openssl/crypto/ec/curve448/decaf/point_448.h

766 lines
24 KiB
C
Raw Normal View History

/**
* @file decaf/point_448.h
* @author Mike Hamburg
*
* @copyright
* Copyright (c) 2015-2016 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
*
* @brief A group of prime order p, based on Ed448-Goldilocks.
*
* @warning This file was automatically generated in Python.
* Please do not edit it.
*/
#ifndef __DECAF_POINT_448_H__
#define __DECAF_POINT_448_H__ 1
#include <decaf/common.h>
#ifdef __cplusplus
extern "C" {
#endif
/** @cond internal */
#define DECAF_448_SCALAR_LIMBS ((446-1)/DECAF_WORD_BITS+1)
/** @endcond */
/** The number of bits in a scalar */
#define DECAF_448_SCALAR_BITS 446
/** @cond internal */
#ifndef __DECAF_448_GF_DEFINED__
#define __DECAF_448_GF_DEFINED__ 1
/** @brief Galois field element internal structure */
typedef struct gf_448_s {
decaf_word_t limb[512/DECAF_WORD_BITS];
} __attribute__((aligned(32))) gf_448_s, gf_448_t[1];
#endif /* __DECAF_448_GF_DEFINED__ */
/** @endcond */
/** Number of bytes in a serialized point. */
#define DECAF_448_SER_BYTES 56
/** Number of bytes in an elligated point. For now set the same as SER_BYTES
* but could be different for other curves.
*/
#define DECAF_448_HASH_BYTES 56
/** Number of bytes in a serialized scalar. */
#define DECAF_448_SCALAR_BYTES 56
/** Number of bits in the "which" field of an elligator inverse */
#define DECAF_448_INVERT_ELLIGATOR_WHICH_BITS 3
/** The cofactor the curve would have, if we hadn't removed it */
#define DECAF_448_REMOVED_COFACTOR 4
/** X448 encoding ratio. */
#define DECAF_X448_ENCODE_RATIO 2
/** Number of bytes in an x448 public key */
#define DECAF_X448_PUBLIC_BYTES 56
/** Number of bytes in an x448 private key */
#define DECAF_X448_PRIVATE_BYTES 56
/** Twisted Edwards extended homogeneous coordinates */
typedef struct decaf_448_point_s {
/** @cond internal */
gf_448_t x,y,z,t;
/** @endcond */
} decaf_448_point_t[1];
/** Precomputed table based on a point. Can be trivial implementation. */
struct decaf_448_precomputed_s;
/** Precomputed table based on a point. Can be trivial implementation. */
typedef struct decaf_448_precomputed_s decaf_448_precomputed_s;
/** Size and alignment of precomputed point tables. */
extern const size_t decaf_448_sizeof_precomputed_s DECAF_API_VIS, decaf_448_alignof_precomputed_s DECAF_API_VIS;
/** Scalar is stored packed, because we don't need the speed. */
typedef struct decaf_448_scalar_s {
/** @cond internal */
decaf_word_t limb[DECAF_448_SCALAR_LIMBS];
/** @endcond */
} decaf_448_scalar_t[1];
/** A scalar equal to 1. */
extern const decaf_448_scalar_t decaf_448_scalar_one DECAF_API_VIS;
/** A scalar equal to 0. */
extern const decaf_448_scalar_t decaf_448_scalar_zero DECAF_API_VIS;
/** The identity point on the curve. */
extern const decaf_448_point_t decaf_448_point_identity DECAF_API_VIS;
/** An arbitrarily chosen base point on the curve. */
extern const decaf_448_point_t decaf_448_point_base DECAF_API_VIS;
/** Precomputed table for the base point on the curve. */
extern const struct decaf_448_precomputed_s *decaf_448_precomputed_base DECAF_API_VIS;
/**
* @brief Read a scalar from wire format or from bytes.
*
* @param [in] ser Serialized form of a scalar.
* @param [out] out Deserialized form.
*
* @retval DECAF_SUCCESS The scalar was correctly encoded.
* @retval DECAF_FAILURE The scalar was greater than the modulus,
* and has been reduced modulo that modulus.
*/
decaf_error_t decaf_448_scalar_decode (
decaf_448_scalar_t out,
const unsigned char ser[DECAF_448_SCALAR_BYTES]
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Read a scalar from wire format or from bytes. Reduces mod
* scalar prime.
*
* @param [in] ser Serialized form of a scalar.
* @param [in] ser_len Length of serialized form.
* @param [out] out Deserialized form.
*/
void decaf_448_scalar_decode_long (
decaf_448_scalar_t out,
const unsigned char *ser,
size_t ser_len
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Serialize a scalar to wire format.
*
* @param [out] ser Serialized form of a scalar.
* @param [in] s Deserialized scalar.
*/
void decaf_448_scalar_encode (
unsigned char ser[DECAF_448_SCALAR_BYTES],
const decaf_448_scalar_t s
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_NOINLINE;
/**
* @brief Add two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a+b.
*/
void decaf_448_scalar_add (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Compare two scalars.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @retval DECAF_TRUE The scalars are equal.
* @retval DECAF_FALSE The scalars are not equal.
*/
decaf_bool_t decaf_448_scalar_eq (
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Subtract two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a-b.
*/
void decaf_448_scalar_sub (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two scalars. The scalars may use the same memory.
* @param [in] a One scalar.
* @param [in] b Another scalar.
* @param [out] out a*b.
*/
void decaf_448_scalar_mul (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Halve a scalar. The scalars may use the same memory.
* @param [in] a A scalar.
* @param [out] out a/2.
*/
void decaf_448_scalar_halve (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Invert a scalar. When passed zero, return 0. The input and output may alias.
* @param [in] a A scalar.
* @param [out] out 1/a.
* @return DECAF_SUCCESS The input is nonzero.
*/
decaf_error_t decaf_448_scalar_invert (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Copy a scalar. The scalars may use the same memory, in which
* case this function does nothing.
* @param [in] a A scalar.
* @param [out] out Will become a copy of a.
*/
static inline void DECAF_NONNULL decaf_448_scalar_copy (
decaf_448_scalar_t out,
const decaf_448_scalar_t a
) {
*out = *a;
}
/**
* @brief Set a scalar to an unsigned 64-bit integer.
* @param [in] a An integer.
* @param [out] out Will become equal to a.
*/
void decaf_448_scalar_set_unsigned (
decaf_448_scalar_t out,
uint64_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Encode a point as a sequence of bytes.
*
* @param [out] ser The byte representation of the point.
* @param [in] pt The point to encode.
*/
void decaf_448_point_encode (
uint8_t ser[DECAF_448_SER_BYTES],
const decaf_448_point_t pt
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Decode a point from a sequence of bytes.
*
* Every point has a unique encoding, so not every
* sequence of bytes is a valid encoding. If an invalid
* encoding is given, the output is undefined.
*
* @param [out] pt The decoded point.
* @param [in] ser The serialized version of the point.
* @param [in] allow_identity DECAF_TRUE if the identity is a legal input.
* @retval DECAF_SUCCESS The decoding succeeded.
* @retval DECAF_FAILURE The decoding didn't succeed, because
* ser does not represent a point.
*/
decaf_error_t decaf_448_point_decode (
decaf_448_point_t pt,
const uint8_t ser[DECAF_448_SER_BYTES],
decaf_bool_t allow_identity
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Copy a point. The input and output may alias,
* in which case this function does nothing.
*
* @param [out] a A copy of the point.
* @param [in] b Any point.
*/
static inline void DECAF_NONNULL decaf_448_point_copy (
decaf_448_point_t a,
const decaf_448_point_t b
) {
*a=*b;
}
/**
* @brief Test whether two points are equal. If yes, return
* DECAF_TRUE, else return DECAF_FALSE.
*
* @param [in] a A point.
* @param [in] b Another point.
* @retval DECAF_TRUE The points are equal.
* @retval DECAF_FALSE The points are not equal.
*/
decaf_bool_t decaf_448_point_eq (
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Add two points to produce a third point. The
* input points and output point can be pointers to the same
* memory.
*
* @param [out] sum The sum a+b.
* @param [in] a An addend.
* @param [in] b An addend.
*/
void decaf_448_point_add (
decaf_448_point_t sum,
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Double a point. Equivalent to
* decaf_448_point_add(two_a,a,a), but potentially faster.
*
* @param [out] two_a The sum a+a.
* @param [in] a A point.
*/
void decaf_448_point_double (
decaf_448_point_t two_a,
const decaf_448_point_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Subtract two points to produce a third point. The
* input points and output point can be pointers to the same
* memory.
*
* @param [out] diff The difference a-b.
* @param [in] a The minuend.
* @param [in] b The subtrahend.
*/
void decaf_448_point_sub (
decaf_448_point_t diff,
const decaf_448_point_t a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Negate a point to produce another point. The input
* and output points can use the same memory.
*
* @param [out] nega The negated input point
* @param [in] a The input point.
*/
void decaf_448_point_negate (
decaf_448_point_t nega,
const decaf_448_point_t a
) DECAF_API_VIS DECAF_NONNULL;
/**
* @brief Multiply a base point by a scalar: scaled = scalar*base.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*/
void decaf_448_point_scalarmul (
decaf_448_point_t scaled,
const decaf_448_point_t base,
const decaf_448_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply a base point by a scalar: scaled = scalar*base.
* This function operates directly on serialized forms.
*
* @warning This function is experimental. It may not be supported
* long-term.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
* @param [in] allow_identity Allow the input to be the identity.
* @param [in] short_circuit Allow a fast return if the input is illegal.
*
* @retval DECAF_SUCCESS The scalarmul succeeded.
* @retval DECAF_FAILURE The scalarmul didn't succeed, because
* base does not represent a point.
*/
decaf_error_t decaf_448_direct_scalarmul (
uint8_t scaled[DECAF_448_SER_BYTES],
const uint8_t base[DECAF_448_SER_BYTES],
const decaf_448_scalar_t scalar,
decaf_bool_t allow_identity,
decaf_bool_t short_circuit
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;
/**
* @brief RFC 7748 Diffie-Hellman scalarmul. This function uses a different
* (non-Decaf) encoding.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*
* @retval DECAF_SUCCESS The scalarmul succeeded.
* @retval DECAF_FAILURE The scalarmul didn't succeed, because the base
* point is in a small subgroup.
*/
decaf_error_t decaf_x448 (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t base[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_WARN_UNUSED DECAF_NOINLINE;
/**
* @brief Multiply a point by DECAF_X448_ENCODE_RATIO,
* then encode it like RFC 7748.
*
* This function is mainly used internally, but is exported in case
* it will be useful.
*
* The ratio is necessary because the internal representation doesn't
* track the cofactor information, so on output we must clear the cofactor.
* This would multiply by the cofactor, but in fact internally libdecaf's
* points are always even, so it multiplies by half the cofactor instead.
*
* As it happens, this aligns with the base point definitions; that is,
* if you pass the Decaf/Ristretto base point to this function, the result
* will be DECAF_X448_ENCODE_RATIO times the X448
* base point.
*
* @param [out] out The scaled and encoded point.
* @param [in] p The point to be scaled and encoded.
*/
void decaf_448_point_mul_by_ratio_and_encode_like_x448 (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const decaf_448_point_t p
) DECAF_API_VIS DECAF_NONNULL;
/** The base point for X448 Diffie-Hellman */
extern const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] DECAF_API_VIS;
/**
* @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses
* a different (non-Decaf) encoding.
*
* @deprecated Renamed to decaf_x448_derive_public_key.
* I have no particular timeline for removing this name.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] scalar The scalar to multiply by.
*/
void decaf_x448_generate_key (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_DEPRECATED("Renamed to decaf_x448_derive_public_key");
/**
* @brief RFC 7748 Diffie-Hellman base point scalarmul. This function uses
* a different (non-Decaf) encoding.
*
* Does exactly the same thing as decaf_x448_generate_key,
* but has a better name.
*
* @param [out] scaled The scaled point base*scalar
* @param [in] scalar The scalar to multiply by.
*/
void decaf_x448_derive_public_key (
uint8_t out[DECAF_X448_PUBLIC_BYTES],
const uint8_t scalar[DECAF_X448_PRIVATE_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/* FUTURE: uint8_t decaf_448_encode_like_curve448) */
/**
* @brief Precompute a table for fast scalar multiplication.
* Some implementations do not include precomputed points; for
* those implementations, this implementation simply copies the
* point.
*
* @param [out] a A precomputed table of multiples of the point.
* @param [in] b Any point.
*/
void decaf_448_precompute (
decaf_448_precomputed_s *a,
const decaf_448_point_t b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply a precomputed base point by a scalar:
* scaled = scalar*base.
* Some implementations do not include precomputed points; for
* those implementations, this function is the same as
* decaf_448_point_scalarmul
*
* @param [out] scaled The scaled point base*scalar
* @param [in] base The point to be scaled.
* @param [in] scalar The scalar to multiply by.
*/
void decaf_448_precomputed_scalarmul (
decaf_448_point_t scaled,
const decaf_448_precomputed_s *base,
const decaf_448_scalar_t scalar
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two base points by two scalars:
* scaled = scalar1*base1 + scalar2*base2.
*
* Equivalent to two calls to decaf_448_point_scalarmul, but may be
* faster.
*
* @param [out] combo The linear combination scalar1*base1 + scalar2*base2.
* @param [in] base1 A first point to be scaled.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] base2 A second point to be scaled.
* @param [in] scalar2 A second scalar to multiply by.
*/
void decaf_448_point_double_scalarmul (
decaf_448_point_t combo,
const decaf_448_point_t base1,
const decaf_448_scalar_t scalar1,
const decaf_448_point_t base2,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* Multiply one base point by two scalars:
*
* a1 = scalar1 * base
* a2 = scalar2 * base
*
* Equivalent to two calls to decaf_448_point_scalarmul, but may be
* faster.
*
* @param [out] a1 The first multiple. It may be the same as the input point.
* @param [out] a2 The second multiple. It may be the same as the input point.
* @param [in] base1 A point to be scaled.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] scalar2 A second scalar to multiply by.
*/
void decaf_448_point_dual_scalarmul (
decaf_448_point_t a1,
decaf_448_point_t a2,
const decaf_448_point_t base1,
const decaf_448_scalar_t scalar1,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Multiply two base points by two scalars:
* scaled = scalar1*decaf_448_point_base + scalar2*base2.
*
* Otherwise equivalent to decaf_448_point_double_scalarmul, but may be
* faster at the expense of being variable time.
*
* @param [out] combo The linear combination scalar1*base + scalar2*base2.
* @param [in] scalar1 A first scalar to multiply by.
* @param [in] base2 A second point to be scaled.
* @param [in] scalar2 A second scalar to multiply by.
*
* @warning: This function takes variable time, and may leak the scalars
* used. It is designed for signature verification.
*/
void decaf_448_base_double_scalarmul_non_secret (
decaf_448_point_t combo,
const decaf_448_scalar_t scalar1,
const decaf_448_point_t base2,
const decaf_448_scalar_t scalar2
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Constant-time decision between two points. If pick_b
* is zero, out = a; else out = b.
*
* @param [out] out The output. It may be the same as either input.
* @param [in] a Any point.
* @param [in] b Any point.
* @param [in] pick_b If nonzero, choose point b.
*/
void decaf_448_point_cond_sel (
decaf_448_point_t out,
const decaf_448_point_t a,
const decaf_448_point_t b,
decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Constant-time decision between two scalars. If pick_b
* is zero, out = a; else out = b.
*
* @param [out] out The output. It may be the same as either input.
* @param [in] a Any scalar.
* @param [in] b Any scalar.
* @param [in] pick_b If nonzero, choose scalar b.
*/
void decaf_448_scalar_cond_sel (
decaf_448_scalar_t out,
const decaf_448_scalar_t a,
const decaf_448_scalar_t b,
decaf_word_t pick_b
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Test that a point is valid, for debugging purposes.
*
* @param [in] to_test The point to test.
* @retval DECAF_TRUE The point is valid.
* @retval DECAF_FALSE The point is invalid.
*/
decaf_bool_t decaf_448_point_valid (
const decaf_448_point_t to_test
) DECAF_API_VIS DECAF_WARN_UNUSED DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Torque a point, for debugging purposes. The output
* will be equal to the input.
*
* @param [out] q The point to torque.
* @param [in] p The point to torque.
*/
void decaf_448_point_debugging_torque (
decaf_448_point_t q,
const decaf_448_point_t p
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Projectively scale a point, for debugging purposes.
* The output will be equal to the input, and will be valid
* even if the factor is zero.
*
* @param [out] q The point to scale.
* @param [in] p The point to scale.
* @param [in] factor Serialized GF factor to scale.
*/
void decaf_448_point_debugging_pscale (
decaf_448_point_t q,
const decaf_448_point_t p,
const unsigned char factor[DECAF_448_SER_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Almost-Elligator-like hash to curve.
*
* Call this function with the output of a hash to make a hash to the curve.
*
* This function runs Elligator2 on the decaf_448 Jacobi quartic model. It then
* uses the isogeny to put the result in twisted Edwards form. As a result,
* it is safe (cannot produce points of order 4), and would be compatible with
* hypothetical other implementations of Decaf using a Montgomery or untwisted
* Edwards model.
*
* Unlike Elligator, this function may be up to 4:1 on [0,(p-1)/2]:
* A factor of 2 due to the isogeny.
* A factor of 2 because we quotient out the 2-torsion.
*
* This makes it about 8:1 overall, or 16:1 overall on curves with cofactor 8.
*
* Negating the input (mod q) results in the same point. Inverting the input
* (mod q) results in the negative point. This is the same as Elligator.
*
* This function isn't quite indifferentiable from a random oracle.
* However, it is suitable for many protocols, including SPEKE and SPAKE2 EE.
* Furthermore, calling it twice with independent seeds and adding the results
* is indifferentiable from a random oracle.
*
* @param [in] hashed_data Output of some hash function.
* @param [out] pt The data hashed to the curve.
*/
void
decaf_448_point_from_hash_nonuniform (
decaf_448_point_t pt,
const unsigned char hashed_data[DECAF_448_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Indifferentiable hash function encoding to curve.
*
* Equivalent to calling decaf_448_point_from_hash_nonuniform twice and adding.
*
* @param [in] hashed_data Output of some hash function.
* @param [out] pt The data hashed to the curve.
*/
void decaf_448_point_from_hash_uniform (
decaf_448_point_t pt,
const unsigned char hashed_data[2*DECAF_448_HASH_BYTES]
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE;
/**
* @brief Inverse of elligator-like hash to curve.
*
* This function writes to the buffer, to make it so that
* decaf_448_point_from_hash_nonuniform(buffer) = pt if
* possible. Since there may be multiple preimages, the
* "which" parameter chooses between them. To ensure uniform
* inverse sampling, this function succeeds or fails
* independently for different "which" values.
*
* This function isn't guaranteed to find every possible
* preimage, but it finds all except a small finite number.
* In particular, when the number of bits in the modulus isn't
* a multiple of 8 (i.e. for curve25519), it sets the high bits
* independently, which enables the generated data to be uniform.
* But it doesn't add p, so you'll never get exactly p from this
* function. This might change in the future, especially if
* we ever support eg Brainpool curves, where this could cause
* real nonuniformity.
*
* @param [out] recovered_hash Encoded data.
* @param [in] pt The point to encode.
* @param [in] which A value determining which inverse point
* to return.
*
* @retval DECAF_SUCCESS The inverse succeeded.
* @retval DECAF_FAILURE The inverse failed.
*/
decaf_error_t
decaf_448_invert_elligator_nonuniform (
unsigned char recovered_hash[DECAF_448_HASH_BYTES],
const decaf_448_point_t pt,
uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;
/**
* @brief Inverse of elligator-like hash to curve.
*
* This function writes to the buffer, to make it so that
* decaf_448_point_from_hash_uniform(buffer) = pt if
* possible. Since there may be multiple preimages, the
* "which" parameter chooses between them. To ensure uniform
* inverse sampling, this function succeeds or fails
* independently for different "which" values.
*
* @param [out] recovered_hash Encoded data.
* @param [in] pt The point to encode.
* @param [in] which A value determining which inverse point
* to return.
*
* @retval DECAF_SUCCESS The inverse succeeded.
* @retval DECAF_FAILURE The inverse failed.
*/
decaf_error_t
decaf_448_invert_elligator_uniform (
unsigned char recovered_hash[2*DECAF_448_HASH_BYTES],
const decaf_448_point_t pt,
uint32_t which
) DECAF_API_VIS DECAF_NONNULL DECAF_NOINLINE DECAF_WARN_UNUSED;
/**
* @brief Overwrite scalar with zeros.
*/
void decaf_448_scalar_destroy (
decaf_448_scalar_t scalar
) DECAF_NONNULL DECAF_API_VIS;
/**
* @brief Overwrite point with zeros.
*/
void decaf_448_point_destroy (
decaf_448_point_t point
) DECAF_NONNULL DECAF_API_VIS;
/**
* @brief Overwrite precomputed table with zeros.
*/
void decaf_448_precomputed_destroy (
decaf_448_precomputed_s *pre
) DECAF_NONNULL DECAF_API_VIS;
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* __DECAF_POINT_448_H__ */