openssl/crypto/modes/asm/ghash-sparcv9.pl

582 lines
13 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# March 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
# and are expressed in cycles per processed byte, less is better:
#
# gcc 3.3.x cc 5.2 this assembler
#
# 32-bit build 81.4 43.3 12.6 (+546%/+244%)
# 64-bit build 20.2 21.2 12.6 (+60%/+68%)
#
# Here is data collected on UltraSPARC T1 system running Linux:
#
# gcc 4.4.1 this assembler
#
# 32-bit build 566 50 (+1000%)
# 64-bit build 56 50 (+12%)
#
# I don't quite understand why difference between 32-bit and 64-bit
# compiler-generated code is so big. Compilers *were* instructed to
# generate code for UltraSPARC and should have used 64-bit registers
# for Z vector (see C code) even in 32-bit build... Oh well, it only
# means more impressive improvement coefficients for this assembler
# module;-) Loops are aggressively modulo-scheduled in respect to
# references to input data and Z.hi updates to achieve 12 cycles
# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
2012-10-24 08:21:10 +00:00
#
# October 2012
#
# Add VIS3 lookup-table-free implementation using polynomial
# multiplication xmulx[hi] and extended addition addxc[cc]
# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
# saturates at ~15.5x single-process result on 8-core processor,
# or ~20.5GBps per 2.85GHz socket.
$output=pop;
open STDOUT,">$output";
$frame="STACK_FRAME";
$bias="STACK_BIAS";
$Zhi="%o0"; # 64-bit values
$Zlo="%o1";
$Thi="%o2";
$Tlo="%o3";
$rem="%o4";
$tmp="%o5";
$nhi="%l0"; # small values and pointers
$nlo="%l1";
$xi0="%l2";
$xi1="%l3";
$rem_4bit="%l4";
$remi="%l5";
$Htblo="%l6";
$cnt="%l7";
$Xi="%i0"; # input argument block
$Htbl="%i1";
$inp="%i2";
$len="%i3";
$code.=<<___;
#include "sparc_arch.h"
#ifdef __arch64__
2012-10-24 08:21:10 +00:00
.register %g2,#scratch
.register %g3,#scratch
#endif
.section ".text",#alloc,#execinstr
.align 64
rem_4bit:
.long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
.long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
.long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
.long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
.type rem_4bit,#object
.size rem_4bit,(.-rem_4bit)
.globl gcm_ghash_4bit
.align 32
gcm_ghash_4bit:
save %sp,-$frame,%sp
ldub [$inp+15],$nlo
ldub [$Xi+15],$xi0
ldub [$Xi+14],$xi1
add $len,$inp,$len
add $Htbl,8,$Htblo
1: call .+8
add %o7,rem_4bit-1b,$rem_4bit
.Louter:
xor $xi0,$nlo,$nlo
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
sll $nlo,4,$nlo
ldx [$Htblo+$nlo],$Zlo
ldx [$Htbl+$nlo],$Zhi
ldub [$inp+14],$nlo
ldx [$Htblo+$nhi],$Tlo
and $Zlo,0xf,$remi
ldx [$Htbl+$nhi],$Thi
sll $remi,3,$remi
ldx [$rem_4bit+$remi],$rem
srlx $Zlo,4,$Zlo
mov 13,$cnt
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $xi1,$nlo,$nlo
and $Zlo,0xf,$remi
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
ba .Lghash_inner
sll $nlo,4,$nlo
.align 32
.Lghash_inner:
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$inp+$cnt],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
ldub [$Xi+$cnt],$xi1
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $xi1,$nlo,$nlo
srlx $Zhi,4,$Zhi
and $nlo,0xf0,$nhi
addcc $cnt,-1,$cnt
xor $Zlo,$tmp,$Zlo
and $nlo,0x0f,$nlo
xor $Tlo,$Zlo,$Zlo
sll $nlo,4,$nlo
blu .Lghash_inner
and $Zlo,0xf,$remi
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
add $inp,16,$inp
cmp $inp,$len
be,pn SIZE_T_CC,.Ldone
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$inp+15],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
srl $Zlo,8,$xi1
and $Zlo,0xff,$xi0
ba .Louter
and $xi1,0xff,$xi1
.align 32
.Ldone:
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
ret
restore
.type gcm_ghash_4bit,#function
.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
___
undef $inp;
undef $len;
$code.=<<___;
.globl gcm_gmult_4bit
.align 32
gcm_gmult_4bit:
save %sp,-$frame,%sp
ldub [$Xi+15],$nlo
add $Htbl,8,$Htblo
1: call .+8
add %o7,rem_4bit-1b,$rem_4bit
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
sll $nlo,4,$nlo
ldx [$Htblo+$nlo],$Zlo
ldx [$Htbl+$nlo],$Zhi
ldub [$Xi+14],$nlo
ldx [$Htblo+$nhi],$Tlo
and $Zlo,0xf,$remi
ldx [$Htbl+$nhi],$Thi
sll $remi,3,$remi
ldx [$rem_4bit+$remi],$rem
srlx $Zlo,4,$Zlo
mov 13,$cnt
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
and $Zlo,0xf,$remi
and $nlo,0xf0,$nhi
and $nlo,0x0f,$nlo
ba .Lgmult_inner
sll $nlo,4,$nlo
.align 32
.Lgmult_inner:
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
ldub [$Xi+$cnt],$nlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
srlx $Zhi,4,$Zhi
and $nlo,0xf0,$nhi
addcc $cnt,-1,$cnt
xor $Zlo,$tmp,$Zlo
and $nlo,0x0f,$nlo
xor $Tlo,$Zlo,$Zlo
sll $nlo,4,$nlo
blu .Lgmult_inner
and $Zlo,0xf,$remi
ldx [$Htblo+$nlo],$Tlo
sll $remi,3,$remi
xor $Thi,$Zhi,$Zhi
ldx [$Htbl+$nlo],$Thi
srlx $Zlo,4,$Zlo
xor $rem,$Zhi,$Zhi
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
and $Zlo,0xf,$remi
ldx [$Htblo+$nhi],$Tlo
sll $remi,3,$remi
xor $rem,$Zhi,$Zhi
ldx [$Htbl+$nhi],$Thi
srlx $Zlo,4,$Zlo
ldx [$rem_4bit+$remi],$rem
sllx $Zhi,60,$tmp
xor $Tlo,$Zlo,$Zlo
srlx $Zhi,4,$Zhi
xor $Zlo,$tmp,$Zlo
xor $Thi,$Zhi,$Zhi
stx $Zlo,[$Xi+8]
xor $rem,$Zhi,$Zhi
stx $Zhi,[$Xi]
ret
restore
.type gcm_gmult_4bit,#function
.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
2012-10-24 08:21:10 +00:00
___
{{{
# Straightforward 128x128-bit multiplication using Karatsuba algorithm
# followed by pair of 64-bit reductions [with a shortcut in first one,
# which allowed to break dependency between reductions and remove one
# multiplication from critical path]. While it might be suboptimal
# with regard to sheer number of multiplications, other methods [such
# as aggregate reduction] would require more 64-bit registers, which
# we don't have in 32-bit application context.
2012-10-24 08:21:10 +00:00
($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
(map("%o$_",(0..5,7)),map("%g$_",(1..5)));
2012-10-24 08:21:10 +00:00
($shl,$shr)=map("%l$_",(0..7));
# For details regarding "twisted H" see ghash-x86.pl.
2012-10-24 08:21:10 +00:00
$code.=<<___;
.globl gcm_init_vis3
2012-10-24 08:21:10 +00:00
.align 32
gcm_init_vis3:
2012-10-24 08:21:10 +00:00
save %sp,-$frame,%sp
ldx [%i1+0],$Hhi
ldx [%i1+8],$Hlo
mov 0xE1,$Xhi
mov 1,$Xlo
sllx $Xhi,57,$Xhi
srax $Hhi,63,$C0 ! broadcast carry
addcc $Hlo,$Hlo,$Hlo ! H<<=1
addxc $Hhi,$Hhi,$Hhi
and $C0,$Xlo,$Xlo
and $C0,$Xhi,$Xhi
xor $Xlo,$Hlo,$Hlo
xor $Xhi,$Hhi,$Hhi
stx $Hlo,[%i0+8] ! save twisted H
stx $Hhi,[%i0+0]
2012-10-24 08:21:10 +00:00
sethi %hi(0xA0406080),$V
sethi %hi(0x20C0E000),%l0
or $V,%lo(0xA0406080),$V
or %l0,%lo(0x20C0E000),%l0
sllx $V,32,$V
or %l0,$V,$V ! (0xE0·i)&0xff=0xA040608020C0E000
stx $V,[%i0+16]
ret
restore
.type gcm_init_vis3,#function
.size gcm_init_vis3,.-gcm_init_vis3
2012-10-24 08:21:10 +00:00
.globl gcm_gmult_vis3
.align 32
gcm_gmult_vis3:
save %sp,-$frame,%sp
2012-10-24 08:21:10 +00:00
ldx [$Xip+8],$Xlo ! load Xi
ldx [$Xip+0],$Xhi
ldx [$Htable+8],$Hlo ! load twisted H
ldx [$Htable+0],$Hhi
mov 0xE1,%l7
sllx %l7,57,$xE1 ! 57 is not a typo
ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
xmulx $Xlo,$Hlo,$C0
xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
xmulx $C2,$Hhl,$C1
xmulxhi $Xlo,$Hlo,$Xlo
xmulxhi $C2,$Hhl,$C2
xmulxhi $Xhi,$Hhi,$C3
xmulx $Xhi,$Hhi,$Xhi
sll $C0,3,$sqr
srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
xor $C0,$sqr,$sqr
sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
xor $C0,$C1,$C1 ! Karatsuba post-processing
xor $Xlo,$C2,$C2
xor $sqr,$Xlo,$Xlo ! real destination is $C1
xor $C3,$C2,$C2
xor $Xlo,$C1,$C1
xor $Xhi,$C2,$C2
xor $Xhi,$C1,$C1
xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
xor $C0,$C2,$C2
xmulx $C1,$xE1,$C0
xor $C1,$C3,$C3
xmulxhi $C1,$xE1,$C1
xor $Xlo,$C2,$C2
xor $C0,$C2,$C2
xor $C1,$C3,$C3
stx $C2,[$Xip+8] ! save Xi
stx $C3,[$Xip+0]
2012-10-24 08:21:10 +00:00
ret
restore
.type gcm_gmult_vis3,#function
.size gcm_gmult_vis3,.-gcm_gmult_vis3
.globl gcm_ghash_vis3
.align 32
gcm_ghash_vis3:
save %sp,-$frame,%sp
nop
srln $len,0,$len ! needed on v8+, "nop" on v9
2012-10-24 08:21:10 +00:00
ldx [$Xip+8],$C2 ! load Xi
ldx [$Xip+0],$C3
ldx [$Htable+8],$Hlo ! load twisted H
ldx [$Htable+0],$Hhi
mov 0xE1,%l7
sllx %l7,57,$xE1 ! 57 is not a typo
ldx [$Htable+16],$V ! (0xE0·i)&0xff=0xA040608020C0E000
2012-10-24 08:21:10 +00:00
and $inp,7,$shl
andn $inp,7,$inp
sll $shl,3,$shl
prefetch [$inp+63], 20
sub %g0,$shl,$shr
xor $Hhi,$Hlo,$Hhl ! Karatsuba pre-processing
2012-10-24 08:21:10 +00:00
.Loop:
ldx [$inp+8],$Xlo
2012-10-24 08:21:10 +00:00
brz,pt $shl,1f
ldx [$inp+0],$Xhi
ldx [$inp+16],$C1 ! align data
srlx $Xlo,$shr,$C0
sllx $Xlo,$shl,$Xlo
sllx $Xhi,$shl,$Xhi
srlx $C1,$shr,$C1
or $C0,$Xhi,$Xhi
or $C1,$Xlo,$Xlo
2012-10-24 08:21:10 +00:00
1:
add $inp,16,$inp
sub $len,16,$len
xor $C2,$Xlo,$Xlo
xor $C3,$Xhi,$Xhi
2012-10-24 08:21:10 +00:00
prefetch [$inp+63], 20
xmulx $Xlo,$Hlo,$C0
xor $Xlo,$Xhi,$C2 ! Karatsuba pre-processing
xmulx $C2,$Hhl,$C1
xmulxhi $Xlo,$Hlo,$Xlo
xmulxhi $C2,$Hhl,$C2
xmulxhi $Xhi,$Hhi,$C3
xmulx $Xhi,$Hhi,$Xhi
sll $C0,3,$sqr
srlx $V,$sqr,$sqr ! ·0xE0 [implicit &(7<<3)]
xor $C0,$sqr,$sqr
sllx $sqr,57,$sqr ! ($C0·0xE1)<<1<<56 [implicit &0x7f]
xor $C0,$C1,$C1 ! Karatsuba post-processing
xor $Xlo,$C2,$C2
xor $sqr,$Xlo,$Xlo ! real destination is $C1
xor $C3,$C2,$C2
xor $Xlo,$C1,$C1
xor $Xhi,$C2,$C2
xor $Xhi,$C1,$C1
xmulxhi $C0,$xE1,$Xlo ! ·0xE1<<1<<56
xor $C0,$C2,$C2
xmulx $C1,$xE1,$C0
xor $C1,$C3,$C3
xmulxhi $C1,$xE1,$C1
xor $Xlo,$C2,$C2
xor $C0,$C2,$C2
2012-10-24 08:21:10 +00:00
brnz,pt $len,.Loop
xor $C1,$C3,$C3
2012-10-24 08:21:10 +00:00
stx $C2,[$Xip+8] ! save Xi
stx $C3,[$Xip+0]
2012-10-24 08:21:10 +00:00
ret
restore
.type gcm_ghash_vis3,#function
.size gcm_ghash_vis3,.-gcm_ghash_vis3
___
}}}
$code.=<<___;
.asciz "GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
.align 4
___
2012-10-24 08:21:10 +00:00
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
2012-10-24 08:21:10 +00:00
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = ( "addxc" => 0x011,
"addxccc" => 0x013,
"xmulx" => 0x115,
"xmulxhi" => 0x116 );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%([goli])([0-9])/);
$_=$bias{$1}+$2;
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unvis3($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT;