openssl/crypto/rand/rand_lib.c

408 lines
11 KiB
C
Raw Normal View History

/*
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/opensslconf.h>
#include "internal/rand_int.h"
#include <openssl/engine.h>
#include "internal/thread_once.h"
#include "rand_lcl.h"
#ifndef OPENSSL_NO_ENGINE
/* non-NULL if default_RAND_meth is ENGINE-provided */
static ENGINE *funct_ref;
static CRYPTO_RWLOCK *rand_engine_lock;
#endif
static CRYPTO_RWLOCK *rand_meth_lock;
static const RAND_METHOD *default_RAND_meth;
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
RAND_BYTES_BUFFER rand_bytes;
int rand_fork_count;
#ifdef OPENSSL_RAND_SEED_RDTSC
/*
* IMPORTANT NOTE: It is not currently possible to use this code
* because we are not sure about the amount of randomness it provides.
* Some SP900 tests have been run, but there is internal skepticism.
* So for now this code is not used.
*/
# error "RDTSC enabled? Should not be possible!"
/*
* Since we get some randomness from the low-order bits of the
* high-speec clock, it can help. But don't return a status since
* it's not sufficient to indicate whether or not the seeding was
* done.
*/
void rand_read_tsc(RAND_poll_fn cb, void *arg)
{
unsigned char c;
int i;
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
for (i = 0; i < TSC_READ_COUNT; i++) {
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
cb(arg, &c, 1, 0.5);
}
}
}
#endif
#ifdef OPENSSL_RAND_SEED_RDCPU
size_t OPENSSL_ia32_rdseed_bytes(char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(char *buf, size_t len);
extern unsigned int OPENSSL_ia32cap_P[];
int rand_read_cpu(RAND_poll_fn cb, void *arg)
{
char buff[RANDOMNESS_NEEDED];
/* If RDSEED is available, use that. */
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
if (OPENSSL_ia32_rdseed_bytes(buff, sizeof(buff)) == sizeof(buff)) {
cb(arg, buff, (int)sizeof(buff), sizeof(buff));
return 1;
}
}
/* Second choice is RDRAND. */
if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
if (OPENSSL_ia32_rdrand_bytes(buff, sizeof(buff)) == sizeof(buff)) {
cb(arg, buff, (int)sizeof(buff), sizeof(buff));
return 1;
}
}
return 0;
}
#endif
/*
* DRBG has two sets of callbacks; we only discuss the "entropy" one
* here. When the DRBG needs additional randomness bits (called entropy
* in the NIST document), it calls the get_entropy callback which fills in
* a pointer and returns the number of bytes. When the DRBG is finished with
* the buffer, it calls the cleanup_entropy callback, with the value of
* the buffer that the get_entropy callback filled in.
*
* Get entropy from the system, via RAND_poll if needed. The |entropy|
* is the bits of randomness required, and is expected to fit into a buffer
* of |min_len|..|max__len| size. We assume we're getting high-quality
* randomness from the system, and that |min_len| bytes will do.
*/
size_t drbg_entropy_from_system(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
int i;
if (min_len > (size_t)drbg->size) {
/* Should not happen. See comment near RANDOMNESS_NEEDED. */
min_len = drbg->size;
}
if (drbg->filled) {
/* Re-use what we have. */
*pout = drbg->randomness;
return drbg->size;
}
drbg->randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size)
: OPENSSL_malloc(drbg->size);
/* If we don't have enough, try to get more. */
CRYPTO_THREAD_write_lock(rand_bytes.lock);
for (i = RAND_POLL_RETRIES; rand_bytes.curr < min_len && --i >= 0; ) {
CRYPTO_THREAD_unlock(rand_bytes.lock);
RAND_poll();
CRYPTO_THREAD_write_lock(rand_bytes.lock);
}
/* Get desired amount, but no more than we have. */
if (min_len > rand_bytes.curr)
min_len = rand_bytes.curr;
if (min_len != 0) {
memcpy(drbg->randomness, rand_bytes.buff, min_len);
drbg->filled = 1;
/* Update amount left and shift it down. */
rand_bytes.curr -= min_len;
if (rand_bytes.curr != 0)
memmove(rand_bytes.buff, &rand_bytes.buff[min_len], rand_bytes.curr);
}
CRYPTO_THREAD_unlock(rand_bytes.lock);
*pout = drbg->randomness;
return min_len;
}
size_t drbg_entropy_from_parent(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
int st;
if (min_len > (size_t)drbg->size) {
/* Should not happen. See comment near RANDOMNESS_NEEDED. */
min_len = drbg->size;
}
drbg->randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size)
: OPENSSL_malloc(drbg->size);
/* Get random from parent, include our state as additional input. */
st = RAND_DRBG_generate(drbg->parent, drbg->randomness, min_len, 0,
(unsigned char *)drbg, sizeof(*drbg));
if (st == 0)
return 0;
drbg->filled = 1;
*pout = drbg->randomness;
return min_len;
}
void drbg_release_entropy(RAND_DRBG *drbg, unsigned char *out)
{
drbg->filled = 0;
if (drbg->secure)
OPENSSL_secure_clear_free(drbg->randomness, drbg->size);
else
OPENSSL_clear_free(drbg->randomness, drbg->size);
drbg->randomness = NULL;
}
/*
* Set up a global DRBG.
*/
static int setup_drbg(RAND_DRBG *drbg)
{
int ret = 1;
drbg->lock = CRYPTO_THREAD_lock_new();
ret &= drbg->lock != NULL;
drbg->size = RANDOMNESS_NEEDED;
drbg->secure = CRYPTO_secure_malloc_initialized();
drbg->randomness = NULL;
/* If you change these parameters, see RANDOMNESS_NEEDED */
ret &= RAND_DRBG_set(drbg,
NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF) == 1;
ret &= RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_system,
drbg_release_entropy, NULL, NULL) == 1;
return ret;
}
static void free_drbg(RAND_DRBG *drbg)
{
CRYPTO_THREAD_lock_free(drbg->lock);
RAND_DRBG_uninstantiate(drbg);
}
void rand_fork()
{
rand_fork_count++;
}
DEFINE_RUN_ONCE_STATIC(do_rand_init)
{
int ret = 1;
#ifndef OPENSSL_NO_ENGINE
rand_engine_lock = CRYPTO_THREAD_lock_new();
ret &= rand_engine_lock != NULL;
#endif
rand_meth_lock = CRYPTO_THREAD_lock_new();
ret &= rand_meth_lock != NULL;
rand_bytes.lock = CRYPTO_THREAD_lock_new();
ret &= rand_bytes.lock != NULL;
rand_bytes.curr = 0;
rand_bytes.size = MAX_RANDOMNESS_HELD;
rand_bytes.secure = CRYPTO_secure_malloc_initialized();
rand_bytes.buff = rand_bytes.secure
? OPENSSL_secure_malloc(rand_bytes.size)
: OPENSSL_malloc(rand_bytes.size);
ret &= rand_bytes.buff != NULL;
ret &= setup_drbg(&rand_drbg);
ret &= setup_drbg(&priv_drbg);
return ret;
}
void rand_cleanup_int(void)
{
const RAND_METHOD *meth = default_RAND_meth;
if (meth != NULL && meth->cleanup != NULL)
meth->cleanup();
RAND_set_rand_method(NULL);
#ifndef OPENSSL_NO_ENGINE
CRYPTO_THREAD_lock_free(rand_engine_lock);
#endif
CRYPTO_THREAD_lock_free(rand_meth_lock);
CRYPTO_THREAD_lock_free(rand_bytes.lock);
if (rand_bytes.secure)
OPENSSL_secure_clear_free(rand_bytes.buff, rand_bytes.size);
else
OPENSSL_clear_free(rand_bytes.buff, rand_bytes.size);
free_drbg(&rand_drbg);
free_drbg(&priv_drbg);
}
/*
* RAND_poll_ex() gets a function pointer to call when it has random bytes.
* RAND_poll() sets the function pointer to be a wrapper that calls RAND_add().
*/
static void call_rand_add(void* arg, const void *buf, int num, double r)
{
RAND_add(buf, num, r);
}
int RAND_poll(void)
{
return RAND_poll_ex(call_rand_add, NULL);
}
int RAND_set_rand_method(const RAND_METHOD *meth)
{
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
CRYPTO_THREAD_write_lock(rand_meth_lock);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(funct_ref);
funct_ref = NULL;
#endif
default_RAND_meth = meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return 1;
}
const RAND_METHOD *RAND_get_rand_method(void)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return NULL;
CRYPTO_THREAD_write_lock(rand_meth_lock);
if (default_RAND_meth == NULL) {
#ifndef OPENSSL_NO_ENGINE
ENGINE *e;
/* If we have an engine that can do RAND, use it. */
if ((e = ENGINE_get_default_RAND()) != NULL
&& (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
funct_ref = e;
default_RAND_meth = tmp_meth;
} else {
ENGINE_finish(e);
default_RAND_meth = &rand_meth;
}
#else
default_RAND_meth = &rand_meth;
#endif
}
tmp_meth = default_RAND_meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return tmp_meth;
}
#ifndef OPENSSL_NO_ENGINE
int RAND_set_rand_engine(ENGINE *engine)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
if (engine != NULL) {
if (!ENGINE_init(engine))
return 0;
tmp_meth = ENGINE_get_RAND(engine);
if (tmp_meth == NULL) {
ENGINE_finish(engine);
return 0;
}
}
CRYPTO_THREAD_write_lock(rand_engine_lock);
/* This function releases any prior ENGINE so call it first */
RAND_set_rand_method(tmp_meth);
funct_ref = engine;
CRYPTO_THREAD_unlock(rand_engine_lock);
return 1;
}
#endif
void RAND_seed(const void *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->seed != NULL)
meth->seed(buf, num);
}
void RAND_add(const void *buf, int num, double randomness)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->add != NULL)
meth->add(buf, num, randomness);
}
/*
* This function is not part of RAND_METHOD, so if we're not using
* the default method, then just call RAND_bytes(). Otherwise make
* sure we're instantiated and use the private DRBG.
*/
int RAND_priv_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth != RAND_OpenSSL())
return RAND_bytes(buf, num);
if (priv_drbg.state == DRBG_UNINITIALISED
&& RAND_DRBG_instantiate(&priv_drbg, NULL, 0) == 0)
return 0;
return RAND_DRBG_generate(&priv_drbg, buf, num, 0, NULL, 0);
}
int RAND_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->bytes != NULL)
return meth->bytes(buf, num);
RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
return -1;
}
#if OPENSSL_API_COMPAT < 0x10100000L
int RAND_pseudo_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->pseudorand != NULL)
return meth->pseudorand(buf, num);
return -1;
}
Deprecate RAND_pseudo_bytes The justification for RAND_pseudo_bytes is somewhat dubious, and the reality is that it is frequently being misused. RAND_bytes and RAND_pseudo_bytes in the default implementation both end up calling ssleay_rand_bytes. Both may return -1 in an error condition. If there is insufficient entropy then both will return 0, but RAND_bytes will additionally add an error to the error queue. They both return 1 on success. Therefore the fundamental difference between the two is that one will add an error to the error queue with insufficient entory whilst the other will not. Frequently there are constructions of this form: if(RAND_pseudo_bytes(...) <= 1) goto err; In the above form insufficient entropy is treated as an error anyway, so RAND_bytes is probably the better form to use. This form is also seen: if(!RAND_pseudo_bytes(...)) goto err; This is technically not correct at all since a -1 return value is incorrectly handled - but this form will also treat insufficient entropy as an error. Within libssl it is required that you have correctly seeded your entropy pool and so there seems little benefit in using RAND_pseudo_bytes. Similarly in libcrypto many operations also require a correctly seeded entropy pool and so in most interesting cases you would be better off using RAND_bytes anyway. There is a significant risk of RAND_pseudo_bytes being incorrectly used in scenarios where security can be compromised by insufficient entropy. If you are not using the default implementation, then most engines use the same function to implement RAND_bytes and RAND_pseudo_bytes in any case. Given its misuse, limited benefit, and potential to compromise security, RAND_pseudo_bytes has been deprecated. Reviewed-by: Richard Levitte <levitte@openssl.org>
2015-02-26 13:52:30 +00:00
#endif
int RAND_status(void)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->status != NULL)
return meth->status();
return 0;
}