2004-11-26 15:07:50 +00:00
|
|
|
// ====================================================================
|
|
|
|
// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
|
|
|
// project.
|
|
|
|
//
|
|
|
|
// Rights for redistribution and usage in source and binary forms are
|
|
|
|
// granted according to the OpenSSL license. Warranty of any kind is
|
|
|
|
// disclaimed.
|
|
|
|
// ====================================================================
|
|
|
|
|
2005-06-26 16:14:22 +00:00
|
|
|
.ident "rc4-ia64.S, Version 2.0"
|
2004-11-26 15:07:50 +00:00
|
|
|
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
|
|
|
|
|
|
|
|
// What's wrong with compiler generated code? Because of the nature of
|
|
|
|
// C language, compiler doesn't [dare to] reorder load and stores. But
|
|
|
|
// being memory-bound, RC4 should benefit from reorder [on in-order-
|
|
|
|
// execution core such as IA-64]. But what can we reorder? At the very
|
|
|
|
// least we can safely reorder references to key schedule in respect
|
2004-12-02 10:07:55 +00:00
|
|
|
// to input and output streams. Secondly, from the first [close] glance
|
|
|
|
// it appeared that it's possible to pull up some references to
|
|
|
|
// elements of the key schedule itself. Original rationale ["prior
|
|
|
|
// loads are not safe only for "degenerated" key schedule, when some
|
|
|
|
// elements equal to the same value"] was kind of sloppy. I should have
|
|
|
|
// formulated as it really was: if we assume that pulling up reference
|
|
|
|
// to key[x+1] is not safe, then it would mean that key schedule would
|
|
|
|
// "degenerate," which is never the case. The problem is that this
|
|
|
|
// holds true in respect to references to key[x], but not to key[y].
|
|
|
|
// Legitimate "collisions" do occur within every 256^2 bytes window.
|
|
|
|
// Fortunately there're enough free instruction slots to keep prior
|
|
|
|
// reference to key[x+1], detect "collision" and compensate for it.
|
2005-06-26 16:14:22 +00:00
|
|
|
// All this without sacrificing a single clock cycle:-) Throughput is
|
|
|
|
// ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated
|
|
|
|
// code and +30% - if compared to HP-UX C. Unrolling loop below should
|
|
|
|
// give >30% on top of that...
|
2004-11-26 15:07:50 +00:00
|
|
|
|
|
|
|
.text
|
|
|
|
.explicit
|
|
|
|
|
|
|
|
#if defined(_HPUX_SOURCE) && !defined(_LP64)
|
|
|
|
# define ADDP addp4
|
|
|
|
#else
|
|
|
|
# define ADDP add
|
|
|
|
#endif
|
|
|
|
|
2005-06-26 16:14:22 +00:00
|
|
|
#ifndef SZ
|
2004-11-26 15:07:50 +00:00
|
|
|
#define SZ 4 // this is set to sizeof(RC4_INT)
|
2005-06-26 16:14:22 +00:00
|
|
|
#endif
|
2004-11-26 15:07:50 +00:00
|
|
|
// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
|
|
|
|
// assembler implementation, while SZ==1 code is ~30% slower.
|
|
|
|
#if SZ==1 // RC4_INT is unsigned char
|
|
|
|
# define LDKEY ld1
|
|
|
|
# define STKEY st1
|
|
|
|
# define OFF 0
|
|
|
|
#elif SZ==4 // RC4_INT is unsigned int
|
|
|
|
# define LDKEY ld4
|
|
|
|
# define STKEY st4
|
|
|
|
# define OFF 2
|
|
|
|
#elif SZ==8 // RC4_INT is unsigned long
|
|
|
|
# define LDKEY ld8
|
|
|
|
# define STKEY st8
|
|
|
|
# define OFF 3
|
|
|
|
#endif
|
|
|
|
|
|
|
|
out=r8; // [expanded] output pointer
|
|
|
|
inp=r9; // [expanded] output pointer
|
|
|
|
prsave=r10;
|
|
|
|
key=r28; // [expanded] pointer to RC4_KEY
|
|
|
|
ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]
|
|
|
|
xx=r30;
|
|
|
|
yy=r31;
|
|
|
|
|
|
|
|
// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);
|
|
|
|
.global RC4#
|
|
|
|
.proc RC4#
|
|
|
|
.align 32
|
|
|
|
.skip 16
|
|
|
|
RC4:
|
|
|
|
.prologue
|
|
|
|
.save ar.pfs,r2
|
|
|
|
{ .mii; alloc r2=ar.pfs,4,12,0,16
|
2007-09-07 12:27:50 +00:00
|
|
|
.save pr,prsave
|
2004-11-26 15:07:50 +00:00
|
|
|
mov prsave=pr
|
|
|
|
ADDP key=0,in0 };;
|
|
|
|
{ .mib; cmp.eq p6,p0=0,in1 // len==0?
|
2007-09-07 12:27:50 +00:00
|
|
|
.save ar.lc,r3
|
2004-11-26 15:07:50 +00:00
|
|
|
mov r3=ar.lc
|
|
|
|
(p6) br.ret.spnt.many b0 };; // emergency exit
|
|
|
|
|
|
|
|
.body
|
|
|
|
.rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];
|
|
|
|
|
|
|
|
{ .mib; LDKEY xx=[key],SZ // load key->x
|
|
|
|
add in1=-1,in1 // adjust len for loop counter
|
|
|
|
nop.b 0 }
|
|
|
|
{ .mib; ADDP inp=0,in2
|
|
|
|
ADDP out=0,in3
|
|
|
|
brp.loop.imp .Ltop,.Lexit-16 };;
|
|
|
|
{ .mmi; LDKEY yy=[key] // load key->y
|
2005-06-26 16:14:22 +00:00
|
|
|
add ksch=SZ,key
|
2004-11-26 15:07:50 +00:00
|
|
|
mov ar.lc=in1 }
|
2004-12-02 10:07:55 +00:00
|
|
|
{ .mmi; mov key_y[1]=r0 // guarantee inequality
|
|
|
|
// in first iteration
|
2004-11-26 15:07:50 +00:00
|
|
|
add xx=1,xx
|
|
|
|
mov pr.rot=1<<16 };;
|
|
|
|
{ .mii; nop.m 0
|
2005-06-26 16:14:22 +00:00
|
|
|
dep key_x[1]=xx,r0,OFF,8
|
2004-11-26 15:07:50 +00:00
|
|
|
mov ar.ec=3 };; // note that epilogue counter
|
|
|
|
// is off by 1. I compensate
|
|
|
|
// for this at exit...
|
|
|
|
.Ltop:
|
2005-06-26 16:14:22 +00:00
|
|
|
// The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which
|
2004-11-26 15:07:50 +00:00
|
|
|
// theoretically gives asymptotic performance of clock frequency
|
2005-06-26 16:14:22 +00:00
|
|
|
// divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is
|
|
|
|
// for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently
|
|
|
|
// splits the last bundle and you end up with 5*n spin-rate:-(
|
|
|
|
// Originally the loop was scheduled for 3*n and relied on key
|
|
|
|
// schedule to be aligned at 256*sizeof(RC4_INT) boundary. But
|
|
|
|
// *(out++)=dat, which maps to st1, had same effect [inadvertent
|
|
|
|
// bundle split] and holded the loop back. Rescheduling for 4*n
|
|
|
|
// made it possible to eliminate dependence on specific alignment
|
|
|
|
// and allow OpenSSH keep "abusing" our API. Reaching for 3*n would
|
|
|
|
// require unrolling, sticking to variable shift instruction for
|
|
|
|
// collecting output [to avoid starvation for integer shifter] and
|
|
|
|
// copying of key schedule to controlled place in stack [so that
|
|
|
|
// deposit instruction can serve as substitute for whole
|
|
|
|
// key->data+((x&255)<<log2(sizeof(key->data[0])))]...
|
2004-11-26 15:07:50 +00:00
|
|
|
{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
|
|
|
|
(p16) add xx=1,xx // x++
|
2005-06-26 16:14:22 +00:00
|
|
|
(p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF
|
|
|
|
{ .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255]
|
|
|
|
(p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255]
|
|
|
|
{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
|
|
|
|
(p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
|
|
|
|
(p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF
|
|
|
|
{ .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255]
|
|
|
|
(p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };;
|
2004-11-26 15:07:50 +00:00
|
|
|
{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
|
2005-06-26 16:14:22 +00:00
|
|
|
(p16) ld1 dat[0]=[inp],1 } // dat=*(inp++)
|
2004-12-02 10:07:55 +00:00
|
|
|
.pred.rel "mutex",p20,p21
|
|
|
|
{ .mmi; (p21) add yy=yy,tx[1] // (p16)
|
|
|
|
(p20) add yy=yy,tx[0] // (p16) y+=tx
|
|
|
|
(p21) mov tx[0]=tx[1] };; // (p16)
|
2004-11-26 15:07:50 +00:00
|
|
|
{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
|
|
|
|
(p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
|
2005-06-26 16:14:22 +00:00
|
|
|
(p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255]
|
2004-11-26 15:07:50 +00:00
|
|
|
{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
|
|
|
|
(p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
|
|
|
|
br.ctop.sptk .Ltop };;
|
|
|
|
.Lexit:
|
|
|
|
{ .mib; STKEY [key]=yy,-SZ // save key->y
|
|
|
|
mov pr=prsave,0x1ffff
|
|
|
|
nop.b 0 }
|
|
|
|
{ .mib; st1 [out]=dat[3],1 // compensate for truncated
|
|
|
|
// epilogue counter
|
|
|
|
add xx=-1,xx
|
|
|
|
nop.b 0 };;
|
|
|
|
{ .mib; STKEY [key]=xx // save key->x
|
|
|
|
mov ar.lc=r3
|
|
|
|
br.ret.sptk.many b0 };;
|
|
|
|
.endp RC4#
|