2002-08-02 14:28:37 +00:00
|
|
|
/*
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
* Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
|
2017-06-15 14:16:46 +00:00
|
|
|
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
2001-03-05 20:14:00 +00:00
|
|
|
*
|
2016-05-17 18:51:04 +00:00
|
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
2001-03-05 20:14:00 +00:00
|
|
|
*/
|
2016-05-17 18:51:04 +00:00
|
|
|
|
2001-03-08 20:55:16 +00:00
|
|
|
#include <openssl/err.h>
|
|
|
|
|
2019-09-27 21:58:06 +00:00
|
|
|
#include "ec_local.h"
|
2001-03-07 01:17:05 +00:00
|
|
|
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
static const EC_METHOD ret = {
|
|
|
|
EC_FLAGS_DEFAULT_OCT,
|
|
|
|
NID_X9_62_prime_field,
|
|
|
|
ec_GFp_mont_group_init,
|
|
|
|
ec_GFp_mont_group_finish,
|
|
|
|
ec_GFp_mont_group_clear_finish,
|
|
|
|
ec_GFp_mont_group_copy,
|
|
|
|
ec_GFp_mont_group_set_curve,
|
|
|
|
ec_GFp_simple_group_get_curve,
|
|
|
|
ec_GFp_simple_group_get_degree,
|
2016-02-28 17:48:48 +00:00
|
|
|
ec_group_simple_order_bits,
|
2015-01-22 03:40:55 +00:00
|
|
|
ec_GFp_simple_group_check_discriminant,
|
|
|
|
ec_GFp_simple_point_init,
|
|
|
|
ec_GFp_simple_point_finish,
|
|
|
|
ec_GFp_simple_point_clear_finish,
|
|
|
|
ec_GFp_simple_point_copy,
|
|
|
|
ec_GFp_simple_point_set_to_infinity,
|
|
|
|
ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
|
|
|
ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
|
|
|
ec_GFp_simple_point_set_affine_coordinates,
|
|
|
|
ec_GFp_simple_point_get_affine_coordinates,
|
|
|
|
0, 0, 0,
|
|
|
|
ec_GFp_simple_add,
|
|
|
|
ec_GFp_simple_dbl,
|
|
|
|
ec_GFp_simple_invert,
|
|
|
|
ec_GFp_simple_is_at_infinity,
|
|
|
|
ec_GFp_simple_is_on_curve,
|
|
|
|
ec_GFp_simple_cmp,
|
|
|
|
ec_GFp_simple_make_affine,
|
|
|
|
ec_GFp_simple_points_make_affine,
|
|
|
|
0 /* mul */ ,
|
|
|
|
0 /* precompute_mult */ ,
|
|
|
|
0 /* have_precompute_mult */ ,
|
|
|
|
ec_GFp_mont_field_mul,
|
|
|
|
ec_GFp_mont_field_sqr,
|
|
|
|
0 /* field_div */ ,
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
ec_GFp_mont_field_inv,
|
2015-01-22 03:40:55 +00:00
|
|
|
ec_GFp_mont_field_encode,
|
|
|
|
ec_GFp_mont_field_decode,
|
2016-02-28 17:48:48 +00:00
|
|
|
ec_GFp_mont_field_set_to_one,
|
|
|
|
ec_key_simple_priv2oct,
|
|
|
|
ec_key_simple_oct2priv,
|
|
|
|
0, /* set private */
|
|
|
|
ec_key_simple_generate_key,
|
|
|
|
ec_key_simple_check_key,
|
|
|
|
ec_key_simple_generate_public_key,
|
|
|
|
0, /* keycopy */
|
|
|
|
0, /* keyfinish */
|
Implement coordinate blinding for EC_POINT
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
2018-06-16 14:07:40 +00:00
|
|
|
ecdh_simple_compute_key,
|
|
|
|
0, /* field_inverse_mod_ord */
|
EC point multiplication: add `ladder` scaffold
for specialized Montgomery ladder implementations
PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.
The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.
- `ladder_pre` is executed before the main loop of the ladder: by
default it copies the input point P into S, and doubles it into R.
Specialized implementations could, e.g., use this hook to transition
to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
computes `S := R+S; R := 2R;`, but specific implementations could,
e.g., implement a more efficient formula for differential
addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
it's a noop, but specialized implementations could, e.g., use this
hook to transition back from the coordinate system used for optimizing
the differential addition-and-doubling or recover the y coordinate of
the result point.
This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
2018-07-07 21:50:49 +00:00
|
|
|
ec_GFp_simple_blind_coordinates,
|
2018-07-19 08:16:07 +00:00
|
|
|
ec_GFp_simple_ladder_pre,
|
|
|
|
ec_GFp_simple_ladder_step,
|
|
|
|
ec_GFp_simple_ladder_post
|
2015-01-22 03:40:55 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
return &ret;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
|
|
|
int ec_GFp_mont_group_init(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
int ok;
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
ok = ec_GFp_simple_group_init(group);
|
|
|
|
group->field_data1 = NULL;
|
|
|
|
group->field_data2 = NULL;
|
|
|
|
return ok;
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-08 20:55:16 +00:00
|
|
|
void ec_GFp_mont_group_finish(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
|
|
group->field_data1 = NULL;
|
|
|
|
BN_free(group->field_data2);
|
|
|
|
group->field_data2 = NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
ec_GFp_simple_group_finish(group);
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-08 20:55:16 +00:00
|
|
|
void ec_GFp_mont_group_clear_finish(EC_GROUP *group)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
|
|
group->field_data1 = NULL;
|
|
|
|
BN_clear_free(group->field_data2);
|
|
|
|
group->field_data2 = NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
ec_GFp_simple_group_clear_finish(group);
|
|
|
|
}
|
2001-03-07 19:54:35 +00:00
|
|
|
|
2001-03-08 20:55:16 +00:00
|
|
|
int ec_GFp_mont_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_MONT_CTX_free(dest->field_data1);
|
|
|
|
dest->field_data1 = NULL;
|
|
|
|
BN_clear_free(dest->field_data2);
|
|
|
|
dest->field_data2 = NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
if (!ec_GFp_simple_group_copy(dest, src))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (src->field_data1 != NULL) {
|
|
|
|
dest->field_data1 = BN_MONT_CTX_new();
|
|
|
|
if (dest->field_data1 == NULL)
|
|
|
|
return 0;
|
|
|
|
if (!BN_MONT_CTX_copy(dest->field_data1, src->field_data1))
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if (src->field_data2 != NULL) {
|
|
|
|
dest->field_data2 = BN_dup(src->field_data2);
|
|
|
|
if (dest->field_data2 == NULL)
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
2001-03-10 23:18:35 +00:00
|
|
|
|
|
|
|
err:
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_MONT_CTX_free(dest->field_data1);
|
|
|
|
dest->field_data1 = NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
|
|
|
const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
BN_MONT_CTX *mont = NULL;
|
|
|
|
BIGNUM *one = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
|
|
group->field_data1 = NULL;
|
|
|
|
BN_free(group->field_data2);
|
|
|
|
group->field_data2 = NULL;
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
if (ctx == NULL) {
|
|
|
|
ctx = new_ctx = BN_CTX_new();
|
|
|
|
if (ctx == NULL)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
|
|
if (mont == NULL)
|
|
|
|
goto err;
|
|
|
|
if (!BN_MONT_CTX_set(mont, p, ctx)) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_GROUP_SET_CURVE, ERR_R_BN_LIB);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
one = BN_new();
|
|
|
|
if (one == NULL)
|
|
|
|
goto err;
|
|
|
|
if (!BN_to_montgomery(one, BN_value_one(), mont, ctx))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
group->field_data1 = mont;
|
|
|
|
mont = NULL;
|
|
|
|
group->field_data2 = one;
|
|
|
|
one = NULL;
|
|
|
|
|
|
|
|
ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
|
|
|
|
|
|
|
if (!ret) {
|
|
|
|
BN_MONT_CTX_free(group->field_data1);
|
|
|
|
group->field_data1 = NULL;
|
|
|
|
BN_free(group->field_data2);
|
|
|
|
group->field_data2 = NULL;
|
|
|
|
}
|
2002-11-18 14:33:39 +00:00
|
|
|
|
|
|
|
err:
|
2016-07-14 15:14:08 +00:00
|
|
|
BN_free(one);
|
2015-05-01 01:37:06 +00:00
|
|
|
BN_CTX_free(new_ctx);
|
|
|
|
BN_MONT_CTX_free(mont);
|
2015-01-22 03:40:55 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
const BIGNUM *b, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (group->field_data1 == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_MUL, EC_R_NOT_INITIALIZED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BN_mod_mul_montgomery(r, a, b, group->field_data1, ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (group->field_data1 == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_SQR, EC_R_NOT_INITIALIZED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BN_mod_mul_montgomery(r, a, a, group->field_data1, ctx);
|
|
|
|
}
|
|
|
|
|
SCA hardening for mod. field inversion in EC_GROUP
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
(cherry picked from commit e0033efc30b0f00476bba8f0fa5512be5dc8a3f1)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8262)
2019-02-02 08:53:29 +00:00
|
|
|
/*-
|
|
|
|
* Computes the multiplicative inverse of a in GF(p), storing the result in r.
|
|
|
|
* If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
|
|
|
|
* We have a Mont structure, so SCA hardening is FLT inversion.
|
|
|
|
*/
|
|
|
|
int ec_GFp_mont_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
BIGNUM *e = NULL;
|
|
|
|
BN_CTX *new_ctx = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (group->field_data1 == NULL)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
if ((e = BN_CTX_get(ctx)) == NULL)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* Inverse in constant time with Fermats Little Theorem */
|
|
|
|
if (!BN_set_word(e, 2))
|
|
|
|
goto err;
|
|
|
|
if (!BN_sub(e, group->field, e))
|
|
|
|
goto err;
|
|
|
|
/*-
|
|
|
|
* Exponent e is public.
|
|
|
|
* No need for scatter-gather or BN_FLG_CONSTTIME.
|
|
|
|
*/
|
|
|
|
if (!BN_mod_exp_mont(r, a, e, group->field, ctx, group->field_data1))
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
/* throw an error on zero */
|
|
|
|
if (BN_is_zero(r)) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_INV, EC_R_CANNOT_INVERT);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 1;
|
|
|
|
|
|
|
|
err:
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
BN_CTX_free(new_ctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r,
|
|
|
|
const BIGNUM *a, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (group->field_data1 == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_ENCODE, EC_R_NOT_INITIALIZED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BN_to_montgomery(r, a, (BN_MONT_CTX *)group->field_data1, ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r,
|
|
|
|
const BIGNUM *a, BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (group->field_data1 == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_DECODE, EC_R_NOT_INITIALIZED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return BN_from_montgomery(r, a, group->field_data1, ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ec_GFp_mont_field_set_to_one(const EC_GROUP *group, BIGNUM *r,
|
|
|
|
BN_CTX *ctx)
|
|
|
|
{
|
|
|
|
if (group->field_data2 == NULL) {
|
|
|
|
ECerr(EC_F_EC_GFP_MONT_FIELD_SET_TO_ONE, EC_R_NOT_INITIALIZED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!BN_copy(r, group->field_data2))
|
|
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
}
|