openssl/crypto/ec/ec2_smpl.c

744 lines
19 KiB
C
Raw Normal View History

/*
* Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/err.h>
#include "internal/bn_int.h"
#include "ec_lcl.h"
#ifndef OPENSSL_NO_EC2M
const EC_METHOD *EC_GF2m_simple_method(void)
{
static const EC_METHOD ret = {
EC_FLAGS_DEFAULT_OCT,
NID_X9_62_characteristic_two_field,
ec_GF2m_simple_group_init,
ec_GF2m_simple_group_finish,
ec_GF2m_simple_group_clear_finish,
ec_GF2m_simple_group_copy,
ec_GF2m_simple_group_set_curve,
ec_GF2m_simple_group_get_curve,
ec_GF2m_simple_group_get_degree,
ec_group_simple_order_bits,
ec_GF2m_simple_group_check_discriminant,
ec_GF2m_simple_point_init,
ec_GF2m_simple_point_finish,
ec_GF2m_simple_point_clear_finish,
ec_GF2m_simple_point_copy,
ec_GF2m_simple_point_set_to_infinity,
0 /* set_Jprojective_coordinates_GFp */ ,
0 /* get_Jprojective_coordinates_GFp */ ,
ec_GF2m_simple_point_set_affine_coordinates,
ec_GF2m_simple_point_get_affine_coordinates,
0, 0, 0,
ec_GF2m_simple_add,
ec_GF2m_simple_dbl,
ec_GF2m_simple_invert,
ec_GF2m_simple_is_at_infinity,
ec_GF2m_simple_is_on_curve,
ec_GF2m_simple_cmp,
ec_GF2m_simple_make_affine,
ec_GF2m_simple_points_make_affine,
0 /* mul */,
0 /* precompute_mul */,
0 /* have_precompute_mul */,
ec_GF2m_simple_field_mul,
ec_GF2m_simple_field_sqr,
ec_GF2m_simple_field_div,
0 /* field_encode */ ,
0 /* field_decode */ ,
0, /* field_set_to_one */
ec_key_simple_priv2oct,
ec_key_simple_oct2priv,
0, /* set private */
ec_key_simple_generate_key,
ec_key_simple_check_key,
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
EC point multiplication: add `ladder` scaffold for specialized Montgomery ladder implementations PR #6009 and #6070 replaced the default EC point multiplication path for prime and binary curves with a unified Montgomery ladder implementation with various timing attack defenses (for the common paths when a secret scalar is feed to the point multiplication). The newly introduced default implementation directly used EC_POINT_add/dbl in the main loop. The scaffolding introduced by this commit allows EC_METHODs to define a specialized `ladder_step` function to improve performances by taking advantage of efficient formulas for differential addition-and-doubling and different coordinate systems. - `ladder_pre` is executed before the main loop of the ladder: by default it copies the input point P into S, and doubles it into R. Specialized implementations could, e.g., use this hook to transition to different coordinate systems before copying and doubling; - `ladder_step` is the core of the Montgomery ladder loop: by default it computes `S := R+S; R := 2R;`, but specific implementations could, e.g., implement a more efficient formula for differential addition-and-doubling; - `ladder_post` is executed after the Montgomery ladder loop: by default it's a noop, but specialized implementations could, e.g., use this hook to transition back from the coordinate system used for optimizing the differential addition-and-doubling or recover the y coordinate of the result point. This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`, as it better corresponds to what this function does: nothing can be truly said about the constant-timeness of the overall execution of this function, given that the underlying operations are not necessarily constant-time themselves. What this implementation ensures is that the same fixed sequence of operations is executed for each scalar multiplication (for a given EC_GROUP), with no dependency on the value of the input scalar. Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com> Co-authored-by: Billy Brumley <bbrumley@gmail.com> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6690)
2018-07-07 21:50:49 +00:00
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;
}
/*
* Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
* are handled by EC_GROUP_new.
*/
int ec_GF2m_simple_group_init(EC_GROUP *group)
{
group->field = BN_new();
group->a = BN_new();
group->b = BN_new();
if (group->field == NULL || group->a == NULL || group->b == NULL) {
BN_free(group->field);
BN_free(group->a);
BN_free(group->b);
return 0;
}
return 1;
}
/*
* Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
* handled by EC_GROUP_free.
*/
void ec_GF2m_simple_group_finish(EC_GROUP *group)
{
BN_free(group->field);
BN_free(group->a);
BN_free(group->b);
}
/*
* Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
* members are handled by EC_GROUP_clear_free.
*/
void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
{
BN_clear_free(group->field);
BN_clear_free(group->a);
BN_clear_free(group->b);
group->poly[0] = 0;
group->poly[1] = 0;
group->poly[2] = 0;
group->poly[3] = 0;
group->poly[4] = 0;
group->poly[5] = -1;
}
/*
* Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
* handled by EC_GROUP_copy.
*/
int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
{
if (!BN_copy(dest->field, src->field))
return 0;
if (!BN_copy(dest->a, src->a))
return 0;
if (!BN_copy(dest->b, src->b))
return 0;
dest->poly[0] = src->poly[0];
dest->poly[1] = src->poly[1];
dest->poly[2] = src->poly[2];
dest->poly[3] = src->poly[3];
dest->poly[4] = src->poly[4];
dest->poly[5] = src->poly[5];
if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
NULL)
return 0;
if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
NULL)
return 0;
bn_set_all_zero(dest->a);
bn_set_all_zero(dest->b);
return 1;
}
/* Set the curve parameters of an EC_GROUP structure. */
int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
int ret = 0, i;
/* group->field */
if (!BN_copy(group->field, p))
goto err;
i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
if ((i != 5) && (i != 3)) {
ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
goto err;
}
/* group->a */
if (!BN_GF2m_mod_arr(group->a, a, group->poly))
goto err;
if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
== NULL)
goto err;
bn_set_all_zero(group->a);
/* group->b */
if (!BN_GF2m_mod_arr(group->b, b, group->poly))
goto err;
if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
== NULL)
goto err;
bn_set_all_zero(group->b);
ret = 1;
err:
return ret;
}
/*
* Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
* then there values will not be set but the method will return with success.
*/
int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
{
int ret = 0;
if (p != NULL) {
if (!BN_copy(p, group->field))
return 0;
}
if (a != NULL) {
if (!BN_copy(a, group->a))
goto err;
}
if (b != NULL) {
if (!BN_copy(b, group->b))
goto err;
}
ret = 1;
err:
return ret;
}
/*
* Gets the degree of the field. For a curve over GF(2^m) this is the value
* m.
*/
int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
{
return BN_num_bits(group->field) - 1;
}
/*
* Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
* elliptic curve <=> b != 0 (mod p)
*/
int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
BN_CTX *ctx)
{
int ret = 0;
BIGNUM *b;
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
ERR_R_MALLOC_FAILURE);
goto err;
}
}
BN_CTX_start(ctx);
b = BN_CTX_get(ctx);
if (b == NULL)
goto err;
if (!BN_GF2m_mod_arr(b, group->b, group->poly))
goto err;
/*
* check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
* curve <=> b != 0 (mod p)
*/
if (BN_is_zero(b))
goto err;
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Initializes an EC_POINT. */
int ec_GF2m_simple_point_init(EC_POINT *point)
{
point->X = BN_new();
point->Y = BN_new();
point->Z = BN_new();
if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
BN_free(point->X);
BN_free(point->Y);
BN_free(point->Z);
return 0;
}
return 1;
}
/* Frees an EC_POINT. */
void ec_GF2m_simple_point_finish(EC_POINT *point)
{
BN_free(point->X);
BN_free(point->Y);
BN_free(point->Z);
}
/* Clears and frees an EC_POINT. */
void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
{
BN_clear_free(point->X);
BN_clear_free(point->Y);
BN_clear_free(point->Z);
point->Z_is_one = 0;
}
/*
* Copy the contents of one EC_POINT into another. Assumes dest is
* initialized.
*/
int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
{
if (!BN_copy(dest->X, src->X))
return 0;
if (!BN_copy(dest->Y, src->Y))
return 0;
if (!BN_copy(dest->Z, src->Z))
return 0;
dest->Z_is_one = src->Z_is_one;
dest->curve_name = src->curve_name;
return 1;
}
/*
* Set an EC_POINT to the point at infinity. A point at infinity is
* represented by having Z=0.
*/
int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
EC_POINT *point)
{
point->Z_is_one = 0;
BN_zero(point->Z);
return 1;
}
/*
* Set the coordinates of an EC_POINT using affine coordinates. Note that
* the simple implementation only uses affine coordinates.
*/
int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y, BN_CTX *ctx)
{
int ret = 0;
if (x == NULL || y == NULL) {
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (!BN_copy(point->X, x))
goto err;
BN_set_negative(point->X, 0);
if (!BN_copy(point->Y, y))
goto err;
BN_set_negative(point->Y, 0);
if (!BN_copy(point->Z, BN_value_one()))
goto err;
BN_set_negative(point->Z, 0);
point->Z_is_one = 1;
ret = 1;
err:
return ret;
}
/*
* Gets the affine coordinates of an EC_POINT. Note that the simple
* implementation only uses affine coordinates.
*/
int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx)
{
int ret = 0;
if (EC_POINT_is_at_infinity(group, point)) {
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
EC_R_POINT_AT_INFINITY);
return 0;
}
if (BN_cmp(point->Z, BN_value_one())) {
ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (x != NULL) {
if (!BN_copy(x, point->X))
goto err;
BN_set_negative(x, 0);
}
if (y != NULL) {
if (!BN_copy(y, point->Y))
goto err;
BN_set_negative(y, 0);
}
ret = 1;
err:
return ret;
}
/*
* Computes a + b and stores the result in r. r could be a or b, a could be
* b. Uses algorithm A.10.2 of IEEE P1363.
*/
int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
int ret = 0;
if (EC_POINT_is_at_infinity(group, a)) {
if (!EC_POINT_copy(r, b))
return 0;
return 1;
}
if (EC_POINT_is_at_infinity(group, b)) {
if (!EC_POINT_copy(r, a))
return 0;
return 1;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
x0 = BN_CTX_get(ctx);
y0 = BN_CTX_get(ctx);
x1 = BN_CTX_get(ctx);
y1 = BN_CTX_get(ctx);
x2 = BN_CTX_get(ctx);
y2 = BN_CTX_get(ctx);
s = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
if (t == NULL)
goto err;
if (a->Z_is_one) {
if (!BN_copy(x0, a->X))
goto err;
if (!BN_copy(y0, a->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx))
goto err;
}
if (b->Z_is_one) {
if (!BN_copy(x1, b->X))
goto err;
if (!BN_copy(y1, b->Y))
goto err;
} else {
if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx))
goto err;
}
if (BN_GF2m_cmp(x0, x1)) {
if (!BN_GF2m_add(t, x0, x1))
goto err;
if (!BN_GF2m_add(s, y0, y1))
goto err;
if (!group->meth->field_div(group, s, s, t, ctx))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, group->a))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, t))
goto err;
} else {
if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
if (!EC_POINT_set_to_infinity(group, r))
goto err;
ret = 1;
goto err;
}
if (!group->meth->field_div(group, s, y1, x1, ctx))
goto err;
if (!BN_GF2m_add(s, s, x1))
goto err;
if (!group->meth->field_sqr(group, x2, s, ctx))
goto err;
if (!BN_GF2m_add(x2, x2, s))
goto err;
if (!BN_GF2m_add(x2, x2, group->a))
goto err;
}
if (!BN_GF2m_add(y2, x1, x2))
goto err;
if (!group->meth->field_mul(group, y2, y2, s, ctx))
goto err;
if (!BN_GF2m_add(y2, y2, x2))
goto err;
if (!BN_GF2m_add(y2, y2, y1))
goto err;
if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/*
* Computes 2 * a and stores the result in r. r could be a. Uses algorithm
* A.10.2 of IEEE P1363.
*/
int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx)
{
return ec_GF2m_simple_add(group, r, a, a, ctx);
}
int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
{
if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
/* point is its own inverse */
return 1;
if (!EC_POINT_make_affine(group, point, ctx))
return 0;
return BN_GF2m_add(point->Y, point->X, point->Y);
}
/* Indicates whether the given point is the point at infinity. */
int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
const EC_POINT *point)
{
return BN_is_zero(point->Z);
}
/*-
* Determines whether the given EC_POINT is an actual point on the curve defined
* in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
* y^2 + x*y = x^3 + a*x^2 + b.
*/
int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx)
{
int ret = -1;
BN_CTX *new_ctx = NULL;
BIGNUM *lh, *y2;
int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
const BIGNUM *, BN_CTX *);
int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
if (EC_POINT_is_at_infinity(group, point))
return 1;
field_mul = group->meth->field_mul;
field_sqr = group->meth->field_sqr;
/* only support affine coordinates */
if (!point->Z_is_one)
return -1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
y2 = BN_CTX_get(ctx);
lh = BN_CTX_get(ctx);
if (lh == NULL)
goto err;
/*-
* We have a curve defined by a Weierstrass equation
* y^2 + x*y = x^3 + a*x^2 + b.
* <=> x^3 + a*x^2 + x*y + b + y^2 = 0
* <=> ((x + a) * x + y ) * x + b + y^2 = 0
*/
if (!BN_GF2m_add(lh, point->X, group->a))
goto err;
if (!field_mul(group, lh, lh, point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, point->Y))
goto err;
if (!field_mul(group, lh, lh, point->X, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, group->b))
goto err;
if (!field_sqr(group, y2, point->Y, ctx))
goto err;
if (!BN_GF2m_add(lh, lh, y2))
goto err;
ret = BN_is_zero(lh);
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/*-
* Indicates whether two points are equal.
* Return values:
* -1 error
* 0 equal (in affine coordinates)
* 1 not equal
*/
int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx)
{
BIGNUM *aX, *aY, *bX, *bY;
BN_CTX *new_ctx = NULL;
int ret = -1;
if (EC_POINT_is_at_infinity(group, a)) {
return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
}
if (EC_POINT_is_at_infinity(group, b))
return 1;
if (a->Z_is_one && b->Z_is_one) {
return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return -1;
}
BN_CTX_start(ctx);
aX = BN_CTX_get(ctx);
aY = BN_CTX_get(ctx);
bX = BN_CTX_get(ctx);
bY = BN_CTX_get(ctx);
if (bY == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx))
goto err;
if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx))
goto err;
ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/* Forces the given EC_POINT to internally use affine coordinates. */
int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
BN_CTX *ctx)
{
BN_CTX *new_ctx = NULL;
BIGNUM *x, *y;
int ret = 0;
if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
return 1;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
}
BN_CTX_start(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL)
goto err;
if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx))
goto err;
if (!BN_copy(point->X, x))
goto err;
if (!BN_copy(point->Y, y))
goto err;
if (!BN_one(point->Z))
goto err;
point->Z_is_one = 1;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
/*
* Forces each of the EC_POINTs in the given array to use affine coordinates.
*/
int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
EC_POINT *points[], BN_CTX *ctx)
{
size_t i;
for (i = 0; i < num; i++) {
if (!group->meth->make_affine(group, points[i], ctx))
return 0;
}
return 1;
}
/* Wrapper to simple binary polynomial field multiplication implementation. */
int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
}
/* Wrapper to simple binary polynomial field squaring implementation. */
int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *a, BN_CTX *ctx)
{
return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
}
/* Wrapper to simple binary polynomial field division implementation. */
int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
return BN_GF2m_mod_div(r, a, b, group->field, ctx);
}
#endif