openssl/crypto/rand/drbg_ctr.c

439 lines
13 KiB
C
Raw Normal View History

/*
* Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "internal/thread_once.h"
#include "internal/thread_once.h"
#include "rand_lcl.h"
/*
* Implementation of NIST SP 800-90A CTR DRBG.
*/
static void inc_128(RAND_DRBG_CTR *ctr)
{
int i;
unsigned char c;
unsigned char *p = &ctr->V[15];
for (i = 0; i < 16; i++, p--) {
c = *p;
c++;
*p = c;
if (c != 0) {
/* If we didn't wrap around, we're done. */
break;
}
}
}
static void ctr_XOR(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen)
{
size_t i, n;
if (in == NULL || inlen == 0)
return;
/*
* Any zero padding will have no effect on the result as we
* are XORing. So just process however much input we have.
*/
n = inlen < ctr->keylen ? inlen : ctr->keylen;
for (i = 0; i < n; i++)
ctr->K[i] ^= in[i];
if (inlen <= ctr->keylen)
return;
n = inlen - ctr->keylen;
if (n > 16) {
/* Should never happen */
n = 16;
}
for (i = 0; i < n; i++)
ctr->V[i] ^= in[i + ctr->keylen];
}
/*
* Process a complete block using BCC algorithm of SP 800-90A 10.3.3
*/
__owur static int ctr_BCC_block(RAND_DRBG_CTR *ctr, unsigned char *out,
const unsigned char *in)
{
int i, outlen = AES_BLOCK_SIZE;
for (i = 0; i < 16; i++)
out[i] ^= in[i];
if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
return 1;
}
/*
* Handle several BCC operations for as much data as we need for K and X
*/
__owur static int ctr_BCC_blocks(RAND_DRBG_CTR *ctr, const unsigned char *in)
{
if (!ctr_BCC_block(ctr, ctr->KX, in)
|| !ctr_BCC_block(ctr, ctr->KX + 16, in))
return 0;
if (ctr->keylen != 16 && !ctr_BCC_block(ctr, ctr->KX + 32, in))
return 0;
return 1;
}
/*
* Initialise BCC blocks: these have the value 0,1,2 in leftmost positions:
* see 10.3.1 stage 7.
*/
__owur static int ctr_BCC_init(RAND_DRBG_CTR *ctr)
{
memset(ctr->KX, 0, 48);
memset(ctr->bltmp, 0, 16);
if (!ctr_BCC_block(ctr, ctr->KX, ctr->bltmp))
return 0;
ctr->bltmp[3] = 1;
if (!ctr_BCC_block(ctr, ctr->KX + 16, ctr->bltmp))
return 0;
if (ctr->keylen != 16) {
ctr->bltmp[3] = 2;
if (!ctr_BCC_block(ctr, ctr->KX + 32, ctr->bltmp))
return 0;
}
return 1;
}
/*
* Process several blocks into BCC algorithm, some possibly partial
*/
__owur static int ctr_BCC_update(RAND_DRBG_CTR *ctr,
const unsigned char *in, size_t inlen)
{
if (in == NULL || inlen == 0)
return 1;
/* If we have partial block handle it first */
if (ctr->bltmp_pos) {
size_t left = 16 - ctr->bltmp_pos;
/* If we now have a complete block process it */
if (inlen >= left) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, left);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
ctr->bltmp_pos = 0;
inlen -= left;
in += left;
}
}
/* Process zero or more complete blocks */
for (; inlen >= 16; in += 16, inlen -= 16) {
if (!ctr_BCC_blocks(ctr, in))
return 0;
}
/* Copy any remaining partial block to the temporary buffer */
if (inlen > 0) {
memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen);
ctr->bltmp_pos += inlen;
}
return 1;
}
__owur static int ctr_BCC_final(RAND_DRBG_CTR *ctr)
{
if (ctr->bltmp_pos) {
memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos);
if (!ctr_BCC_blocks(ctr, ctr->bltmp))
return 0;
}
return 1;
}
__owur static int ctr_df(RAND_DRBG_CTR *ctr,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *in3, size_t in3len)
{
static unsigned char c80 = 0x80;
size_t inlen;
unsigned char *p = ctr->bltmp;
int outlen = AES_BLOCK_SIZE;
if (!ctr_BCC_init(ctr))
return 0;
if (in1 == NULL)
in1len = 0;
if (in2 == NULL)
in2len = 0;
if (in3 == NULL)
in3len = 0;
inlen = in1len + in2len + in3len;
/* Initialise L||N in temporary block */
*p++ = (inlen >> 24) & 0xff;
*p++ = (inlen >> 16) & 0xff;
*p++ = (inlen >> 8) & 0xff;
*p++ = inlen & 0xff;
/* NB keylen is at most 32 bytes */
*p++ = 0;
*p++ = 0;
*p++ = 0;
*p = (unsigned char)((ctr->keylen + 16) & 0xff);
ctr->bltmp_pos = 8;
if (!ctr_BCC_update(ctr, in1, in1len)
|| !ctr_BCC_update(ctr, in2, in2len)
|| !ctr_BCC_update(ctr, in3, in3len)
|| !ctr_BCC_update(ctr, &c80, 1)
|| !ctr_BCC_final(ctr))
return 0;
/* Set up key K */
if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->KX, NULL, 1))
return 0;
/* X follows key K */
if (!EVP_CipherUpdate(ctr->ctx, ctr->KX, &outlen, ctr->KX + ctr->keylen,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (!EVP_CipherUpdate(ctr->ctx, ctr->KX + 16, &outlen, ctr->KX,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
if (ctr->keylen != 16)
if (!EVP_CipherUpdate(ctr->ctx, ctr->KX + 32, &outlen, ctr->KX + 16,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
return 1;
}
/*
* NB the no-df Update in SP800-90A specifies a constant input length
* of seedlen, however other uses of this algorithm pad the input with
* zeroes if necessary and have up to two parameters XORed together,
* so we handle both cases in this function instead.
*/
__owur static int ctr_update(RAND_DRBG *drbg,
const unsigned char *in1, size_t in1len,
const unsigned char *in2, size_t in2len,
const unsigned char *nonce, size_t noncelen)
{
RAND_DRBG_CTR *ctr = &drbg->data.ctr;
int outlen = AES_BLOCK_SIZE;
/* correct key is already set up. */
inc_128(ctr);
if (!EVP_CipherUpdate(ctr->ctx, ctr->K, &outlen, ctr->V, AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
/* If keylen longer than 128 bits need extra encrypt */
if (ctr->keylen != 16) {
inc_128(ctr);
if (!EVP_CipherUpdate(ctr->ctx, ctr->K+16, &outlen, ctr->V,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
}
inc_128(ctr);
if (!EVP_CipherUpdate(ctr->ctx, ctr->V, &outlen, ctr->V, AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0;
/* If 192 bit key part of V is on end of K */
if (ctr->keylen == 24) {
memcpy(ctr->V + 8, ctr->V, 8);
memcpy(ctr->V, ctr->K + 24, 8);
}
if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
/* If no input reuse existing derived value */
if (in1 != NULL || nonce != NULL || in2 != NULL)
if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len))
return 0;
/* If this a reuse input in1len != 0 */
if (in1len)
ctr_XOR(ctr, ctr->KX, drbg->seedlen);
} else {
ctr_XOR(ctr, in1, in1len);
ctr_XOR(ctr, in2, in2len);
}
if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->K, NULL, 1))
return 0;
return 1;
}
__owur static int drbg_ctr_instantiate(RAND_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *nonce, size_t noncelen,
const unsigned char *pers, size_t perslen)
{
RAND_DRBG_CTR *ctr = &drbg->data.ctr;
if (entropy == NULL)
return 0;
memset(ctr->K, 0, sizeof(ctr->K));
memset(ctr->V, 0, sizeof(ctr->V));
if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->K, NULL, 1))
return 0;
if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen))
return 0;
return 1;
}
__owur static int drbg_ctr_reseed(RAND_DRBG *drbg,
const unsigned char *entropy, size_t entropylen,
const unsigned char *adin, size_t adinlen)
{
if (entropy == NULL)
return 0;
if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0))
return 0;
return 1;
}
__owur static int drbg_ctr_generate(RAND_DRBG *drbg,
unsigned char *out, size_t outlen,
const unsigned char *adin, size_t adinlen)
{
RAND_DRBG_CTR *ctr = &drbg->data.ctr;
if (adin != NULL && adinlen != 0) {
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
/* This means we reuse derived value */
if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
adin = NULL;
adinlen = 1;
}
} else {
adinlen = 0;
}
for ( ; ; ) {
int outl = AES_BLOCK_SIZE;
inc_128(ctr);
if (outlen < 16) {
/* Use K as temp space as it will be updated */
if (!EVP_CipherUpdate(ctr->ctx, ctr->K, &outl, ctr->V,
AES_BLOCK_SIZE)
|| outl != AES_BLOCK_SIZE)
return 0;
memcpy(out, ctr->K, outlen);
break;
}
if (!EVP_CipherUpdate(ctr->ctx, out, &outl, ctr->V, AES_BLOCK_SIZE)
|| outl != AES_BLOCK_SIZE)
return 0;
out += 16;
outlen -= 16;
if (outlen == 0)
break;
}
if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0))
return 0;
return 1;
}
static int drbg_ctr_uninstantiate(RAND_DRBG *drbg)
{
EVP_CIPHER_CTX_free(drbg->data.ctr.ctx);
EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_df);
OPENSSL_cleanse(&drbg->data.ctr, sizeof(drbg->data.ctr));
return 1;
}
static RAND_DRBG_METHOD drbg_ctr_meth = {
drbg_ctr_instantiate,
drbg_ctr_reseed,
drbg_ctr_generate,
drbg_ctr_uninstantiate
};
int drbg_ctr_init(RAND_DRBG *drbg)
{
RAND_DRBG_CTR *ctr = &drbg->data.ctr;
size_t keylen;
switch (drbg->type) {
default:
/* This can't happen, but silence the compiler warning. */
return 0;
case NID_aes_128_ctr:
keylen = 16;
ctr->cipher = EVP_aes_128_ecb();
break;
case NID_aes_192_ctr:
keylen = 24;
ctr->cipher = EVP_aes_192_ecb();
break;
case NID_aes_256_ctr:
keylen = 32;
ctr->cipher = EVP_aes_256_ecb();
break;
}
drbg->meth = &drbg_ctr_meth;
ctr->keylen = keylen;
if (ctr->ctx == NULL)
ctr->ctx = EVP_CIPHER_CTX_new();
if (ctr->ctx == NULL)
return 0;
drbg->strength = keylen * 8;
drbg->seedlen = keylen + 16;
if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
/* df initialisation */
static const unsigned char df_key[32] = {
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,
0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f
};
if (ctr->ctx_df == NULL)
ctr->ctx_df = EVP_CIPHER_CTX_new();
if (ctr->ctx_df == NULL)
return 0;
/* Set key schedule for df_key */
if (!EVP_CipherInit_ex(ctr->ctx_df, ctr->cipher, NULL, df_key, NULL, 1))
return 0;
drbg->min_entropylen = ctr->keylen;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
drbg->max_entropylen = DRBG_MINMAX_FACTOR * drbg->min_entropylen;
drbg->min_noncelen = drbg->min_entropylen / 2;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
drbg->max_noncelen = DRBG_MINMAX_FACTOR * drbg->min_noncelen;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
} else {
drbg->min_entropylen = drbg->seedlen;
drbg->max_entropylen = drbg->seedlen;
/* Nonce not used */
drbg->min_noncelen = 0;
drbg->max_noncelen = 0;
drbg->max_perslen = drbg->seedlen;
drbg->max_adinlen = drbg->seedlen;
}
drbg->max_request = 1 << 16;
return 1;
}