)) {
if (!ossl_statem_server13_read_transition(s, mt))
goto err;
return 1;
}
switch (st->hand_state) {
default:
break;
case TLS_ST_BEFORE:
case DTLS_ST_SW_HELLO_VERIFY_REQUEST:
if (mt == SSL3_MT_CLIENT_HELLO) {
st->hand_state = TLS_ST_SR_CLNT_HELLO;
return 1;
}
break;
case TLS_ST_SW_SRVR_DONE:
/*
* If we get a CKE message after a ServerDone then either
* 1) We didn't request a Certificate
* OR
* 2) If we did request one then
* a) We allow no Certificate to be returned
* AND
* b) We are running SSL3 (in TLS1.0+ the client must return a 0
* list if we requested a certificate)
*/
if (mt == SSL3_MT_CLIENT_KEY_EXCHANGE) {
if (s->s3->tmp.cert_request) {
if (s->version == SSL3_VERSION) {
if ((s->verify_mode & SSL_VERIFY_PEER)
&& (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) {
/*
* This isn't an unexpected message as such - we're just
* not going to accept it because we require a client
* cert.
*/
ssl3_send_alert(s, SSL3_AL_FATAL,
SSL3_AD_HANDSHAKE_FAILURE);
SSLerr(SSL_F_OSSL_STATEM_SERVER_READ_TRANSITION,
SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
return 0;
}
st->hand_state = TLS_ST_SR_KEY_EXCH;
return 1;
}
} else {
st->hand_state = TLS_ST_SR_KEY_EXCH;
return 1;
}
} else if (s->s3->tmp.cert_request) {
if (mt == SSL3_MT_CERTIFICATE) {
st->hand_state = TLS_ST_SR_CERT;
return 1;
}
}
break;
case TLS_ST_SR_CERT:
if (mt == SSL3_MT_CLIENT_KEY_EXCHANGE) {
st->hand_state = TLS_ST_SR_KEY_EXCH;
return 1;
}
break;
case TLS_ST_SR_KEY_EXCH:
/*
* We should only process a CertificateVerify message if we have
* received a Certificate from the client. If so then |s->session->peer|
* will be non NULL. In some instances a CertificateVerify message is
* not required even if the peer has sent a Certificate (e.g. such as in
* the case of static DH). In that case |st->no_cert_verify| should be
* set.
*/
if (s->session->peer == NULL || st->no_cert_verify) {
if (mt == SSL3_MT_CHANGE_CIPHER_SPEC) {
/*
* For the ECDH ciphersuites when the client sends its ECDH
* pub key in a certificate, the CertificateVerify message is
* not sent. Also for GOST ciphersuites when the client uses
* its key from the certificate for key exchange.
*/
st->hand_state = TLS_ST_SR_CHANGE;
return 1;
}
} else {
if (mt == SSL3_MT_CERTIFICATE_VERIFY) {
st->hand_state = TLS_ST_SR_CERT_VRFY;
return 1;
}
}
break;
case TLS_ST_SR_CERT_VRFY:
if (mt == SSL3_MT_CHANGE_CIPHER_SPEC) {
st->hand_state = TLS_ST_SR_CHANGE;
return 1;
}
break;
case TLS_ST_SR_CHANGE:
#ifndef OPENSSL_NO_NEXTPROTONEG
if (s->s3->npn_seen) {
if (mt == SSL3_MT_NEXT_PROTO) {
st->hand_state = TLS_ST_SR_NEXT_PROTO;
return 1;
}
} else {
#endif
if (mt == SSL3_MT_FINISHED) {
st->hand_state = TLS_ST_SR_FINISHED;
return 1;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
}
#endif
break;
#ifndef OPENSSL_NO_NEXTPROTONEG
case TLS_ST_SR_NEXT_PROTO:
if (mt == SSL3_MT_FINISHED) {
st->hand_state = TLS_ST_SR_FINISHED;
return 1;
}
break;
#endif
case TLS_ST_SW_FINISHED:
if (mt == SSL3_MT_CHANGE_CIPHER_SPEC) {
st->hand_state = TLS_ST_SR_CHANGE;
return 1;
}
break;
}
err:
/* No valid transition found */
ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_UNEXPECTED_MESSAGE);
SSLerr(SSL_F_OSSL_STATEM_SERVER_READ_TRANSITION, SSL_R_UNEXPECTED_MESSAGE);
return 0;
}
/*
* Should we send a ServerKeyExchange message?
*
* Valid return values are:
* 1: Yes
* 0: No
*/
static int send_server_key_exchange(SSL *s)
{
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
/*
* only send a ServerKeyExchange if DH or fortezza but we have a
* sign only certificate PSK: may send PSK identity hints For
* ECC ciphersuites, we send a serverKeyExchange message only if
* the cipher suite is either ECDH-anon or ECDHE. In other cases,
* the server certificate contains the server's public key for
* key exchange.
*/
if (alg_k & (SSL_kDHE | SSL_kECDHE)
/*
* PSK: send ServerKeyExchange if PSK identity hint if
* provided
*/
#ifndef OPENSSL_NO_PSK
/* Only send SKE if we have identity hint for plain PSK */
|| ((alg_k & (SSL_kPSK | SSL_kRSAPSK))
&& s->cert->psk_identity_hint)
/* For other PSK always send SKE */
|| (alg_k & (SSL_PSK & (SSL_kDHEPSK | SSL_kECDHEPSK)))
#endif
#ifndef OPENSSL_NO_SRP
/* SRP: send ServerKeyExchange */
|| (alg_k & SSL_kSRP)
#endif
) {
return 1;
}
return 0;
}
/*
* Should we send a CertificateRequest message?
*
* Valid return values are:
* 1: Yes
* 0: No
*/
static int send_certificate_request(SSL *s)
{
if (
/* don't request cert unless asked for it: */
s->verify_mode & SSL_VERIFY_PEER
/*
* if SSL_VERIFY_CLIENT_ONCE is set, don't request cert
* during re-negotiation:
*/
&& (s->s3->tmp.finish_md_len == 0 ||
!(s->verify_mode & SSL_VERIFY_CLIENT_ONCE))
/*
* never request cert in anonymous ciphersuites (see
* section "Certificate request" in SSL 3 drafts and in
* RFC 2246):
*/
&& (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
/*
* ... except when the application insists on
* verification (against the specs, but statem_clnt.c accepts
* this for SSL 3)
*/
|| (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT))
/* don't request certificate for SRP auth */
&& !(s->s3->tmp.new_cipher->algorithm_auth & SSL_aSRP)
/*
* With normal PSK Certificates and Certificate Requests
* are omitted
*/
&& !(s->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK)) {
return 1;
}
return 0;
}
/*
* ossl_statem_server13_write_transition() works out what handshake state to
* move to next when a TLSv1.3 server is writing messages to be sent to the
* client.
*/
static WRITE_TRAN ossl_statem_server13_write_transition(SSL *s)
{
OSSL_STATEM *st = &s->statem;
/*
* TODO(TLS1.3): This is still based on the TLSv1.2 state machine. Over time
* we will update this to look more like real TLSv1.3
*/
/*
* No case for TLS_ST_BEFORE, because at that stage we have not negotiated
* TLSv1.3 yet, so that is handled by ossl_statem_server_write_transition()
*/
switch (st->hand_state) {
default:
/* Shouldn't happen */
return WRITE_TRAN_ERROR;
case TLS_ST_SR_CLNT_HELLO:
st->hand_state = TLS_ST_SW_SRVR_HELLO;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_SRVR_HELLO:
st->hand_state = TLS_ST_SW_ENCRYPTED_EXTENSIONS;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_ENCRYPTED_EXTENSIONS:
if (s->hit)
st->hand_state = TLS_ST_SW_FINISHED;
else if (send_certificate_request(s))
st->hand_state = TLS_ST_SW_CERT_REQ;
else
st->hand_state = TLS_ST_SW_CERT;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_CERT_REQ:
st->hand_state = TLS_ST_SW_CERT;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_CERT:
st->hand_state = TLS_ST_SW_CERT_VRFY;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_CERT_VRFY:
st->hand_state = TLS_ST_SW_FINISHED;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_FINISHED:
return WRITE_TRAN_FINISHED;
case TLS_ST_SR_FINISHED:
st->hand_state = TLS_ST_OK;
ossl_statem_set_in_init(s, 0);
return WRITE_TRAN_CONTINUE;
}
}
/*
* ossl_statem_server_write_transition() works out what handshake state to move
* to next when the server is writing messages to be sent to the client.
*/
WRITE_TRAN ossl_statem_server_write_transition(SSL *s)
{
OSSL_STATEM *st = &s->statem;
/*
* Note that before the ClientHello we don't know what version we are going
* to negotiate yet, so we don't take this branch until later
*/
if (SSL_IS_TLS13(s))
return ossl_statem_server13_write_transition(s);
switch (st->hand_state) {
default:
/* Shouldn't happen */
return WRITE_TRAN_ERROR;
case TLS_ST_BEFORE:
/* Just go straight to trying to read from the client */
return WRITE_TRAN_FINISHED;
case TLS_ST_OK:
/* We must be trying to renegotiate */
st->hand_state = TLS_ST_SW_HELLO_REQ;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_HELLO_REQ:
st->hand_state = TLS_ST_OK;
ossl_statem_set_in_init(s, 0);
return WRITE_TRAN_CONTINUE;
case TLS_ST_SR_CLNT_HELLO:
if (SSL_IS_DTLS(s) && !s->d1->cookie_verified
&& (SSL_get_options(s) & SSL_OP_COOKIE_EXCHANGE))
st->hand_state = DTLS_ST_SW_HELLO_VERIFY_REQUEST;
else
st->hand_state = TLS_ST_SW_SRVR_HELLO;
return WRITE_TRAN_CONTINUE;
case DTLS_ST_SW_HELLO_VERIFY_REQUEST:
return WRITE_TRAN_FINISHED;
case TLS_ST_SW_SRVR_HELLO:
if (s->hit) {
if (s->ext.ticket_expected)
st->hand_state = TLS_ST_SW_SESSION_TICKET;
else
st->hand_state = TLS_ST_SW_CHANGE;
} else {
/* Check if it is anon DH or anon ECDH, */
/* normal PSK or SRP */
if (!(s->s3->tmp.new_cipher->algorithm_auth &
(SSL_aNULL | SSL_aSRP | SSL_aPSK))) {
st->hand_state = TLS_ST_SW_CERT;
} else if (send_server_key_exchange(s)) {
st->hand_state = TLS_ST_SW_KEY_EXCH;
} else if (send_certificate_request(s)) {
st->hand_state = TLS_ST_SW_CERT_REQ;
} else {
st->hand_state = TLS_ST_SW_SRVR_DONE;
}
}
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_CERT:
if (s->ext.status_expected) {
st->hand_state = TLS_ST_SW_CERT_STATUS;
return WRITE_TRAN_CONTINUE;
}
/* Fall through */
case TLS_ST_SW_CERT_STATUS:
if (send_server_key_exchange(s)) {
st->hand_state = TLS_ST_SW_KEY_EXCH;
return WRITE_TRAN_CONTINUE;
}
/* Fall through */
case TLS_ST_SW_KEY_EXCH:
if (send_certificate_request(s)) {
st->hand_state = TLS_ST_SW_CERT_REQ;
return WRITE_TRAN_CONTINUE;
}
/* Fall through */
case TLS_ST_SW_CERT_REQ:
st->hand_state = TLS_ST_SW_SRVR_DONE;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_SRVR_DONE:
return WRITE_TRAN_FINISHED;
case TLS_ST_SR_FINISHED:
if (s->hit) {
st->hand_state = TLS_ST_OK;
ossl_statem_set_in_init(s, 0);
return WRITE_TRAN_CONTINUE;
} else if (s->ext.ticket_expected) {
st->hand_state = TLS_ST_SW_SESSION_TICKET;
} else {
st->hand_state = TLS_ST_SW_CHANGE;
}
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_SESSION_TICKET:
st->hand_state = TLS_ST_SW_CHANGE;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_CHANGE:
st->hand_state = TLS_ST_SW_FINISHED;
return WRITE_TRAN_CONTINUE;
case TLS_ST_SW_FINISHED:
if (s->hit) {
return WRITE_TRAN_FINISHED;
}
st->hand_state = TLS_ST_OK;
ossl_statem_set_in_init(s, 0);
return WRITE_TRAN_CONTINUE;
}
}
/*
* Perform any pre work that needs to be done prior to sending a message from
* the server to the client.
*/
WORK_STATE ossl_statem_server_pre_work(SSL *s, WORK_STATE wst)
{
OSSL_STATEM *st = &s->statem;
switch (st->hand_state) {
default:
/* No pre work to be done */
break;
case TLS_ST_SW_HELLO_REQ:
s->shutdown = 0;
if (SSL_IS_DTLS(s))
Fix DTLS buffered message DoS attack DTLS can handle out of order record delivery. Additionally since handshake messages can be bigger than will fit into a single packet, the messages can be fragmented across multiple records (as with normal TLS). That means that the messages can arrive mixed up, and we have to reassemble them. We keep a queue of buffered messages that are "from the future", i.e. messages we're not ready to deal with yet but have arrived early. The messages held there may not be full yet - they could be one or more fragments that are still in the process of being reassembled. The code assumes that we will eventually complete the reassembly and when that occurs the complete message is removed from the queue at the point that we need to use it. However, DTLS is also tolerant of packet loss. To get around that DTLS messages can be retransmitted. If we receive a full (non-fragmented) message from the peer after previously having received a fragment of that message, then we ignore the message in the queue and just use the non-fragmented version. At that point the queued message will never get removed. Additionally the peer could send "future" messages that we never get to in order to complete the handshake. Each message has a sequence number (starting from 0). We will accept a message fragment for the current message sequence number, or for any sequence up to 10 into the future. However if the Finished message has a sequence number of 2, anything greater than that in the queue is just left there. So, in those two ways we can end up with "orphaned" data in the queue that will never get removed - except when the connection is closed. At that point all the queues are flushed. An attacker could seek to exploit this by filling up the queues with lots of large messages that are never going to be used in order to attempt a DoS by memory exhaustion. I will assume that we are only concerned with servers here. It does not seem reasonable to be concerned about a memory exhaustion attack on a client. They are unlikely to process enough connections for this to be an issue. A "long" handshake with many messages might be 5 messages long (in the incoming direction), e.g. ClientHello, Certificate, ClientKeyExchange, CertificateVerify, Finished. So this would be message sequence numbers 0 to 4. Additionally we can buffer up to 10 messages in the future. Therefore the maximum number of messages that an attacker could send that could get orphaned would typically be 15. The maximum size that a DTLS message is allowed to be is defined by max_cert_list, which by default is 100k. Therefore the maximum amount of "orphaned" memory per connection is 1500k. Message sequence numbers get reset after the Finished message, so renegotiation will not extend the maximum number of messages that can be orphaned per connection. As noted above, the queues do get cleared when the connection is closed. Therefore in order to mount an effective attack, an attacker would have to open many simultaneous connections. Issue reported by Quan Luo. CVE-2016-2179 Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-06-30 12:17:08 +00:00
dtls1_clear_sent_buffer(s);
break;
case DTLS_ST_SW_HELLO_VERIFY_REQUEST:
s->shutdown = 0;
if (SSL_IS_DTLS(s)) {
Fix DTLS buffered message DoS attack DTLS can handle out of order record delivery. Additionally since handshake messages can be bigger than will fit into a single packet, the messages can be fragmented across multiple records (as with normal TLS). That means that the messages can arrive mixed up, and we have to reassemble them. We keep a queue of buffered messages that are "from the future", i.e. messages we're not ready to deal with yet but have arrived early. The messages held there may not be full yet - they could be one or more fragments that are still in the process of being reassembled. The code assumes that we will eventually complete the reassembly and when that occurs the complete message is removed from the queue at the point that we need to use it. However, DTLS is also tolerant of packet loss. To get around that DTLS messages can be retransmitted. If we receive a full (non-fragmented) message from the peer after previously having received a fragment of that message, then we ignore the message in the queue and just use the non-fragmented version. At that point the queued message will never get removed. Additionally the peer could send "future" messages that we never get to in order to complete the handshake. Each message has a sequence number (starting from 0). We will accept a message fragment for the current message sequence number, or for any sequence up to 10 into the future. However if the Finished message has a sequence number of 2, anything greater than that in the queue is just left there. So, in those two ways we can end up with "orphaned" data in the queue that will never get removed - except when the connection is closed. At that point all the queues are flushed. An attacker could seek to exploit this by filling up the queues with lots of large messages that are never going to be used in order to attempt a DoS by memory exhaustion. I will assume that we are only concerned with servers here. It does not seem reasonable to be concerned about a memory exhaustion attack on a client. They are unlikely to process enough connections for this to be an issue. A "long" handshake with many messages might be 5 messages long (in the incoming direction), e.g. ClientHello, Certificate, ClientKeyExchange, CertificateVerify, Finished. So this would be message sequence numbers 0 to 4. Additionally we can buffer up to 10 messages in the future. Therefore the maximum number of messages that an attacker could send that could get orphaned would typically be 15. The maximum size that a DTLS message is allowed to be is defined by max_cert_list, which by default is 100k. Therefore the maximum amount of "orphaned" memory per connection is 1500k. Message sequence numbers get reset after the Finished message, so renegotiation will not extend the maximum number of messages that can be orphaned per connection. As noted above, the queues do get cleared when the connection is closed. Therefore in order to mount an effective attack, an attacker would have to open many simultaneous connections. Issue reported by Quan Luo. CVE-2016-2179 Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-06-30 12:17:08 +00:00
dtls1_clear_sent_buffer(s);
/* We don't buffer this message so don't use the timer */
st->use_timer = 0;
}
break;
case TLS_ST_SW_SRVR_HELLO:
if (SSL_IS_DTLS(s)) {
/*
* Messages we write from now on should be bufferred and
* retransmitted if necessary, so we need to use the timer now
*/
st->use_timer = 1;
}
break;
case TLS_ST_SW_SRVR_DONE:
#ifndef OPENSSL_NO_SCTP
if (SSL_IS_DTLS(s) && BIO_dgram_is_sctp(SSL_get_wbio(s)))
return dtls_wait_for_dry(s);
#endif
return WORK_FINISHED_CONTINUE;
case TLS_ST_SW_SESSION_TICKET:
if (SSL_IS_DTLS(s)) {
/*
* We're into the last flight. We don't retransmit the last flight
* unless we need to, so we don't use the timer
*/
st->use_timer = 0;
}
break;
case TLS_ST_SW_CHANGE:
s->session->cipher = s->s3->tmp.new_cipher;
if (!s->method->ssl3_enc->setup_key_block(s)) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
if (SSL_IS_DTLS(s)) {
/*
* We're into the last flight. We don't retransmit the last flight
* unless we need to, so we don't use the timer. This might have
* already been set to 0 if we sent a NewSessionTicket message,
* but we'll set it again here in case we didn't.
*/
st->use_timer = 0;
}
return WORK_FINISHED_CONTINUE;
case TLS_ST_OK:
return tls_finish_handshake(s, wst);
}
return WORK_FINISHED_CONTINUE;
}
/*
* Perform any work that needs to be done after sending a message from the
* server to the client.
*/
WORK_STATE ossl_statem_server_post_work(SSL *s, WORK_STATE wst)
{
OSSL_STATEM *st = &s->statem;
s->init_num = 0;
switch (st->hand_state) {
default:
/* No post work to be done */
break;
case TLS_ST_SW_HELLO_REQ:
if (statem_flush(s) != 1)
return WORK_MORE_A;
if (!ssl3_init_finished_mac(s)) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
break;
case DTLS_ST_SW_HELLO_VERIFY_REQUEST:
if (statem_flush(s) != 1)
return WORK_MORE_A;
/* HelloVerifyRequest resets Finished MAC */
if (s->version != DTLS1_BAD_VER && !ssl3_init_finished_mac(s)) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
/*
* The next message should be another ClientHello which we need to
* treat like it was the first packet
*/
s->first_packet = 1;
break;
case TLS_ST_SW_SRVR_HELLO:
#ifndef OPENSSL_NO_SCTP
if (SSL_IS_DTLS(s) && s->hit) {
unsigned char sctpauthkey[64];
char labelbuffer[sizeof(DTLS1_SCTP_AUTH_LABEL)];
/*
* Add new shared key for SCTP-Auth, will be ignored if no
* SCTP used.
*/
memcpy(labelbuffer, DTLS1_SCTP_AUTH_LABEL,
sizeof(DTLS1_SCTP_AUTH_LABEL));
if (SSL_export_keying_material(s, sctpauthkey,
sizeof(sctpauthkey), labelbuffer,
sizeof(labelbuffer), NULL, 0,
0) <= 0) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY,
sizeof(sctpauthkey), sctpauthkey);
}
#endif
/*
* TODO(TLS1.3): This actually causes a problem. We don't yet know
* whether the next record we are going to receive is an unencrypted
* alert, or an encrypted handshake message. We're going to need
* something clever in the record layer for this.
*/
if (SSL_IS_TLS13(s)) {
if (!s->method->ssl3_enc->setup_key_block(s)
|| !s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_HANDSHAKE | SSL3_CHANGE_CIPHER_SERVER_WRITE)
|| !s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_HANDSHAKE |SSL3_CHANGE_CIPHER_SERVER_READ))
return WORK_ERROR;
}
break;
case TLS_ST_SW_CHANGE:
#ifndef OPENSSL_NO_SCTP
if (SSL_IS_DTLS(s) && !s->hit) {
/*
* Change to new shared key of SCTP-Auth, will be ignored if
* no SCTP used.
*/
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY,
0, NULL);
}
#endif
if (!s->method->ssl3_enc->change_cipher_state(s,
SSL3_CHANGE_CIPHER_SERVER_WRITE))
{
ossl_statem_set_error(s);
return WORK_ERROR;
}
if (SSL_IS_DTLS(s))
dtls1_reset_seq_numbers(s, SSL3_CC_WRITE);
break;
case TLS_ST_SW_SRVR_DONE:
if (statem_flush(s) != 1)
return WORK_MORE_A;
break;
case TLS_ST_SW_FINISHED:
if (statem_flush(s) != 1)
return WORK_MORE_A;
#ifndef OPENSSL_NO_SCTP
if (SSL_IS_DTLS(s) && s->hit) {
/*
* Change to new shared key of SCTP-Auth, will be ignored if
* no SCTP used.
*/
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY,
0, NULL);
}
#endif
if (SSL_IS_TLS13(s)) {
if (!s->method->ssl3_enc->generate_master_secret(s,
s->session->master_key, s->handshake_secret, 0,
&s->session->master_key_length)
|| !s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_SERVER_WRITE))
return WORK_ERROR;
}
break;
}
return WORK_FINISHED_CONTINUE;
}
/*
* Get the message construction function and message type for sending from the
* server
*
* Valid return values are:
* 1: Success
* 0: Error
*/
int ossl_statem_server_construct_message(SSL *s, WPACKET *pkt,
confunc_f *confunc, int *mt)
{
OSSL_STATEM *st = &s->statem;
switch (st->hand_state) {
default:
/* Shouldn't happen */
return 0;
case TLS_ST_SW_CHANGE:
if (SSL_IS_DTLS(s))
*confunc = dtls_construct_change_cipher_spec;
else
*confunc = tls_construct_change_cipher_spec;
*mt = SSL3_MT_CHANGE_CIPHER_SPEC;
break;
case DTLS_ST_SW_HELLO_VERIFY_REQUEST:
*confunc = dtls_construct_hello_verify_request;
*mt = DTLS1_MT_HELLO_VERIFY_REQUEST;
break;
case TLS_ST_SW_HELLO_REQ:
/* No construction function needed */
*confunc = NULL;
*mt = SSL3_MT_HELLO_REQUEST;
break;
case TLS_ST_SW_SRVR_HELLO:
*confunc = tls_construct_server_hello;
*mt = SSL3_MT_SERVER_HELLO;
break;
case TLS_ST_SW_CERT:
*confunc = tls_construct_server_certificate;
*mt = SSL3_MT_CERTIFICATE;
break;
case TLS_ST_SW_CERT_VRFY:
*confunc = tls_construct_cert_verify;
*mt = SSL3_MT_CERTIFICATE_VERIFY;
break;
case TLS_ST_SW_KEY_EXCH:
*confunc = tls_construct_server_key_exchange;
*mt = SSL3_MT_SERVER_KEY_EXCHANGE;
break;
case TLS_ST_SW_CERT_REQ:
*confunc = tls_construct_certificate_request;
*mt = SSL3_MT_CERTIFICATE_REQUEST;
break;
case TLS_ST_SW_SRVR_DONE:
*confunc = tls_construct_server_done;
*mt = SSL3_MT_SERVER_DONE;
break;
case TLS_ST_SW_SESSION_TICKET:
*confunc = tls_construct_new_session_ticket;
*mt = SSL3_MT_NEWSESSION_TICKET;
break;
case TLS_ST_SW_CERT_STATUS:
*confunc = tls_construct_cert_status;
*mt = SSL3_MT_CERTIFICATE_STATUS;
break;
case TLS_ST_SW_FINISHED:
*confunc = tls_construct_finished;
*mt = SSL3_MT_FINISHED;
break;
case TLS_ST_SW_ENCRYPTED_EXTENSIONS:
*confunc = tls_construct_encrypted_extensions;
*mt = SSL3_MT_ENCRYPTED_EXTENSIONS;
break;
}
return 1;
}
/*
* Maximum size (excluding the Handshake header) of a ClientHello message,
* calculated as follows:
*
* 2 + # client_version
* 32 + # only valid length for random
* 1 + # length of session_id
* 32 + # maximum size for session_id
* 2 + # length of cipher suites
* 2^16-2 + # maximum length of cipher suites array
* 1 + # length of compression_methods
* 2^8-1 + # maximum length of compression methods
* 2 + # length of extensions
* 2^16-1 # maximum length of extensions
*/
#define CLIENT_HELLO_MAX_LENGTH 131396
#define CLIENT_KEY_EXCH_MAX_LENGTH 2048
#define NEXT_PROTO_MAX_LENGTH 514
/*
* Returns the maximum allowed length for the current message that we are
* reading. Excludes the message header.
*/
size_t ossl_statem_server_max_message_size(SSL *s)
{
OSSL_STATEM *st = &s->statem;
switch (st->hand_state) {
default:
/* Shouldn't happen */
return 0;
case TLS_ST_SR_CLNT_HELLO:
return CLIENT_HELLO_MAX_LENGTH;
case TLS_ST_SR_CERT:
return s->max_cert_list;
case TLS_ST_SR_KEY_EXCH:
return CLIENT_KEY_EXCH_MAX_LENGTH;
case TLS_ST_SR_CERT_VRFY:
return SSL3_RT_MAX_PLAIN_LENGTH;
#ifndef OPENSSL_NO_NEXTPROTONEG
case TLS_ST_SR_NEXT_PROTO:
return NEXT_PROTO_MAX_LENGTH;
#endif
case TLS_ST_SR_CHANGE:
return CCS_MAX_LENGTH;
case TLS_ST_SR_FINISHED:
return FINISHED_MAX_LENGTH;
}
}
/*
* Process a message that the server has received from the client.
*/
MSG_PROCESS_RETURN ossl_statem_server_process_message(SSL *s, PACKET *pkt)
{
OSSL_STATEM *st = &s->statem;
switch (st->hand_state) {
default:
/* Shouldn't happen */
return MSG_PROCESS_ERROR;
case TLS_ST_SR_CLNT_HELLO:
return tls_process_client_hello(s, pkt);
case TLS_ST_SR_CERT:
return tls_process_client_certificate(s, pkt);
case TLS_ST_SR_KEY_EXCH:
return tls_process_client_key_exchange(s, pkt);
case TLS_ST_SR_CERT_VRFY:
return tls_process_cert_verify(s, pkt);
#ifndef OPENSSL_NO_NEXTPROTONEG
case TLS_ST_SR_NEXT_PROTO:
return tls_process_next_proto(s, pkt);
#endif
case TLS_ST_SR_CHANGE:
return tls_process_change_cipher_spec(s, pkt);
case TLS_ST_SR_FINISHED:
return tls_process_finished(s, pkt);
}
}
/*
* Perform any further processing required following the receipt of a message
* from the client
*/
WORK_STATE ossl_statem_server_post_process_message(SSL *s, WORK_STATE wst)
{
OSSL_STATEM *st = &s->statem;
switch (st->hand_state) {
default:
/* Shouldn't happen */
return WORK_ERROR;
case TLS_ST_SR_CLNT_HELLO:
return tls_post_process_client_hello(s, wst);
case TLS_ST_SR_KEY_EXCH:
return tls_post_process_client_key_exchange(s, wst);
case TLS_ST_SR_CERT_VRFY:
#ifndef OPENSSL_NO_SCTP
if ( /* Is this SCTP? */
BIO_dgram_is_sctp(SSL_get_wbio(s))
/* Are we renegotiating? */
&& s->renegotiate && BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->s3->in_read_app_data = 2;
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
ossl_statem_set_sctp_read_sock(s, 1);
return WORK_MORE_A;
} else {
ossl_statem_set_sctp_read_sock(s, 0);
}
#endif
return WORK_FINISHED_CONTINUE;
}
return WORK_FINISHED_CONTINUE;
}
2011-03-12 17:01:19 +00:00
#ifndef OPENSSL_NO_SRP
static int ssl_check_srp_ext_ClientHello(SSL *s, int *al)
{
int ret = SSL_ERROR_NONE;
*al = SSL_AD_UNRECOGNIZED_NAME;
if ((s->s3->tmp.new_cipher->algorithm_mkey & SSL_kSRP) &&
(s->srp_ctx.TLS_ext_srp_username_callback != NULL)) {
if (s->srp_ctx.login == NULL) {
/*
* RFC 5054 says SHOULD reject, we do so if There is no srp
* login name
*/
ret = SSL3_AL_FATAL;
*al = SSL_AD_UNKNOWN_PSK_IDENTITY;
} else {
ret = SSL_srp_server_param_with_username(s, al);
}
}
return ret;
}
2011-03-12 17:01:19 +00:00
#endif
int dtls_raw_hello_verify_request(WPACKET *pkt, unsigned char *cookie,
size_t cookie_len)
{
/* Always use DTLS 1.0 version: see RFC 6347 */
if (!WPACKET_put_bytes_u16(pkt, DTLS1_VERSION)
|| !WPACKET_sub_memcpy_u8(pkt, cookie, cookie_len))
return 0;
return 1;
}
int dtls_construct_hello_verify_request(SSL *s, WPACKET *pkt)
{
unsigned int cookie_leni;
if (s->ctx->app_gen_cookie_cb == NULL ||
s->ctx->app_gen_cookie_cb(s, s->d1->cookie,
&cookie_leni) == 0 ||
cookie_leni > 255) {
SSLerr(SSL_F_DTLS_CONSTRUCT_HELLO_VERIFY_REQUEST,
SSL_R_COOKIE_GEN_CALLBACK_FAILURE);
return 0;
}
s->d1->cookie_len = cookie_leni;
if (!dtls_raw_hello_verify_request(pkt, s->d1->cookie,
s->d1->cookie_len)) {
SSLerr(SSL_F_DTLS_CONSTRUCT_HELLO_VERIFY_REQUEST, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
#ifndef OPENSSL_NO_EC
/*-
* ssl_check_for_safari attempts to fingerprint Safari using OS X
* SecureTransport using the TLS extension block in |hello|.
* Safari, since 10.6, sends exactly these extensions, in this order:
* SNI,
* elliptic_curves
* ec_point_formats
*
* We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
* but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
* Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
* 10.8..10.8.3 (which don't work).
*/
static void ssl_check_for_safari(SSL *s, const CLIENTHELLO_MSG *hello)
{
static const unsigned char kSafariExtensionsBlock[] = {
0x00, 0x0a, /* elliptic_curves extension */
0x00, 0x08, /* 8 bytes */
0x00, 0x06, /* 6 bytes of curve ids */
0x00, 0x17, /* P-256 */
0x00, 0x18, /* P-384 */
0x00, 0x19, /* P-521 */
0x00, 0x0b, /* ec_point_formats */
0x00, 0x02, /* 2 bytes */
0x01, /* 1 point format */
0x00, /* uncompressed */
/* The following is only present in TLS 1.2 */
0x00, 0x0d, /* signature_algorithms */
0x00, 0x0c, /* 12 bytes */
0x00, 0x0a, /* 10 bytes */
0x05, 0x01, /* SHA-384/RSA */
0x04, 0x01, /* SHA-256/RSA */
0x02, 0x01, /* SHA-1/RSA */
0x04, 0x03, /* SHA-256/ECDSA */
0x02, 0x03, /* SHA-1/ECDSA */
};
/* Length of the common prefix (first two extensions). */
static const size_t kSafariCommonExtensionsLength = 18;
unsigned int type;
PACKET sni, tmppkt;
size_t ext_len;
tmppkt = hello->extensions;
if (!PACKET_forward(&tmppkt, 2)
|| !PACKET_get_net_2(&tmppkt, &type)
|| !PACKET_get_length_prefixed_2(&tmppkt, &sni)) {
return;
}
if (type != TLSEXT_TYPE_server_name)
return;
ext_len = TLS1_get_client_version(s) >= TLS1_2_VERSION ?
sizeof(kSafariExtensionsBlock) : kSafariCommonExtensionsLength;
s->s3->is_probably_safari = PACKET_equal(&tmppkt, kSafariExtensionsBlock,
ext_len);
}
#endif /* !OPENSSL_NO_EC */
MSG_PROCESS_RETURN tls_process_client_hello(SSL *s, PACKET *pkt)
{
int i, al = SSL_AD_INTERNAL_ERROR;
unsigned int j;
size_t loop;
unsigned long id;
const SSL_CIPHER *c;
#ifndef OPENSSL_NO_COMP
SSL_COMP *comp = NULL;
#endif
STACK_OF(SSL_CIPHER) *ciphers = NULL;
int protverr;
/* |cookie| will only be initialized for DTLS. */
PACKET session_id, compression, extensions, cookie;
static const unsigned char null_compression = 0;
CLIENTHELLO_MSG clienthello;
/*
* First, parse the raw ClientHello data into the CLIENTHELLO_MSG structure.
*/
memset(&clienthello, 0, sizeof(clienthello));
clienthello.isv2 = RECORD_LAYER_is_sslv2_record(&s->rlayer);
PACKET_null_init(&cookie);
if (clienthello.isv2) {
unsigned int mt;
/*-
* An SSLv3/TLSv1 backwards-compatible CLIENT-HELLO in an SSLv2
* header is sent directly on the wire, not wrapped as a TLS
* record. Our record layer just processes the message length and passes
* the rest right through. Its format is:
* Byte Content
* 0-1 msg_length - decoded by the record layer
* 2 msg_type - s->init_msg points here
* 3-4 version
* 5-6 cipher_spec_length
* 7-8 session_id_length
* 9-10 challenge_length
* ... ...
*/
if (!PACKET_get_1(pkt, &mt)
|| mt != SSL2_MT_CLIENT_HELLO) {
/*
* Should never happen. We should have tested this in the record
* layer in order to have determined that this is a SSLv2 record
* in the first place
*/
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (!PACKET_get_net_2(pkt, &clienthello.legacy_version)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_TOO_SHORT);
goto err;
}
/* Parse the message and load client random. */
if (clienthello.isv2) {
/*
* Handle an SSLv2 backwards compatible ClientHello
* Note, this is only for SSLv3+ using the backward compatible format.
* Real SSLv2 is not supported, and is rejected below.
*/
unsigned int ciphersuite_len, session_id_len, challenge_len;
PACKET challenge;
if (!PACKET_get_net_2(pkt, &ciphersuite_len)
|| !PACKET_get_net_2(pkt, &session_id_len)
|| !PACKET_get_net_2(pkt, &challenge_len)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_RECORD_LENGTH_MISMATCH);
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
if (session_id_len > SSL_MAX_SSL_SESSION_ID_LENGTH) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
if (!PACKET_get_sub_packet(pkt, &clienthello.ciphersuites,
ciphersuite_len)
|| !PACKET_copy_bytes(pkt, clienthello.session_id, session_id_len)
|| !PACKET_get_sub_packet(pkt, &challenge, challenge_len)
/* No extensions. */
|| PACKET_remaining(pkt) != 0) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_RECORD_LENGTH_MISMATCH);
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
clienthello.session_id_len = session_id_len;
/* Load the client random and compression list. We use SSL3_RANDOM_SIZE
* here rather than sizeof(clienthello.random) because that is the limit
* for SSLv3 and it is fixed. It won't change even if
* sizeof(clienthello.random) does.
*/
challenge_len = challenge_len > SSL3_RANDOM_SIZE
? SSL3_RANDOM_SIZE : challenge_len;
memset(clienthello.random, 0, SSL3_RANDOM_SIZE);
if (!PACKET_copy_bytes(&challenge,
clienthello.random + SSL3_RANDOM_SIZE -
challenge_len, challenge_len)
/* Advertise only null compression. */
|| !PACKET_buf_init(&compression, &null_compression, 1)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, ERR_R_INTERNAL_ERROR);
al = SSL_AD_INTERNAL_ERROR;
goto f_err;
}
PACKET_null_init(&clienthello.extensions);
} else {
/* Regular ClientHello. */
if (!PACKET_copy_bytes(pkt, clienthello.random, SSL3_RANDOM_SIZE)
|| !PACKET_get_length_prefixed_1(pkt, &session_id)
|| !PACKET_copy_all(&session_id, clienthello.session_id,
SSL_MAX_SSL_SESSION_ID_LENGTH,
&clienthello.session_id_len)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
if (SSL_IS_DTLS(s)) {
if (!PACKET_get_length_prefixed_1(pkt, &cookie)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
if (!PACKET_copy_all(&cookie, clienthello.dtls_cookie,
DTLS1_COOKIE_LENGTH,
&clienthello.dtls_cookie_len)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
/*
* If we require cookies and this ClientHello doesn't contain one,
* just return since we do not want to allocate any memory yet.
* So check cookie length...
*/
if (SSL_get_options(s) & SSL_OP_COOKIE_EXCHANGE) {
if (clienthello.dtls_cookie_len == 0)
return 1;
}
}
if (!PACKET_get_length_prefixed_2(pkt, &clienthello.ciphersuites)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
if (!PACKET_get_length_prefixed_1(pkt, &compression)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
/* Could be empty. */
if (PACKET_remaining(pkt) == 0) {
PACKET_null_init(&clienthello.extensions);
} else {
if (!PACKET_get_length_prefixed_2(pkt, &clienthello.extensions)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
}
}
if (!PACKET_copy_all(&compression, clienthello.compressions,
MAX_COMPRESSIONS_SIZE,
&clienthello.compressions_len)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
/* Preserve the raw extensions PACKET for later use */
extensions = clienthello.extensions;
if (!tls_collect_extensions(s, &extensions, EXT_CLIENT_HELLO,
&clienthello.pre_proc_exts, &al)) {
/* SSLerr already been called */
goto f_err;
}
/* Finished parsing the ClientHello, now we can start processing it */
/* Set up the client_random */
memcpy(s->s3->client_random, clienthello.random, SSL3_RANDOM_SIZE);
/* Choose the version */
if (clienthello.isv2) {
if (clienthello.legacy_version == SSL2_VERSION
|| (clienthello.legacy_version & 0xff00)
!= (SSL3_VERSION_MAJOR << 8)) {
/*
* This is real SSLv2 or something complete unknown. We don't
* support it.
*/
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_UNKNOWN_PROTOCOL);
goto err;
}
/* SSLv3/TLS */
s->client_version = clienthello.legacy_version;
}
/*
* Do SSL/TLS version negotiation if applicable. For DTLS we just check
* versions are potentially compatible. Version negotiation comes later.
*/
if (!SSL_IS_DTLS(s)) {
protverr = ssl_choose_server_version(s, &clienthello);
} else if (s->method->version != DTLS_ANY_VERSION &&
DTLS_VERSION_LT((int)clienthello.legacy_version, s->version)) {
protverr = SSL_R_VERSION_TOO_LOW;
} else {
protverr = 0;
}
if (protverr) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, protverr);
if ((!s->enc_write_ctx && !s->write_hash)) {
/* like ssl3_get_record, send alert using remote version number */
s->version = s->client_version = clienthello.legacy_version;
}
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
if (SSL_IS_DTLS(s)) {
/* Empty cookie was already handled above by returning early. */
if (SSL_get_options(s) & SSL_OP_COOKIE_EXCHANGE) {
if (s->ctx->app_verify_cookie_cb != NULL) {
if (s->ctx->app_verify_cookie_cb(s, clienthello.dtls_cookie,
clienthello.dtls_cookie_len) == 0) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_COOKIE_MISMATCH);
goto f_err;
/* else cookie verification succeeded */
}
/* default verification */
} else if (s->d1->cookie_len != clienthello.dtls_cookie_len
|| memcmp(clienthello.dtls_cookie, s->d1->cookie,
s->d1->cookie_len) != 0) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_COOKIE_MISMATCH);
goto f_err;
}
s->d1->cookie_verified = 1;
}
if (s->method->version == DTLS_ANY_VERSION) {
protverr = ssl_choose_server_version(s, &clienthello);
if (protverr != 0) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, protverr);
s->version = s->client_version;
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
}
}
s->hit = 0;
/* We need to do this before getting the session */
if (!tls_parse_extension(s, TLSEXT_IDX_extended_master_secret,
EXT_CLIENT_HELLO,
clienthello.pre_proc_exts, NULL, 0, &al)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_CLIENTHELLO_TLSEXT);
goto f_err;
}
/*
* We don't allow resumption in a backwards compatible ClientHello.
* TODO(openssl-team): in TLS1.1+, session_id MUST be empty.
*
* Versions before 0.9.7 always allow clients to resume sessions in
* renegotiation. 0.9.7 and later allow this by default, but optionally
* ignore resumption requests with flag
* SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION (it's a new flag rather
* than a change to default behavior so that applications relying on
* this for security won't even compile against older library versions).
* 1.0.1 and later also have a function SSL_renegotiate_abbreviated() to
* request renegotiation but not a new session (s->new_session remains
* unset): for servers, this essentially just means that the
* SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION setting will be
* ignored.
*/
if (clienthello.isv2 ||
(s->new_session &&
(s->options & SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION))) {
if (!ssl_get_new_session(s, 1))
goto err;
} else {
i = ssl_get_prev_session(s, &clienthello);
/*
* Only resume if the session's version matches the negotiated
* version.
* RFC 5246 does not provide much useful advice on resumption
* with a different protocol version. It doesn't forbid it but
* the sanity of such behaviour would be questionable.
* In practice, clients do not accept a version mismatch and
* will abort the handshake with an error.
*/
if (i == 1 && s->version == s->session->ssl_version) {
/* previous session */
s->hit = 1;
} else if (i == -1) {
goto err;
} else {
/* i == 0 */
if (!ssl_get_new_session(s, 1))
goto err;
}
}
if (ssl_bytes_to_cipher_list(s, &clienthello.ciphersuites, &ciphers,
clienthello.isv2, &al) == NULL) {
goto f_err;
}
/* If it is a hit, check that the cipher is in the list */
if (s->hit) {
j = 0;
id = s->session->cipher->id;
#ifdef CIPHER_DEBUG
fprintf(stderr, "client sent %d ciphers\n", sk_SSL_CIPHER_num(ciphers));
#endif
for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
c = sk_SSL_CIPHER_value(ciphers, i);
#ifdef CIPHER_DEBUG
fprintf(stderr, "client [%2d of %2d]:%s\n",
i, sk_SSL_CIPHER_num(ciphers), SSL_CIPHER_get_name(c));
#endif
if (c->id == id) {
j = 1;
break;
}
}
if (j == 0) {
/*
* we need to have the cipher in the cipher list if we are asked
* to reuse it
*/
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_REQUIRED_CIPHER_MISSING);
goto f_err;
}
}
for (loop = 0; loop < clienthello.compressions_len; loop++) {
if (clienthello.compressions[loop] == 0)
break;
}
if (loop >= clienthello.compressions_len) {
/* no compress */
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_NO_COMPRESSION_SPECIFIED);
goto f_err;
}
#ifndef OPENSSL_NO_EC
if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
ssl_check_for_safari(s, &clienthello);
#endif /* !OPENSSL_NO_EC */
/* TLS extensions */
if (!tls_parse_all_extensions(s, EXT_CLIENT_HELLO,
clienthello.pre_proc_exts, NULL, 0, &al)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_PARSE_TLSEXT);
goto f_err;
}
/* Check we've got a key_share for TLSv1.3 */
if (SSL_IS_TLS13(s) && s->s3->peer_tmp == NULL && !s->hit) {
/* No suitable share */
/* TODO(TLS1.3): Send a HelloRetryRequest */
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_NO_SUITABLE_KEY_SHARE);
goto f_err;
}
/*
* Check if we want to use external pre-shared secret for this handshake
* for not reused session only. We need to generate server_random before
* calling tls_session_secret_cb in order to allow SessionTicket
* processing to use it in key derivation.
*/
{
unsigned char *pos;
pos = s->s3->server_random;
if (ssl_fill_hello_random(s, 1, pos, SSL3_RANDOM_SIZE) <= 0) {
goto f_err;
}
}
if (!s->hit && s->version >= TLS1_VERSION && s->ext.session_secret_cb) {
const SSL_CIPHER *pref_cipher = NULL;
/*
* s->session->master_key_length is a size_t, but this is an int for
* backwards compat reasons
*/
int master_key_length;
master_key_length = sizeof(s->session->master_key);
if (s->ext.session_secret_cb(s, s->session->master_key,
&master_key_length, ciphers,
&pref_cipher,
s->ext.session_secret_cb_arg)
&& master_key_length > 0) {
s->session->master_key_length = master_key_length;
s->hit = 1;
s->session->ciphers = ciphers;
s->session->verify_result = X509_V_OK;
ciphers = NULL;
/* check if some cipher was preferred by call back */
pref_cipher =
pref_cipher ? pref_cipher : ssl3_choose_cipher(s,
s->
session->ciphers,
SSL_get_ciphers
(s));
if (pref_cipher == NULL) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_NO_SHARED_CIPHER);
goto f_err;
}
s->session->cipher = pref_cipher;
sk_SSL_CIPHER_free(s->cipher_list);
s->cipher_list = sk_SSL_CIPHER_dup(s->session->ciphers);
sk_SSL_CIPHER_free(s->cipher_list_by_id);
s->cipher_list_by_id = sk_SSL_CIPHER_dup(s->session->ciphers);
}
}
/*
* Worst case, we will use the NULL compression, but if we have other
* options, we will now look for them. We have complen-1 compression
* algorithms from the client, starting at q.
*/
s->s3->tmp.new_compression = NULL;
2005-09-30 23:35:33 +00:00
#ifndef OPENSSL_NO_COMP
/* This only happens if we have a cache hit */
if (s->session->compress_meth != 0) {
int m, comp_id = s->session->compress_meth;
unsigned int k;
/* Perform sanity checks on resumed compression algorithm */
/* Can't disable compression */
if (!ssl_allow_compression(s)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_INCONSISTENT_COMPRESSION);
goto f_err;
}
/* Look for resumed compression method */
for (m = 0; m < sk_SSL_COMP_num(s->ctx->comp_methods); m++) {
comp = sk_SSL_COMP_value(s->ctx->comp_methods, m);
if (comp_id == comp->id) {
s->s3->tmp.new_compression = comp;
break;
}
}
if (s->s3->tmp.new_compression == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_INVALID_COMPRESSION_ALGORITHM);
goto f_err;
}
/* Look for resumed method in compression list */
for (k = 0; k < clienthello.compressions_len; k++) {
if (clienthello.compressions[k] == comp_id)
break;
}
if (k >= clienthello.compressions_len) {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO,
SSL_R_REQUIRED_COMPRESSION_ALGORITHM_MISSING);
goto f_err;
}
} else if (s->hit)
comp = NULL;
else if (ssl_allow_compression(s) && s->ctx->comp_methods) {
/* See if we have a match */
int m, nn, v, done = 0;
unsigned int o;
nn = sk_SSL_COMP_num(s->ctx->comp_methods);
for (m = 0; m < nn; m++) {
comp = sk_SSL_COMP_value(s->ctx->comp_methods, m);
v = comp->id;
for (o = 0; o < clienthello.compressions_len; o++) {
if (v == clienthello.compressions[o]) {
done = 1;
break;
}
}
if (done)
break;
}
if (done)
s->s3->tmp.new_compression = comp;
else
comp = NULL;
}
#else
/*
* If compression is disabled we'd better not try to resume a session
* using compression.
*/
if (s->session->compress_meth != 0) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_INCONSISTENT_COMPRESSION);
goto f_err;
}
2005-09-30 23:35:33 +00:00
#endif
/*
* Given s->session->ciphers and SSL_get_ciphers, we must pick a cipher
*/
if (!s->hit) {
2005-09-30 23:35:33 +00:00
#ifdef OPENSSL_NO_COMP
s->session->compress_meth = 0;
2005-09-30 23:35:33 +00:00
#else
s->session->compress_meth = (comp == NULL) ? 0 : comp->id;
2005-09-30 23:35:33 +00:00
#endif
sk_SSL_CIPHER_free(s->session->ciphers);
s->session->ciphers = ciphers;
if (ciphers == NULL) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, ERR_R_INTERNAL_ERROR);
goto f_err;
}
ciphers = NULL;
if (!tls1_set_server_sigalgs(s)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_HELLO, SSL_R_CLIENTHELLO_TLSEXT);
goto err;
}
}
sk_SSL_CIPHER_free(ciphers);
OPENSSL_free(clienthello.pre_proc_exts);
return MSG_PROCESS_CONTINUE_PROCESSING;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
ossl_statem_set_error(s);
sk_SSL_CIPHER_free(ciphers);
OPENSSL_free(clienthello.pre_proc_exts);
return MSG_PROCESS_ERROR;
}
/*
* Call the status request callback if needed. Upon success, returns 1.
* Upon failure, returns 0 and sets |*al| to the appropriate fatal alert.
*/
static int tls_handle_status_request(SSL *s, int *al)
{
s->ext.status_expected = 0;
/*
* If status request then ask callback what to do. Note: this must be
* called after servername callbacks in case the certificate has changed,
* and must be called after the cipher has been chosen because this may
* influence which certificate is sent
*/
if (s->ext.status_type != TLSEXT_STATUSTYPE_nothing && s->ctx != NULL
&& s->ctx->ext.status_cb != NULL) {
int ret;
CERT_PKEY *certpkey = ssl_get_server_send_pkey(s);
/* If no certificate can't return certificate status */
if (certpkey != NULL) {
/*
* Set current certificate to one we will use so SSL_get_certificate
* et al can pick it up.
*/
s->cert->key = certpkey;
ret = s->ctx->ext.status_cb(s, s->ctx->ext.status_arg);
switch (ret) {
/* We don't want to send a status request response */
case SSL_TLSEXT_ERR_NOACK:
s->ext.status_expected = 0;
break;
/* status request response should be sent */
case SSL_TLSEXT_ERR_OK:
if (s->ext.ocsp.resp)
s->ext.status_expected = 1;
break;
/* something bad happened */
case SSL_TLSEXT_ERR_ALERT_FATAL:
default:
*al = SSL_AD_INTERNAL_ERROR;
return 0;
}
}
}
return 1;
}
WORK_STATE tls_post_process_client_hello(SSL *s, WORK_STATE wst)
{
int al = SSL_AD_HANDSHAKE_FAILURE;
const SSL_CIPHER *cipher;
if (wst == WORK_MORE_A) {
if (!s->hit) {
/* Let cert callback update server certificates if required */
if (s->cert->cert_cb) {
int rv = s->cert->cert_cb(s, s->cert->cert_cb_arg);
if (rv == 0) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_HELLO,
SSL_R_CERT_CB_ERROR);
goto f_err;
}
if (rv < 0) {
s->rwstate = SSL_X509_LOOKUP;
return WORK_MORE_A;
}
s->rwstate = SSL_NOTHING;
}
cipher =
ssl3_choose_cipher(s, s->session->ciphers, SSL_get_ciphers(s));
if (cipher == NULL) {
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_HELLO,
SSL_R_NO_SHARED_CIPHER);
goto f_err;
}
s->s3->tmp.new_cipher = cipher;
/* check whether we should disable session resumption */
if (s->not_resumable_session_cb != NULL)
s->session->not_resumable =
s->not_resumable_session_cb(s, ((cipher->algorithm_mkey
& (SSL_kDHE | SSL_kECDHE))
!= 0));
if (s->session->not_resumable)
/* do not send a session ticket */
s->ext.ticket_expected = 0;
} else {
/* Session-id reuse */
s->s3->tmp.new_cipher = s->session->cipher;
}
if (!(s->verify_mode & SSL_VERIFY_PEER)) {
if (!ssl3_digest_cached_records(s, 0)) {
al = SSL_AD_INTERNAL_ERROR;
goto f_err;
}
}
/*-
* we now have the following setup.
* client_random
* cipher_list - our preferred list of ciphers
* ciphers - the clients preferred list of ciphers
* compression - basically ignored right now
* ssl version is set - sslv3
* s->session - The ssl session has been setup.
* s->hit - session reuse flag
* s->s3->tmp.new_cipher- the new cipher to use.
*/
/*
* Call status_request callback if needed. Has to be done after the
* certificate callbacks etc above.
*/
if (!tls_handle_status_request(s, &al)) {
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_HELLO,
SSL_R_CLIENTHELLO_TLSEXT);
goto f_err;
}
wst = WORK_MORE_B;
}
#ifndef OPENSSL_NO_SRP
if (wst == WORK_MORE_B) {
int ret;
if ((ret = ssl_check_srp_ext_ClientHello(s, &al)) < 0) {
/*
* callback indicates further work to be done
*/
s->rwstate = SSL_X509_LOOKUP;
return WORK_MORE_B;
}
if (ret != SSL_ERROR_NONE) {
/*
* This is not really an error but the only means to for
* a client to detect whether srp is supported.
*/
if (al != TLS1_AD_UNKNOWN_PSK_IDENTITY)
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_HELLO,
SSL_R_CLIENTHELLO_TLSEXT);
else
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_HELLO,
SSL_R_PSK_IDENTITY_NOT_FOUND);
goto f_err;
}
}
#endif
s->renegotiate = 2;
return WORK_FINISHED_STOP;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
return WORK_ERROR;
}
int tls_construct_server_hello(SSL *s, WPACKET *pkt)
{
int compm, al = SSL_AD_INTERNAL_ERROR;
size_t sl, len;
int version;
/* TODO(TLS1.3): Remove the DRAFT conditional before release */
version = SSL_IS_TLS13(s) ? TLS1_3_VERSION_DRAFT : s->version;
if (!WPACKET_put_bytes_u16(pkt, version)
/*
* Random stuff. Filling of the server_random takes place in
* tls_process_client_hello()
*/
|| !WPACKET_memcpy(pkt, s->s3->server_random, SSL3_RANDOM_SIZE)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_HELLO, ERR_R_INTERNAL_ERROR);
goto err;
}
/*-
* There are several cases for the session ID to send
* back in the server hello:
* - For session reuse from the session cache,
* we send back the old session ID.
* - If stateless session reuse (using a session ticket)
* is successful, we send back the client's "session ID"
* (which doesn't actually identify the session).
* - If it is a new session, we send back the new
* session ID.
* - However, if we want the new session to be single-use,
* we send back a 0-length session ID.
* s->hit is non-zero in either case of session reuse,
* so the following won't overwrite an ID that we're supposed
* to send back.
*/
if (s->session->not_resumable ||
(!(s->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)
&& !s->hit))
s->session->session_id_length = 0;
sl = s->session->session_id_length;
if (sl > sizeof(s->session->session_id)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_HELLO, ERR_R_INTERNAL_ERROR);
goto err;
}
/* set up the compression method */
2005-09-30 23:35:33 +00:00
#ifdef OPENSSL_NO_COMP
compm = 0;
2005-09-30 23:35:33 +00:00
#else
if (s->s3->tmp.new_compression == NULL)
compm = 0;
else
compm = s->s3->tmp.new_compression->id;
2005-09-30 23:35:33 +00:00
#endif
if ((!SSL_IS_TLS13(s)
&& !WPACKET_sub_memcpy_u8(pkt, s->session->session_id, sl))
|| !s->method->put_cipher_by_char(s->s3->tmp.new_cipher, pkt, &len)
|| (!SSL_IS_TLS13(s)
&& !WPACKET_put_bytes_u8(pkt, compm))
|| !tls_construct_extensions(s, pkt,
SSL_IS_TLS13(s)
? EXT_TLS1_3_SERVER_HELLO
: EXT_TLS1_2_SERVER_HELLO,
NULL, 0, &al)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_HELLO, ERR_R_INTERNAL_ERROR);
goto err;
}
return 1;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return 0;
}
int tls_construct_server_done(SSL *s, WPACKET *pkt)
{
if (!s->s3->tmp.cert_request) {
if (!ssl3_digest_cached_records(s, 0)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
}
return 1;
}
int tls_construct_server_key_exchange(SSL *s, WPACKET *pkt)
{
#ifndef OPENSSL_NO_DH
EVP_PKEY *pkdh = NULL;
#endif
#ifndef OPENSSL_NO_EC
unsigned char *encodedPoint = NULL;
size_t encodedlen = 0;
int curve_id = 0;
#endif
EVP_PKEY *pkey;
const EVP_MD *md = NULL;
int al = SSL_AD_INTERNAL_ERROR, i;
unsigned long type;
const BIGNUM *r[4];
EVP_MD_CTX *md_ctx = EVP_MD_CTX_new();
EVP_PKEY_CTX *pctx = NULL;
size_t paramlen, paramoffset;
if (!WPACKET_get_total_written(pkt, &paramoffset)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
goto f_err;
}
if (md_ctx == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE, ERR_R_MALLOC_FAILURE);
goto f_err;
}
type = s->s3->tmp.new_cipher->algorithm_mkey;
r[0] = r[1] = r[2] = r[3] = NULL;
#ifndef OPENSSL_NO_PSK
/* Plain PSK or RSAPSK nothing to do */
if (type & (SSL_kPSK | SSL_kRSAPSK)) {
} else
#endif /* !OPENSSL_NO_PSK */
#ifndef OPENSSL_NO_DH
if (type & (SSL_kDHE | SSL_kDHEPSK)) {
CERT *cert = s->cert;
EVP_PKEY *pkdhp = NULL;
DH *dh;
if (s->cert->dh_tmp_auto) {
DH *dhp = ssl_get_auto_dh(s);
pkdh = EVP_PKEY_new();
if (pkdh == NULL || dhp == NULL) {
DH_free(dhp);
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
EVP_PKEY_assign_DH(pkdh, dhp);
pkdhp = pkdh;
} else {
pkdhp = cert->dh_tmp;
}
if ((pkdhp == NULL) && (s->cert->dh_tmp_cb != NULL)) {
DH *dhp = s->cert->dh_tmp_cb(s, 0, 1024);
pkdh = ssl_dh_to_pkey(dhp);
if (pkdh == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
pkdhp = pkdh;
}
if (pkdhp == NULL) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_MISSING_TMP_DH_KEY);
goto f_err;
}
if (!ssl_security(s, SSL_SECOP_TMP_DH,
EVP_PKEY_security_bits(pkdhp), 0, pkdhp)) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_DH_KEY_TOO_SMALL);
goto f_err;
}
if (s->s3->tmp.pkey != NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto err;
}
s->s3->tmp.pkey = ssl_generate_pkey(pkdhp);
if (s->s3->tmp.pkey == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE, ERR_R_EVP_LIB);
goto err;
}
dh = EVP_PKEY_get0_DH(s->s3->tmp.pkey);
EVP_PKEY_free(pkdh);
pkdh = NULL;
DH_get0_pqg(dh, &r[0], NULL, &r[1]);
DH_get0_key(dh, &r[2], NULL);
} else
#endif
#ifndef OPENSSL_NO_EC
if (type & (SSL_kECDHE | SSL_kECDHEPSK)) {
int nid;
if (s->s3->tmp.pkey != NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto err;
}
/* Get NID of appropriate shared curve */
nid = tls1_shared_group(s, -2);
curve_id = tls1_ec_nid2curve_id(nid);
if (curve_id == 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_UNSUPPORTED_ELLIPTIC_CURVE);
goto err;
}
s->s3->tmp.pkey = ssl_generate_pkey_curve(curve_id);
/* Generate a new key for this curve */
if (s->s3->tmp.pkey == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE, ERR_R_EVP_LIB);
goto f_err;
}
/* Encode the public key. */
encodedlen = EVP_PKEY_get1_tls_encodedpoint(s->s3->tmp.pkey,
&encodedPoint);
if (encodedlen == 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE, ERR_R_EC_LIB);
goto err;
}
/*
* We'll generate the serverKeyExchange message explicitly so we
* can set these to NULLs
*/
r[0] = NULL;
r[1] = NULL;
r[2] = NULL;
r[3] = NULL;
} else
#endif /* !OPENSSL_NO_EC */
2011-03-12 17:01:19 +00:00
#ifndef OPENSSL_NO_SRP
if (type & SSL_kSRP) {
if ((s->srp_ctx.N == NULL) ||
(s->srp_ctx.g == NULL) ||
(s->srp_ctx.s == NULL) || (s->srp_ctx.B == NULL)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_MISSING_SRP_PARAM);
goto err;
}
r[0] = s->srp_ctx.N;
r[1] = s->srp_ctx.g;
r[2] = s->srp_ctx.s;
r[3] = s->srp_ctx.B;
} else
#endif
{
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE);
goto f_err;
}
if (!(s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aSRP))
&& !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_PSK)) {
if ((pkey = ssl_get_sign_pkey(s, s->s3->tmp.new_cipher, &md))
== NULL) {
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
} else {
pkey = NULL;
}
#ifndef OPENSSL_NO_PSK
if (type & SSL_PSK) {
size_t len = (s->cert->psk_identity_hint == NULL)
? 0 : strlen(s->cert->psk_identity_hint);
/*
* It should not happen that len > PSK_MAX_IDENTITY_LEN - we already
* checked this when we set the identity hint - but just in case
*/
if (len > PSK_MAX_IDENTITY_LEN
|| !WPACKET_sub_memcpy_u16(pkt, s->cert->psk_identity_hint,
len)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
}
#endif
for (i = 0; i < 4 && r[i] != NULL; i++) {
unsigned char *binval;
int res;
2011-03-12 17:01:19 +00:00
#ifndef OPENSSL_NO_SRP
if ((i == 2) && (type & SSL_kSRP)) {
res = WPACKET_start_sub_packet_u8(pkt);
} else
#endif
res = WPACKET_start_sub_packet_u16(pkt);
if (!res) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
#ifndef OPENSSL_NO_DH
/*-
* for interoperability with some versions of the Microsoft TLS
* stack, we need to zero pad the DHE pub key to the same length
* as the prime
*/
if ((i == 2) && (type & (SSL_kDHE | SSL_kDHEPSK))) {
size_t len = BN_num_bytes(r[0]) - BN_num_bytes(r[2]);
if (len > 0) {
if (!WPACKET_allocate_bytes(pkt, len, &binval)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
memset(binval, 0, len);
}
}
2011-03-12 17:01:19 +00:00
#endif
if (!WPACKET_allocate_bytes(pkt, BN_num_bytes(r[i]), &binval)
|| !WPACKET_close(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
BN_bn2bin(r[i], binval);
}
#ifndef OPENSSL_NO_EC
if (type & (SSL_kECDHE | SSL_kECDHEPSK)) {
/*
* We only support named (not generic) curves. In this situation, the
* ServerKeyExchange message has: [1 byte CurveType], [2 byte CurveName]
* [1 byte length of encoded point], followed by the actual encoded
* point itself
*/
if (!WPACKET_put_bytes_u8(pkt, NAMED_CURVE_TYPE)
|| !WPACKET_put_bytes_u8(pkt, 0)
|| !WPACKET_put_bytes_u8(pkt, curve_id)
|| !WPACKET_sub_memcpy_u8(pkt, encodedPoint, encodedlen)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
OPENSSL_free(encodedPoint);
encodedPoint = NULL;
}
#endif
/* not anonymous */
if (pkey != NULL) {
/*
* n is the length of the params, they start at &(d[4]) and p
* points to the space at the end.
*/
if (md) {
unsigned char *sigbytes1, *sigbytes2;
size_t siglen;
int ispss = 0;
/* Get length of the parameters we have written above */
if (!WPACKET_get_length(pkt, &paramlen)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
/* send signature algorithm */
if (SSL_USE_SIGALGS(s)) {
if (!tls12_get_sigandhash(s, pkt, pkey, md, &ispss)) {
/* Should never happen */
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
}
#ifdef SSL_DEBUG
fprintf(stderr, "Using hash %s\n", EVP_MD_name(md));
#endif
/*
* Create the signature. We don't know the actual length of the sig
* until after we've created it, so we reserve enough bytes for it
* up front, and then properly allocate them in the WPACKET
* afterwards.
*/
siglen = EVP_PKEY_size(pkey);
if (!WPACKET_sub_reserve_bytes_u16(pkt, siglen, &sigbytes1)
|| EVP_DigestSignInit(md_ctx, &pctx, md, NULL, pkey) <= 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
if (ispss) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx,
RSA_PKCS1_PSS_PADDING) <= 0
/* -1 here means set saltlen to the digest len */
|| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1) <= 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_EVP_LIB);
goto f_err;
}
}
if (EVP_DigestSignUpdate(md_ctx, &(s->s3->client_random[0]),
SSL3_RANDOM_SIZE) <= 0
|| EVP_DigestSignUpdate(md_ctx, &(s->s3->server_random[0]),
SSL3_RANDOM_SIZE) <= 0
|| EVP_DigestSignUpdate(md_ctx,
s->init_buf->data + paramoffset,
paramlen) <= 0
|| EVP_DigestSignFinal(md_ctx, sigbytes1, &siglen) <= 0
|| !WPACKET_sub_allocate_bytes_u16(pkt, siglen, &sigbytes2)
|| sigbytes1 != sigbytes2) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
goto f_err;
}
} else {
/* Is this error check actually needed? */
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_KEY_EXCHANGE,
SSL_R_UNKNOWN_PKEY_TYPE);
goto f_err;
}
}
EVP_MD_CTX_free(md_ctx);
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
#ifndef OPENSSL_NO_DH
EVP_PKEY_free(pkdh);
#endif
#ifndef OPENSSL_NO_EC
OPENSSL_free(encodedPoint);
#endif
EVP_MD_CTX_free(md_ctx);
return 0;
}
int tls_construct_certificate_request(SSL *s, WPACKET *pkt)
{
int i;
STACK_OF(X509_NAME) *sk = NULL;
/* get the list of acceptable cert types */
if (!WPACKET_start_sub_packet_u8(pkt)
|| !ssl3_get_req_cert_type(s, pkt)
|| !WPACKET_close(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST, ERR_R_INTERNAL_ERROR);
goto err;
}
if (SSL_USE_SIGALGS(s)) {
const unsigned int *psigs;
size_t nl = tls12_get_psigalgs(s, 1, &psigs);
if (!WPACKET_start_sub_packet_u16(pkt)
|| !tls12_copy_sigalgs(s, pkt, psigs, nl)
|| !WPACKET_close(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST,
ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* Start sub-packet for client CA list */
if (!WPACKET_start_sub_packet_u16(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST, ERR_R_INTERNAL_ERROR);
goto err;
}
sk = SSL_get_client_CA_list(s);
if (sk != NULL) {
for (i = 0; i < sk_X509_NAME_num(sk); i++) {
unsigned char *namebytes;
X509_NAME *name = sk_X509_NAME_value(sk, i);
int namelen;
if (name == NULL
|| (namelen = i2d_X509_NAME(name, NULL)) < 0
|| !WPACKET_sub_allocate_bytes_u16(pkt, namelen,
&namebytes)
|| i2d_X509_NAME(name, &namebytes) != namelen) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST,
ERR_R_INTERNAL_ERROR);
goto err;
}
}
}
/* else no CA names */
if (!WPACKET_close(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERTIFICATE_REQUEST, ERR_R_INTERNAL_ERROR);
goto err;
}
s->s3->tmp.cert_request = 1;
return 1;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
static int tls_process_cke_psk_preamble(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_PSK
unsigned char psk[PSK_MAX_PSK_LEN];
size_t psklen;
PACKET psk_identity;
if (!PACKET_get_length_prefixed_2(pkt, &psk_identity)) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, SSL_R_LENGTH_MISMATCH);
return 0;
}
if (PACKET_remaining(&psk_identity) > PSK_MAX_IDENTITY_LEN) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
if (s->psk_server_callback == NULL) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, SSL_R_PSK_NO_SERVER_CB);
return 0;
}
if (!PACKET_strndup(&psk_identity, &s->session->psk_identity)) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, ERR_R_INTERNAL_ERROR);
return 0;
}
psklen = s->psk_server_callback(s, s->session->psk_identity,
psk, sizeof(psk));
if (psklen > PSK_MAX_PSK_LEN) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, ERR_R_INTERNAL_ERROR);
return 0;
} else if (psklen == 0) {
/*
* PSK related to the given identity not found
*/
*al = SSL_AD_UNKNOWN_PSK_IDENTITY;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE,
SSL_R_PSK_IDENTITY_NOT_FOUND);
return 0;
}
OPENSSL_free(s->s3->tmp.psk);
s->s3->tmp.psk = OPENSSL_memdup(psk, psklen);
OPENSSL_cleanse(psk, psklen);
if (s->s3->tmp.psk == NULL) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, ERR_R_MALLOC_FAILURE);
return 0;
}
s->s3->tmp.psklen = psklen;
return 1;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_PSK_PREAMBLE, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
static int tls_process_cke_rsa(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_RSA
unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];
int decrypt_len;
unsigned char decrypt_good, version_good;
size_t j, padding_len;
PACKET enc_premaster;
RSA *rsa = NULL;
unsigned char *rsa_decrypt = NULL;
int ret = 0;
rsa = EVP_PKEY_get0_RSA(s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey);
if (rsa == NULL) {
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, SSL_R_MISSING_RSA_CERTIFICATE);
return 0;
}
/* SSLv3 and pre-standard DTLS omit the length bytes. */
if (s->version == SSL3_VERSION || s->version == DTLS1_BAD_VER) {
enc_premaster = *pkt;
} else {
if (!PACKET_get_length_prefixed_2(pkt, &enc_premaster)
|| PACKET_remaining(pkt) != 0) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, SSL_R_LENGTH_MISMATCH);
return 0;
}
}
/*
* We want to be sure that the plaintext buffer size makes it safe to
* iterate over the entire size of a premaster secret
* (SSL_MAX_MASTER_KEY_LENGTH). Reject overly short RSA keys because
* their ciphertext cannot accommodate a premaster secret anyway.
*/
if (RSA_size(rsa) < SSL_MAX_MASTER_KEY_LENGTH) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
rsa_decrypt = OPENSSL_malloc(RSA_size(rsa));
if (rsa_decrypt == NULL) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, ERR_R_MALLOC_FAILURE);
return 0;
}
/*
* We must not leak whether a decryption failure occurs because of
* Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,
* section 7.4.7.1). The code follows that advice of the TLS RFC and
* generates a random premaster secret for the case that the decrypt
* fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1
*/
if (RAND_bytes(rand_premaster_secret, sizeof(rand_premaster_secret)) <= 0)
goto err;
/*
* Decrypt with no padding. PKCS#1 padding will be removed as part of
* the timing-sensitive code below.
*/
/* TODO(size_t): Convert this function */
decrypt_len = (int)RSA_private_decrypt((int)PACKET_remaining(&enc_premaster),
PACKET_data(&enc_premaster),
rsa_decrypt, rsa, RSA_NO_PADDING);
if (decrypt_len < 0)
goto err;
/* Check the padding. See RFC 3447, section 7.2.2. */
/*
* The smallest padded premaster is 11 bytes of overhead. Small keys
* are publicly invalid, so this may return immediately. This ensures
* PS is at least 8 bytes.
*/
if (decrypt_len < 11 + SSL_MAX_MASTER_KEY_LENGTH) {
*al = SSL_AD_DECRYPT_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, SSL_R_DECRYPTION_FAILED);
goto err;
}
padding_len = decrypt_len - SSL_MAX_MASTER_KEY_LENGTH;
decrypt_good = constant_time_eq_int_8(rsa_decrypt[0], 0) &
constant_time_eq_int_8(rsa_decrypt[1], 2);
for (j = 2; j < padding_len - 1; j++) {
decrypt_good &= ~constant_time_is_zero_8(rsa_decrypt[j]);
}
decrypt_good &= constant_time_is_zero_8(rsa_decrypt[padding_len - 1]);
/*
* If the version in the decrypted pre-master secret is correct then
* version_good will be 0xff, otherwise it'll be zero. The
* Klima-Pokorny-Rosa extension of Bleichenbacher's attack
* (http://eprint.iacr.org/2003/052/) exploits the version number
* check as a "bad version oracle". Thus version checks are done in
* constant time and are treated like any other decryption error.
*/
version_good =
constant_time_eq_8(rsa_decrypt[padding_len],
(unsigned)(s->client_version >> 8));
version_good &=
constant_time_eq_8(rsa_decrypt[padding_len + 1],
(unsigned)(s->client_version & 0xff));
/*
* The premaster secret must contain the same version number as the
* ClientHello to detect version rollback attacks (strangely, the
* protocol does not offer such protection for DH ciphersuites).
* However, buggy clients exist that send the negotiated protocol
* version instead if the server does not support the requested
* protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set, tolerate such
* clients.
*/
if (s->options & SSL_OP_TLS_ROLLBACK_BUG) {
unsigned char workaround_good;
workaround_good = constant_time_eq_8(rsa_decrypt[padding_len],
(unsigned)(s->version >> 8));
workaround_good &=
constant_time_eq_8(rsa_decrypt[padding_len + 1],
(unsigned)(s->version & 0xff));
version_good |= workaround_good;
}
/*
* Both decryption and version must be good for decrypt_good to
* remain non-zero (0xff).
*/
decrypt_good &= version_good;
/*
* Now copy rand_premaster_secret over from p using
* decrypt_good_mask. If decryption failed, then p does not
* contain valid plaintext, however, a check above guarantees
* it is still sufficiently large to read from.
*/
for (j = 0; j < sizeof(rand_premaster_secret); j++) {
rsa_decrypt[padding_len + j] =
constant_time_select_8(decrypt_good,
rsa_decrypt[padding_len + j],
rand_premaster_secret[j]);
}
if (!ssl_generate_master_secret(s, rsa_decrypt + padding_len,
sizeof(rand_premaster_secret), 0)) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
OPENSSL_free(rsa_decrypt);
return ret;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_RSA, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
static int tls_process_cke_dhe(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_DH
EVP_PKEY *skey = NULL;
DH *cdh;
unsigned int i;
BIGNUM *pub_key;
const unsigned char *data;
EVP_PKEY *ckey = NULL;
int ret = 0;
if (!PACKET_get_net_2(pkt, &i) || PACKET_remaining(pkt) != i) {
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE,
SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG);
goto err;
}
skey = s->s3->tmp.pkey;
if (skey == NULL) {
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, SSL_R_MISSING_TMP_DH_KEY);
goto err;
}
if (PACKET_remaining(pkt) == 0L) {
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, SSL_R_MISSING_TMP_DH_KEY);
goto err;
}
if (!PACKET_get_bytes(pkt, &data, i)) {
/* We already checked we have enough data */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, ERR_R_INTERNAL_ERROR);
goto err;
}
ckey = EVP_PKEY_new();
if (ckey == NULL || EVP_PKEY_copy_parameters(ckey, skey) == 0) {
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, SSL_R_BN_LIB);
goto err;
}
cdh = EVP_PKEY_get0_DH(ckey);
pub_key = BN_bin2bn(data, i, NULL);
if (pub_key == NULL || !DH_set0_key(cdh, pub_key, NULL)) {
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, ERR_R_INTERNAL_ERROR);
if (pub_key != NULL)
BN_free(pub_key);
goto err;
}
if (ssl_derive(s, skey, ckey, 1) == 0) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
EVP_PKEY_free(s->s3->tmp.pkey);
s->s3->tmp.pkey = NULL;
err:
EVP_PKEY_free(ckey);
return ret;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_DHE, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
static int tls_process_cke_ecdhe(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_EC
EVP_PKEY *skey = s->s3->tmp.pkey;
EVP_PKEY *ckey = NULL;
int ret = 0;
if (PACKET_remaining(pkt) == 0L) {
/* We don't support ECDH client auth */
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, SSL_R_MISSING_TMP_ECDH_KEY);
goto err;
} else {
unsigned int i;
const unsigned char *data;
/*
* Get client's public key from encoded point in the
* ClientKeyExchange message.
*/
/* Get encoded point length */
if (!PACKET_get_1(pkt, &i) || !PACKET_get_bytes(pkt, &data, i)
|| PACKET_remaining(pkt) != 0) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, SSL_R_LENGTH_MISMATCH);
goto err;
}
ckey = EVP_PKEY_new();
if (ckey == NULL || EVP_PKEY_copy_parameters(ckey, skey) <= 0) {
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, ERR_R_EVP_LIB);
goto err;
}
if (EVP_PKEY_set1_tls_encodedpoint(ckey, data, i) == 0) {
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, ERR_R_EC_LIB);
goto err;
}
}
if (ssl_derive(s, skey, ckey, 1) == 0) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
EVP_PKEY_free(s->s3->tmp.pkey);
s->s3->tmp.pkey = NULL;
err:
EVP_PKEY_free(ckey);
return ret;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_ECDHE, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
static int tls_process_cke_srp(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_SRP
unsigned int i;
const unsigned char *data;
if (!PACKET_get_net_2(pkt, &i)
|| !PACKET_get_bytes(pkt, &data, i)) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, SSL_R_BAD_SRP_A_LENGTH);
return 0;
}
if ((s->srp_ctx.A = BN_bin2bn(data, i, NULL)) == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, ERR_R_BN_LIB);
return 0;
}
if (BN_ucmp(s->srp_ctx.A, s->srp_ctx.N) >= 0 || BN_is_zero(s->srp_ctx.A)) {
*al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, SSL_R_BAD_SRP_PARAMETERS);
return 0;
}
OPENSSL_free(s->session->srp_username);
s->session->srp_username = OPENSSL_strdup(s->srp_ctx.login);
if (s->session->srp_username == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!srp_generate_server_master_secret(s)) {
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_SRP, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
static int tls_process_cke_gost(SSL *s, PACKET *pkt, int *al)
{
#ifndef OPENSSL_NO_GOST
EVP_PKEY_CTX *pkey_ctx;
EVP_PKEY *client_pub_pkey = NULL, *pk = NULL;
unsigned char premaster_secret[32];
const unsigned char *start;
size_t outlen = 32, inlen;
unsigned long alg_a;
int Ttag, Tclass;
long Tlen;
size_t sess_key_len;
const unsigned char *data;
int ret = 0;
/* Get our certificate private key */
alg_a = s->s3->tmp.new_cipher->algorithm_auth;
if (alg_a & SSL_aGOST12) {
/*
* New GOST ciphersuites have SSL_aGOST01 bit too
*/
pk = s->cert->pkeys[SSL_PKEY_GOST12_512].privatekey;
if (pk == NULL) {
pk = s->cert->pkeys[SSL_PKEY_GOST12_256].privatekey;
}
if (pk == NULL) {
pk = s->cert->pkeys[SSL_PKEY_GOST01].privatekey;
}
} else if (alg_a & SSL_aGOST01) {
pk = s->cert->pkeys[SSL_PKEY_GOST01].privatekey;
}
pkey_ctx = EVP_PKEY_CTX_new(pk, NULL);
if (pkey_ctx == NULL) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, ERR_R_MALLOC_FAILURE);
return 0;
}
if (EVP_PKEY_decrypt_init(pkey_ctx) <= 0) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, ERR_R_INTERNAL_ERROR);
return 0;
}
/*
* If client certificate is present and is of the same type, maybe
* use it for key exchange. Don't mind errors from
* EVP_PKEY_derive_set_peer, because it is completely valid to use a
* client certificate for authorization only.
*/
client_pub_pkey = X509_get0_pubkey(s->session->peer);
if (client_pub_pkey) {
if (EVP_PKEY_derive_set_peer(pkey_ctx, client_pub_pkey) <= 0)
ERR_clear_error();
}
/* Decrypt session key */
sess_key_len = PACKET_remaining(pkt);
if (!PACKET_get_bytes(pkt, &data, sess_key_len)) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, ERR_R_INTERNAL_ERROR);
goto err;
}
/* TODO(size_t): Convert this function */
if (ASN1_get_object((const unsigned char **)&data, &Tlen, &Ttag,
&Tclass, (long)sess_key_len) != V_ASN1_CONSTRUCTED
|| Ttag != V_ASN1_SEQUENCE || Tclass != V_ASN1_UNIVERSAL) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, SSL_R_DECRYPTION_FAILED);
goto err;
}
start = data;
inlen = Tlen;
if (EVP_PKEY_decrypt
(pkey_ctx, premaster_secret, &outlen, start, inlen) <= 0) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, SSL_R_DECRYPTION_FAILED);
goto err;
}
/* Generate master secret */
if (!ssl_generate_master_secret(s, premaster_secret,
sizeof(premaster_secret), 0)) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Check if pubkey from client certificate was used */
if (EVP_PKEY_CTX_ctrl
(pkey_ctx, -1, -1, EVP_PKEY_CTRL_PEER_KEY, 2, NULL) > 0)
s->statem.no_cert_verify = 1;
ret = 1;
err:
EVP_PKEY_CTX_free(pkey_ctx);
return ret;
#else
/* Should never happen */
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CKE_GOST, ERR_R_INTERNAL_ERROR);
return 0;
#endif
}
MSG_PROCESS_RETURN tls_process_client_key_exchange(SSL *s, PACKET *pkt)
{
int al = -1;
unsigned long alg_k;
alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
/* For PSK parse and retrieve identity, obtain PSK key */
if ((alg_k & SSL_PSK) && !tls_process_cke_psk_preamble(s, pkt, &al))
goto err;
if (alg_k & SSL_kPSK) {
/* Identity extracted earlier: should be nothing left */
if (PACKET_remaining(pkt) != 0) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_KEY_EXCHANGE,
SSL_R_LENGTH_MISMATCH);
goto err;
}
/* PSK handled by ssl_generate_master_secret */
if (!ssl_generate_master_secret(s, NULL, 0, 0)) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
goto err;
}
} else if (alg_k & (SSL_kRSA | SSL_kRSAPSK)) {
if (!tls_process_cke_rsa(s, pkt, &al))
goto err;
} else if (alg_k & (SSL_kDHE | SSL_kDHEPSK)) {
if (!tls_process_cke_dhe(s, pkt, &al))
goto err;
} else if (alg_k & (SSL_kECDHE | SSL_kECDHEPSK)) {
if (!tls_process_cke_ecdhe(s, pkt, &al))
goto err;
} else if (alg_k & SSL_kSRP) {
if (!tls_process_cke_srp(s, pkt, &al))
goto err;
} else if (alg_k & SSL_kGOST) {
if (!tls_process_cke_gost(s, pkt, &al))
goto err;
} else {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_KEY_EXCHANGE,
SSL_R_UNKNOWN_CIPHER_TYPE);
goto err;
}
return MSG_PROCESS_CONTINUE_PROCESSING;
err:
if (al != -1)
ssl3_send_alert(s, SSL3_AL_FATAL, al);
#ifndef OPENSSL_NO_PSK
OPENSSL_clear_free(s->s3->tmp.psk, s->s3->tmp.psklen);
s->s3->tmp.psk = NULL;
#endif
ossl_statem_set_error(s);
return MSG_PROCESS_ERROR;
}
WORK_STATE tls_post_process_client_key_exchange(SSL *s, WORK_STATE wst)
{
#ifndef OPENSSL_NO_SCTP
if (wst == WORK_MORE_A) {
if (SSL_IS_DTLS(s)) {
unsigned char sctpauthkey[64];
char labelbuffer[sizeof(DTLS1_SCTP_AUTH_LABEL)];
/*
* Add new shared key for SCTP-Auth, will be ignored if no SCTP
* used.
*/
memcpy(labelbuffer, DTLS1_SCTP_AUTH_LABEL,
sizeof(DTLS1_SCTP_AUTH_LABEL));
if (SSL_export_keying_material(s, sctpauthkey,
sizeof(sctpauthkey), labelbuffer,
sizeof(labelbuffer), NULL, 0,
0) <= 0) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY,
sizeof(sctpauthkey), sctpauthkey);
}
wst = WORK_MORE_B;
}
if ((wst == WORK_MORE_B)
/* Is this SCTP? */
&& BIO_dgram_is_sctp(SSL_get_wbio(s))
/* Are we renegotiating? */
&& s->renegotiate
/* Are we going to skip the CertificateVerify? */
&& (s->session->peer == NULL || s->statem.no_cert_verify)
&& BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->s3->in_read_app_data = 2;
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
ossl_statem_set_sctp_read_sock(s, 1);
return WORK_MORE_B;
} else {
ossl_statem_set_sctp_read_sock(s, 0);
}
#endif
if (s->statem.no_cert_verify || !s->session->peer) {
/*
* No certificate verify or no peer certificate so we no longer need
* the handshake_buffer
*/
if (!ssl3_digest_cached_records(s, 0)) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
return WORK_FINISHED_CONTINUE;
} else {
if (!s->s3->handshake_buffer) {
SSLerr(SSL_F_TLS_POST_PROCESS_CLIENT_KEY_EXCHANGE,
ERR_R_INTERNAL_ERROR);
ossl_statem_set_error(s);
return WORK_ERROR;
}
/*
* For sigalgs freeze the handshake buffer. If we support
* extms we've done this already so this is a no-op
*/
if (!ssl3_digest_cached_records(s, 1)) {
ossl_statem_set_error(s);
return WORK_ERROR;
}
}
return WORK_FINISHED_CONTINUE;
}
MSG_PROCESS_RETURN tls_process_client_certificate(SSL *s, PACKET *pkt)
{
int i, al = SSL_AD_INTERNAL_ERROR, ret = MSG_PROCESS_ERROR;
X509 *x = NULL;
unsigned long l, llen;
const unsigned char *certstart, *certbytes;
STACK_OF(X509) *sk = NULL;
PACKET spkt, context;
size_t chainidx;
if ((sk = sk_X509_new_null()) == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, ERR_R_MALLOC_FAILURE);
goto f_err;
}
/* TODO(TLS1.3): For now we ignore the context. We need to verify this */
if ((SSL_IS_TLS13(s) && !PACKET_get_length_prefixed_1(pkt, &context))
|| !PACKET_get_net_3(pkt, &llen)
|| !PACKET_get_sub_packet(pkt, &spkt, llen)
|| PACKET_remaining(pkt) != 0) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
for (chainidx = 0; PACKET_remaining(&spkt) > 0; chainidx++) {
if (!PACKET_get_net_3(&spkt, &l)
|| !PACKET_get_bytes(&spkt, &certbytes, l)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
certstart = certbytes;
x = d2i_X509(NULL, (const unsigned char **)&certbytes, l);
if (x == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, ERR_R_ASN1_LIB);
goto f_err;
}
if (certbytes != (certstart + l)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
if (SSL_IS_TLS13(s)) {
RAW_EXTENSION *rawexts = NULL;
PACKET extensions;
if (!PACKET_get_length_prefixed_2(&spkt, &extensions)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, SSL_R_BAD_LENGTH);
goto f_err;
}
if (!tls_collect_extensions(s, &extensions, EXT_TLS1_3_CERTIFICATE,
&rawexts, &al)
|| !tls_parse_all_extensions(s, EXT_TLS1_3_CERTIFICATE,
rawexts, x, chainidx, &al)) {
OPENSSL_free(rawexts);
goto f_err;
}
OPENSSL_free(rawexts);
}
if (!sk_X509_push(sk, x)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, ERR_R_MALLOC_FAILURE);
goto f_err;
}
x = NULL;
}
if (sk_X509_num(sk) <= 0) {
/* TLS does not mind 0 certs returned */
if (s->version == SSL3_VERSION) {
al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_NO_CERTIFICATES_RETURNED);
goto f_err;
}
/* Fail for TLS only if we required a certificate */
else if ((s->verify_mode & SSL_VERIFY_PEER) &&
(s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
al = SSL_AD_HANDSHAKE_FAILURE;
goto f_err;
}
/* No client certificate so digest cached records */
if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, 0)) {
goto f_err;
}
} else {
EVP_PKEY *pkey;
i = ssl_verify_cert_chain(s, sk);
if (i <= 0) {
al = ssl_verify_alarm_type(s->verify_result);
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_CERTIFICATE_VERIFY_FAILED);
goto f_err;
}
if (i > 1) {
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, i);
al = SSL_AD_HANDSHAKE_FAILURE;
goto f_err;
}
pkey = X509_get0_pubkey(sk_X509_value(sk, 0));
if (pkey == NULL) {
al = SSL3_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE,
SSL_R_UNKNOWN_CERTIFICATE_TYPE);
goto f_err;
}
}
X509_free(s->session->peer);
s->session->peer = sk_X509_shift(sk);
s->session->verify_result = s->verify_result;
sk_X509_pop_free(s->session->peer_chain, X509_free);
s->session->peer_chain = sk;
/*
* Freeze the handshake buffer. For <TLS1.3 we do this after the CKE
* message
*/
if (SSL_IS_TLS13(s) && !ssl3_digest_cached_records(s, 1)) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, ERR_R_INTERNAL_ERROR);
goto f_err;
}
/*
* Inconsistency alert: cert_chain does *not* include the peer's own
* certificate, while we do include it in statem_clnt.c
*/
sk = NULL;
/* Save the current hash state for when we receive the CertificateVerify */
if (SSL_IS_TLS13(s)
&& !ssl_handshake_hash(s, s->cert_verify_hash,
sizeof(s->cert_verify_hash),
&s->cert_verify_hash_len)) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CLIENT_CERTIFICATE, ERR_R_INTERNAL_ERROR);
goto f_err;
}
ret = MSG_PROCESS_CONTINUE_READING;
goto done;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
done:
X509_free(x);
sk_X509_pop_free(sk, X509_free);
return ret;
}
int tls_construct_server_certificate(SSL *s, WPACKET *pkt)
{
CERT_PKEY *cpk;
int al = SSL_AD_INTERNAL_ERROR;
cpk = ssl_get_server_send_pkey(s);
if (cpk == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_CERTIFICATE, ERR_R_INTERNAL_ERROR);
return 0;
}
/*
* In TLSv1.3 the certificate chain is always preceded by a 0 length context
* for the server Certificate message
*/
if ((SSL_IS_TLS13(s) && !WPACKET_put_bytes_u8(pkt, 0))
|| !ssl3_output_cert_chain(s, pkt, cpk, &al)) {
SSLerr(SSL_F_TLS_CONSTRUCT_SERVER_CERTIFICATE, ERR_R_INTERNAL_ERROR);
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return 0;
}
return 1;
}
int tls_construct_new_session_ticket(SSL *s, WPACKET *pkt)
{
unsigned char *senc = NULL;
EVP_CIPHER_CTX *ctx = NULL;
HMAC_CTX *hctx = NULL;
unsigned char *p, *encdata1, *encdata2, *macdata1, *macdata2;
const unsigned char *const_p;
int len, slen_full, slen, lenfinal;
SSL_SESSION *sess;
unsigned int hlen;
SSL_CTX *tctx = s->initial_ctx;
unsigned char iv[EVP_MAX_IV_LENGTH];
unsigned char key_name[TLSEXT_KEYNAME_LENGTH];
int iv_len;
size_t macoffset, macendoffset;
/* get session encoding length */
slen_full = i2d_SSL_SESSION(s->session, NULL);
/*
* Some length values are 16 bits, so forget it if session is too
* long
*/
if (slen_full == 0 || slen_full > 0xFF00) {
ossl_statem_set_error(s);
return 0;
}
senc = OPENSSL_malloc(slen_full);
if (senc == NULL) {
ossl_statem_set_error(s);
return 0;
}
ctx = EVP_CIPHER_CTX_new();
hctx = HMAC_CTX_new();
if (ctx == NULL || hctx == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_NEW_SESSION_TICKET, ERR_R_MALLOC_FAILURE);
goto err;
}
p = senc;
if (!i2d_SSL_SESSION(s->session, &p))
goto err;
/*
* create a fresh copy (not shared with other threads) to clean up
*/
const_p = senc;
sess = d2i_SSL_SESSION(NULL, &const_p, slen_full);
if (sess == NULL)
goto err;
sess->session_id_length = 0; /* ID is irrelevant for the ticket */
slen = i2d_SSL_SESSION(sess, NULL);
if (slen == 0 || slen > slen_full) { /* shouldn't ever happen */
SSL_SESSION_free(sess);
goto err;
}
p = senc;
if (!i2d_SSL_SESSION(sess, &p)) {
SSL_SESSION_free(sess);
goto err;
}
SSL_SESSION_free(sess);
/*
* Initialize HMAC and cipher contexts. If callback present it does
* all the work otherwise use generated values from parent ctx.
*/
if (tctx->ext.ticket_key_cb) {
/* if 0 is returned, write an empty ticket */
int ret = tctx->ext.ticket_key_cb(s, key_name, iv, ctx,
hctx, 1);
if (ret == 0) {
/* Put timeout and length */
if (!WPACKET_put_bytes_u32(pkt, 0)
|| !WPACKET_put_bytes_u16(pkt, 0)) {
SSLerr(SSL_F_TLS_CONSTRUCT_NEW_SESSION_TICKET,
ERR_R_INTERNAL_ERROR);
goto err;
}
OPENSSL_free(senc);
EVP_CIPHER_CTX_free(ctx);
HMAC_CTX_free(hctx);
return 1;
}
if (ret < 0)
goto err;
iv_len = EVP_CIPHER_CTX_iv_length(ctx);
} else {
const EVP_CIPHER *cipher = EVP_aes_256_cbc();
iv_len = EVP_CIPHER_iv_length(cipher);
if (RAND_bytes(iv, iv_len) <= 0)
goto err;
if (!EVP_EncryptInit_ex(ctx, cipher, NULL,
tctx->ext.tick_aes_key, iv))
goto err;
if (!HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
sizeof(tctx->ext.tick_hmac_key),
EVP_sha256(), NULL))
goto err;
memcpy(key_name, tctx->ext.tick_key_name,
sizeof(tctx->ext.tick_key_name));
}
/*
* Ticket lifetime hint (advisory only): We leave this unspecified
* for resumed session (for simplicity), and guess that tickets for
* new sessions will live as long as their sessions.
*/
if (!WPACKET_put_bytes_u32(pkt, s->hit ? 0 : s->session->timeout)
/* Now the actual ticket data */
|| !WPACKET_start_sub_packet_u16(pkt)
|| !WPACKET_get_total_written(pkt, &macoffset)
/* Output key name */
|| !WPACKET_memcpy(pkt, key_name, sizeof(key_name))
/* output IV */
|| !WPACKET_memcpy(pkt, iv, iv_len)
|| !WPACKET_reserve_bytes(pkt, slen + EVP_MAX_BLOCK_LENGTH,
&encdata1)
/* Encrypt session data */
|| !EVP_EncryptUpdate(ctx, encdata1, &len, senc, slen)
|| !WPACKET_allocate_bytes(pkt, len, &encdata2)
|| encdata1 != encdata2
|| !EVP_EncryptFinal(ctx, encdata1 + len, &lenfinal)
|| !WPACKET_allocate_bytes(pkt, lenfinal, &encdata2)
|| encdata1 + len != encdata2
|| len + lenfinal > slen + EVP_MAX_BLOCK_LENGTH
|| !WPACKET_get_total_written(pkt, &macendoffset)
|| !HMAC_Update(hctx,
(unsigned char *)s->init_buf->data + macoffset,
macendoffset - macoffset)
|| !WPACKET_reserve_bytes(pkt, EVP_MAX_MD_SIZE, &macdata1)
|| !HMAC_Final(hctx, macdata1, &hlen)
|| hlen > EVP_MAX_MD_SIZE
|| !WPACKET_allocate_bytes(pkt, hlen, &macdata2)
|| macdata1 != macdata2
|| !WPACKET_close(pkt)) {
SSLerr(SSL_F_TLS_CONSTRUCT_NEW_SESSION_TICKET, ERR_R_INTERNAL_ERROR);
goto err;
}
EVP_CIPHER_CTX_free(ctx);
HMAC_CTX_free(hctx);
OPENSSL_free(senc);
return 1;
err:
OPENSSL_free(senc);
EVP_CIPHER_CTX_free(ctx);
HMAC_CTX_free(hctx);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
/*
* In TLSv1.3 this is called from the extensions code, otherwise it is used to
* create a separate message. Returns 1 on success or 0 on failure.
*/
int tls_construct_cert_status_body(SSL *s, WPACKET *pkt)
{
if (!WPACKET_put_bytes_u8(pkt, s->ext.status_type)
|| !WPACKET_sub_memcpy_u24(pkt, s->ext.ocsp.resp,
s->ext.ocsp.resp_len)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_STATUS_BODY, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
int tls_construct_cert_status(SSL *s, WPACKET *pkt)
{
if (!tls_construct_cert_status_body(s, pkt)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
return 1;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
/*
* tls_process_next_proto reads a Next Protocol Negotiation handshake message.
* It sets the next_proto member in s if found
*/
MSG_PROCESS_RETURN tls_process_next_proto(SSL *s, PACKET *pkt)
{
PACKET next_proto, padding;
size_t next_proto_len;
/*-
* The payload looks like:
* uint8 proto_len;
* uint8 proto[proto_len];
* uint8 padding_len;
* uint8 padding[padding_len];
*/
if (!PACKET_get_length_prefixed_1(pkt, &next_proto)
|| !PACKET_get_length_prefixed_1(pkt, &padding)
|| PACKET_remaining(pkt) > 0) {
SSLerr(SSL_F_TLS_PROCESS_NEXT_PROTO, SSL_R_LENGTH_MISMATCH);
goto err;
}
if (!PACKET_memdup(&next_proto, &s->ext.npn, &next_proto_len)) {
s->ext.npn_len = 0;
goto err;
}
s->ext.npn_len = (unsigned char)next_proto_len;
return MSG_PROCESS_CONTINUE_READING;
err:
ossl_statem_set_error(s);
return MSG_PROCESS_ERROR;
}
#endif
static int tls_construct_encrypted_extensions(SSL *s, WPACKET *pkt)
{
int al;
if (!tls_construct_extensions(s, pkt, EXT_TLS1_3_ENCRYPTED_EXTENSIONS,
NULL, 0, &al)) {
ssl3_send_alert(s, SSL3_AL_FATAL, al);
SSLerr(SSL_F_TLS_CONSTRUCT_ENCRYPTED_EXTENSIONS, ERR_R_INTERNAL_ERROR);
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return 0;
}
return 1;
}
#define SSLV2_CIPHER_LEN 3
STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s,
PACKET *cipher_suites,
STACK_OF(SSL_CIPHER) **skp,
int sslv2format, int *al)
{
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
int n;
/* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
unsigned char cipher[SSLV2_CIPHER_LEN];
s->s3->send_connection_binding = 0;
n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
if (PACKET_remaining(cipher_suites) == 0) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
*al = SSL_AD_ILLEGAL_PARAMETER;
return NULL;
}
if (PACKET_remaining(cipher_suites) % n != 0) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,
SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
*al = SSL_AD_DECODE_ERROR;
return NULL;
}
sk = sk_SSL_CIPHER_new_null();
if (sk == NULL) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
*al = SSL_AD_INTERNAL_ERROR;
return NULL;
}
if (sslv2format) {
size_t numciphers = PACKET_remaining(cipher_suites) / n;
PACKET sslv2ciphers = *cipher_suites;
unsigned int leadbyte;
unsigned char *raw;
/*
* We store the raw ciphers list in SSLv3+ format so we need to do some
* preprocessing to convert the list first. If there are any SSLv2 only
* ciphersuites with a non-zero leading byte then we are going to
* slightly over allocate because we won't store those. But that isn't a
* problem.
*/
raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
s->s3->tmp.ciphers_raw = raw;
if (raw == NULL) {
*al = SSL_AD_INTERNAL_ERROR;
goto err;
}
for (s->s3->tmp.ciphers_rawlen = 0;
PACKET_remaining(&sslv2ciphers) > 0;
raw += TLS_CIPHER_LEN) {
if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
|| (leadbyte == 0
&& !PACKET_copy_bytes(&sslv2ciphers, raw,
TLS_CIPHER_LEN))
|| (leadbyte != 0
&& !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
*al = SSL_AD_INTERNAL_ERROR;
OPENSSL_free(raw);
s->s3->tmp.ciphers_raw = NULL;
s->s3->tmp.ciphers_rawlen = 0;
goto err;
}
if (leadbyte == 0)
s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
}
} else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
&s->s3->tmp.ciphers_rawlen)) {
*al = SSL_AD_INTERNAL_ERROR;
goto err;
}
while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
/*
* SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
* first byte set to zero, while true SSLv2 ciphers have a non-zero
* first byte. We don't support any true SSLv2 ciphers, so skip them.
*/
if (sslv2format && cipher[0] != '\0')
continue;
/* Check for TLS_EMPTY_RENEGOTIATION_INFO_SCSV */
if ((cipher[n - 2] == ((SSL3_CK_SCSV >> 8) & 0xff)) &&
(cipher[n - 1] == (SSL3_CK_SCSV & 0xff))) {
/* SCSV fatal if renegotiating */
if (s->renegotiate) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,
SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING);
*al = SSL_AD_HANDSHAKE_FAILURE;
goto err;
}
s->s3->send_connection_binding = 1;
continue;
}
/* Check for TLS_FALLBACK_SCSV */
if ((cipher[n - 2] == ((SSL3_CK_FALLBACK_SCSV >> 8) & 0xff)) &&
(cipher[n - 1] == (SSL3_CK_FALLBACK_SCSV & 0xff))) {
/*
* The SCSV indicates that the client previously tried a higher
* version. Fail if the current version is an unexpected
* downgrade.
*/
if (!ssl_check_version_downgrade(s)) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,
SSL_R_INAPPROPRIATE_FALLBACK);
*al = SSL_AD_INAPPROPRIATE_FALLBACK;
goto err;
}
continue;
}
/* For SSLv2-compat, ignore leading 0-byte. */
c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher);
if (c != NULL) {
if (!sk_SSL_CIPHER_push(sk, c)) {
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
*al = SSL_AD_INTERNAL_ERROR;
goto err;
}
}
}
if (PACKET_remaining(cipher_suites) > 0) {
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST, ERR_R_INTERNAL_ERROR);
goto err;
}
*skp = sk;
return sk;
err:
sk_SSL_CIPHER_free(sk);
return NULL;
}