2010-03-09 23:03:33 +00:00
|
|
|
|
#!/usr/bin/env perl
|
|
|
|
|
#
|
|
|
|
|
# ====================================================================
|
|
|
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
|
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
|
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
|
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
|
|
|
# ====================================================================
|
|
|
|
|
#
|
2010-03-15 19:07:52 +00:00
|
|
|
|
# March 2010
|
|
|
|
|
#
|
2010-03-22 17:24:18 +00:00
|
|
|
|
# The module implements "4-bit" GCM GHASH function and underlying
|
|
|
|
|
# single multiplication operation in GF(2^128). "4-bit" means that it
|
|
|
|
|
# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
|
|
|
|
|
# code paths: vanilla x86 and vanilla MMX. Former will be executed on
|
|
|
|
|
# 486 and Pentium, latter on all others. Performance results are for
|
|
|
|
|
# streamed GHASH subroutine and are expressed in cycles per processed
|
|
|
|
|
# byte, less is better:
|
2010-03-09 23:03:33 +00:00
|
|
|
|
#
|
|
|
|
|
# gcc 2.95.3(*) MMX assembler x86 assembler
|
|
|
|
|
#
|
|
|
|
|
# Pentium 100/112(**) - 50
|
2010-03-15 19:07:52 +00:00
|
|
|
|
# PIII 63 /77 16 24
|
|
|
|
|
# P4 96 /122 30 84(***)
|
|
|
|
|
# Opteron 50 /71 21 30
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# Core2 54 /68 12.5 18
|
2010-03-09 23:03:33 +00:00
|
|
|
|
#
|
|
|
|
|
# (*) gcc 3.4.x was observed to generate few percent slower code,
|
2010-03-15 19:07:52 +00:00
|
|
|
|
# which is one of reasons why 2.95.3 results were chosen,
|
2010-03-09 23:03:33 +00:00
|
|
|
|
# another reason is lack of 3.4.x results for older CPUs;
|
|
|
|
|
# (**) second number is result for code compiled with -fPIC flag,
|
|
|
|
|
# which is actually more relevant, because assembler code is
|
|
|
|
|
# position-independent;
|
|
|
|
|
# (***) see comment in non-MMX routine for further details;
|
|
|
|
|
#
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# To summarize, it's >2-3 times faster than gcc-generated code. To
|
2010-03-15 19:07:52 +00:00
|
|
|
|
# anchor it to something else SHA1 assembler processes one byte in
|
|
|
|
|
# 11-13 cycles on contemporary x86 cores.
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# May 2010
|
|
|
|
|
#
|
|
|
|
|
# Add PCLMULQDQ version performing at 2.13 cycles per processed byte.
|
|
|
|
|
# The question is how close is it to theoretical limit? The pclmulqdq
|
|
|
|
|
# instruction latency appears to be 14 cycles and there can't be more
|
|
|
|
|
# than 2 of them executing at any given time. This means that single
|
|
|
|
|
# Karatsuba multiplication would take 28 cycles *plus* few cycles for
|
|
|
|
|
# pre- and post-processing. Then multiplication has to be followed by
|
|
|
|
|
# modulo-reduction. Given that aggregated reduction method [see
|
|
|
|
|
# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
|
|
|
|
|
# white paper by Intel] allows you to perform reduction only once in
|
|
|
|
|
# a while we can assume that asymptotic performance can be estimated
|
|
|
|
|
# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
|
|
|
|
|
# and Naggr is the aggregation factor.
|
|
|
|
|
#
|
|
|
|
|
# Before we proceed to this implementation let's have closer look at
|
|
|
|
|
# the best-performing code suggested by Intel in their white paper.
|
|
|
|
|
# By tracing inter-register dependencies Tmod is estimated as ~19
|
|
|
|
|
# cycles and Naggr is 4, resulting in 2.05 cycles per processed byte.
|
|
|
|
|
# As implied, this is quite optimistic estimate, because it does not
|
|
|
|
|
# account for Karatsuba pre- and post-processing, which for a single
|
|
|
|
|
# multiplication is ~5 cycles. Unfortunately Intel does not provide
|
|
|
|
|
# performance data for GHASH alone, only for fused GCM mode. But
|
|
|
|
|
# we can estimate it by subtracting CTR performance result provided
|
|
|
|
|
# in "AES Instruction Set" white paper: 3.54-1.38=2.16 cycles per
|
|
|
|
|
# processed byte or 5% off the estimate. It should be noted though
|
|
|
|
|
# that 3.54 is GCM result for 16KB block size, while 1.38 is CTR for
|
|
|
|
|
# 1KB block size, meaning that real number is likely to be a bit
|
|
|
|
|
# further from estimate.
|
|
|
|
|
#
|
|
|
|
|
# Moving on to the implementation in question. Tmod is estimated as
|
|
|
|
|
# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
|
|
|
|
|
# 2.16. How is it possible that measured performance is better than
|
|
|
|
|
# optimistic theoretical estimate? There is one thing Intel failed
|
|
|
|
|
# to recognize. By fusing GHASH with CTR former's performance is
|
|
|
|
|
# really limited to above (Tmul + Tmod/Naggr) equation. But if GHASH
|
|
|
|
|
# procedure is detached, the modulo-reduction can be interleaved with
|
|
|
|
|
# Naggr-1 multiplications and under ideal conditions even disappear
|
|
|
|
|
# from the equation. So that optimistic theoretical estimate for this
|
|
|
|
|
# implementation is ... 28/16=1.75, and not 2.16. Well, it's probably
|
|
|
|
|
# way too optimistic, at least for such small Naggr. I'd argue that
|
|
|
|
|
# (28+Tproc/Naggr), where Tproc is time required for Karatsuba pre-
|
|
|
|
|
# and post-processing, is more realistic estimate. In this case it
|
|
|
|
|
# gives ... 1.91 cycles per processed byte. Or in other words,
|
|
|
|
|
# depending on how well we can interleave reduction and one of the
|
|
|
|
|
# two multiplications the performance should be betwen 1.91 and 2.16.
|
|
|
|
|
# As already mentioned, this implementation processes one byte [out
|
|
|
|
|
# of 1KB buffer] in 2.13 cycles, while x86_64 counterpart - in 2.07.
|
|
|
|
|
# x86_64 performance is better, because larger register bank allows
|
|
|
|
|
# to interleave reduction and multiplication better.
|
|
|
|
|
#
|
|
|
|
|
# Does it make sense to increase Naggr? To start with it's virtually
|
|
|
|
|
# impossible in 32-bit mode, because of limited register bank
|
|
|
|
|
# capacity. Otherwise improvement has to be weighed agiainst slower
|
|
|
|
|
# setup, as well as code size and complexity increase. As even
|
|
|
|
|
# optimistic estimate doesn't promise 30% performance improvement,
|
|
|
|
|
# there are currently no plans to increase Naggr.
|
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
|
|
|
push(@INC,"${dir}","${dir}../../perlasm");
|
|
|
|
|
require "x86asm.pl";
|
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
$sse2=0;
|
|
|
|
|
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
|
2010-03-09 23:03:33 +00:00
|
|
|
|
$inp = "edi";
|
|
|
|
|
$Htbl = "esi";
|
2010-05-13 15:32:43 +00:00
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
|
|
|
|
|
# than unrolled, which has to be weighted against
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# 2.5x x86-specific code size reduction.
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
|
|
|
|
sub x86_loop {
|
|
|
|
|
my $off = shift;
|
|
|
|
|
my $rem = "eax";
|
|
|
|
|
|
|
|
|
|
&mov ($Zhh,&DWP(4,$Htbl,$Zll));
|
|
|
|
|
&mov ($Zhl,&DWP(0,$Htbl,$Zll));
|
|
|
|
|
&mov ($Zlh,&DWP(12,$Htbl,$Zll));
|
|
|
|
|
&mov ($Zll,&DWP(8,$Htbl,$Zll));
|
|
|
|
|
&xor ($rem,$rem); # avoid partial register stalls on PIII
|
|
|
|
|
|
|
|
|
|
# shrd practically kills P4, 2.5x deterioration, but P4 has
|
|
|
|
|
# MMX code-path to execute. shrd runs tad faster [than twice
|
|
|
|
|
# the shifts, move's and or's] on pre-MMX Pentium (as well as
|
|
|
|
|
# PIII and Core2), *but* minimizes code size, spares register
|
|
|
|
|
# and thus allows to fold the loop...
|
|
|
|
|
if (!$unroll) {
|
|
|
|
|
my $cnt = $inp;
|
|
|
|
|
&mov ($cnt,15);
|
|
|
|
|
&jmp (&label("x86_loop"));
|
|
|
|
|
&set_label("x86_loop",16);
|
|
|
|
|
for($i=1;$i<=2;$i++) {
|
|
|
|
|
&mov (&LB($rem),&LB($Zll));
|
|
|
|
|
&shrd ($Zll,$Zlh,4);
|
|
|
|
|
&and (&LB($rem),0xf);
|
|
|
|
|
&shrd ($Zlh,$Zhl,4);
|
|
|
|
|
&shrd ($Zhl,$Zhh,4);
|
|
|
|
|
&shr ($Zhh,4);
|
|
|
|
|
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
|
|
|
|
|
|
|
|
|
|
&mov (&LB($rem),&BP($off,"esp",$cnt));
|
|
|
|
|
if ($i&1) {
|
|
|
|
|
&and (&LB($rem),0xf0);
|
|
|
|
|
} else {
|
|
|
|
|
&shl (&LB($rem),4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
&xor ($Zll,&DWP(8,$Htbl,$rem));
|
|
|
|
|
&xor ($Zlh,&DWP(12,$Htbl,$rem));
|
|
|
|
|
&xor ($Zhl,&DWP(0,$Htbl,$rem));
|
|
|
|
|
&xor ($Zhh,&DWP(4,$Htbl,$rem));
|
|
|
|
|
|
|
|
|
|
if ($i&1) {
|
|
|
|
|
&dec ($cnt);
|
|
|
|
|
&js (&label("x86_break"));
|
|
|
|
|
} else {
|
|
|
|
|
&jmp (&label("x86_loop"));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
&set_label("x86_break",16);
|
|
|
|
|
} else {
|
|
|
|
|
for($i=1;$i<32;$i++) {
|
|
|
|
|
&comment($i);
|
|
|
|
|
&mov (&LB($rem),&LB($Zll));
|
|
|
|
|
&shrd ($Zll,$Zlh,4);
|
|
|
|
|
&and (&LB($rem),0xf);
|
|
|
|
|
&shrd ($Zlh,$Zhl,4);
|
|
|
|
|
&shrd ($Zhl,$Zhh,4);
|
|
|
|
|
&shr ($Zhh,4);
|
|
|
|
|
&xor ($Zhh,&DWP($off+16,"esp",$rem,4));
|
|
|
|
|
|
|
|
|
|
if ($i&1) {
|
|
|
|
|
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
|
|
|
|
|
&and (&LB($rem),0xf0);
|
|
|
|
|
} else {
|
|
|
|
|
&mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
|
|
|
|
|
&shl (&LB($rem),4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
&xor ($Zll,&DWP(8,$Htbl,$rem));
|
|
|
|
|
&xor ($Zlh,&DWP(12,$Htbl,$rem));
|
|
|
|
|
&xor ($Zhl,&DWP(0,$Htbl,$rem));
|
|
|
|
|
&xor ($Zhh,&DWP(4,$Htbl,$rem));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
&bswap ($Zll);
|
|
|
|
|
&bswap ($Zlh);
|
|
|
|
|
&bswap ($Zhl);
|
|
|
|
|
if (!$x86only) {
|
|
|
|
|
&bswap ($Zhh);
|
|
|
|
|
} else {
|
|
|
|
|
&mov ("eax",$Zhh);
|
|
|
|
|
&bswap ("eax");
|
|
|
|
|
&mov ($Zhh,"eax");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ($unroll) {
|
|
|
|
|
&function_begin_B("_x86_gmult_4bit_inner");
|
|
|
|
|
&x86_loop(4);
|
|
|
|
|
&ret ();
|
|
|
|
|
&function_end_B("_x86_gmult_4bit_inner");
|
|
|
|
|
}
|
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
sub deposit_rem_4bit {
|
|
|
|
|
my $bias = shift;
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&mov (&DWP($bias+0, "esp"),0x0000<<16);
|
|
|
|
|
&mov (&DWP($bias+4, "esp"),0x1C20<<16);
|
|
|
|
|
&mov (&DWP($bias+8, "esp"),0x3840<<16);
|
|
|
|
|
&mov (&DWP($bias+12,"esp"),0x2460<<16);
|
|
|
|
|
&mov (&DWP($bias+16,"esp"),0x7080<<16);
|
|
|
|
|
&mov (&DWP($bias+20,"esp"),0x6CA0<<16);
|
|
|
|
|
&mov (&DWP($bias+24,"esp"),0x48C0<<16);
|
|
|
|
|
&mov (&DWP($bias+28,"esp"),0x54E0<<16);
|
|
|
|
|
&mov (&DWP($bias+32,"esp"),0xE100<<16);
|
|
|
|
|
&mov (&DWP($bias+36,"esp"),0xFD20<<16);
|
|
|
|
|
&mov (&DWP($bias+40,"esp"),0xD940<<16);
|
|
|
|
|
&mov (&DWP($bias+44,"esp"),0xC560<<16);
|
|
|
|
|
&mov (&DWP($bias+48,"esp"),0x9180<<16);
|
|
|
|
|
&mov (&DWP($bias+52,"esp"),0x8DA0<<16);
|
|
|
|
|
&mov (&DWP($bias+56,"esp"),0xA9C0<<16);
|
|
|
|
|
&mov (&DWP($bias+60,"esp"),0xB5E0<<16);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
$suffix = $x86only ? "" : "_x86";
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&function_begin("gcm_gmult_4bit".$suffix);
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&stack_push(16+4+1); # +1 for stack alignment
|
|
|
|
|
&mov ($inp,&wparam(0)); # load Xi
|
|
|
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
|
|
|
|
|
|
|
|
|
&mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
|
|
|
|
|
&mov ($Zhl,&DWP(4,$inp));
|
|
|
|
|
&mov ($Zlh,&DWP(8,$inp));
|
|
|
|
|
&mov ($Zll,&DWP(12,$inp));
|
|
|
|
|
|
|
|
|
|
&deposit_rem_4bit(16);
|
|
|
|
|
|
|
|
|
|
&mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
|
|
|
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
|
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
|
|
|
&mov (&DWP(12,"esp"),$Zll);
|
|
|
|
|
&shr ($Zll,20);
|
|
|
|
|
&and ($Zll,0xf0);
|
|
|
|
|
|
|
|
|
|
if ($unroll) {
|
|
|
|
|
&call ("_x86_gmult_4bit_inner");
|
|
|
|
|
} else {
|
|
|
|
|
&x86_loop(0);
|
|
|
|
|
&mov ($inp,&wparam(0));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
|
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
|
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
|
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
|
&stack_pop(16+4+1);
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&function_end("gcm_gmult_4bit".$suffix);
|
|
|
|
|
|
|
|
|
|
&function_begin("gcm_ghash_4bit".$suffix);
|
|
|
|
|
&stack_push(16+4+1); # +1 for 64-bit alignment
|
|
|
|
|
&mov ($Zll,&wparam(0)); # load Xi
|
|
|
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
|
|
|
|
&mov ($inp,&wparam(2)); # load in
|
|
|
|
|
&mov ("ecx",&wparam(3)); # load len
|
|
|
|
|
&add ("ecx",$inp);
|
|
|
|
|
&mov (&wparam(3),"ecx");
|
|
|
|
|
|
|
|
|
|
&mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
|
|
|
|
|
&mov ($Zhl,&DWP(4,$Zll));
|
|
|
|
|
&mov ($Zlh,&DWP(8,$Zll));
|
|
|
|
|
&mov ($Zll,&DWP(12,$Zll));
|
|
|
|
|
|
|
|
|
|
&deposit_rem_4bit(16);
|
|
|
|
|
|
|
|
|
|
&set_label("x86_outer_loop",16);
|
|
|
|
|
&xor ($Zll,&DWP(12,$inp)); # xor with input
|
|
|
|
|
&xor ($Zlh,&DWP(8,$inp));
|
|
|
|
|
&xor ($Zhl,&DWP(4,$inp));
|
|
|
|
|
&xor ($Zhh,&DWP(0,$inp));
|
|
|
|
|
&mov (&DWP(12,"esp"),$Zll); # dump it on stack
|
|
|
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
|
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
|
|
|
&mov (&DWP(0,"esp"),$Zhh);
|
|
|
|
|
|
|
|
|
|
&shr ($Zll,20);
|
|
|
|
|
&and ($Zll,0xf0);
|
|
|
|
|
|
|
|
|
|
if ($unroll) {
|
|
|
|
|
&call ("_x86_gmult_4bit_inner");
|
|
|
|
|
} else {
|
|
|
|
|
&x86_loop(0);
|
|
|
|
|
&mov ($inp,&wparam(2));
|
|
|
|
|
}
|
|
|
|
|
&lea ($inp,&DWP(16,$inp));
|
|
|
|
|
&cmp ($inp,&wparam(3));
|
|
|
|
|
&mov (&wparam(2),$inp) if (!$unroll);
|
|
|
|
|
&jb (&label("x86_outer_loop"));
|
|
|
|
|
|
|
|
|
|
&mov ($inp,&wparam(0)); # load Xi
|
|
|
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
|
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
|
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
|
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
|
&stack_pop(16+4+1);
|
|
|
|
|
&function_end("gcm_ghash_4bit".$suffix);
|
|
|
|
|
|
|
|
|
|
if (!$x86only) {{{
|
|
|
|
|
|
|
|
|
|
&static_label("rem_4bit");
|
|
|
|
|
|
|
|
|
|
sub mmx_loop() {
|
|
|
|
|
# MMX version performs 2.8 times better on P4 (see comment in non-MMX
|
|
|
|
|
# routine for further details), 40% better on Opteron and Core2, 50%
|
|
|
|
|
# better on PIII... In other words effort is considered to be well
|
|
|
|
|
# spent...
|
|
|
|
|
my $inp = shift;
|
|
|
|
|
my $rem_4bit = shift;
|
|
|
|
|
my $cnt = $Zhh;
|
|
|
|
|
my $nhi = $Zhl;
|
|
|
|
|
my $nlo = $Zlh;
|
|
|
|
|
my $rem = $Zll;
|
|
|
|
|
|
|
|
|
|
my ($Zlo,$Zhi) = ("mm0","mm1");
|
|
|
|
|
my $tmp = "mm2";
|
|
|
|
|
|
|
|
|
|
&xor ($nlo,$nlo); # avoid partial register stalls on PIII
|
|
|
|
|
&mov ($nhi,$Zll);
|
|
|
|
|
&mov (&LB($nlo),&LB($nhi));
|
|
|
|
|
&mov ($cnt,14);
|
|
|
|
|
&shl (&LB($nlo),4);
|
|
|
|
|
&and ($nhi,0xf0);
|
|
|
|
|
&movq ($Zlo,&QWP(8,$Htbl,$nlo));
|
|
|
|
|
&movq ($Zhi,&QWP(0,$Htbl,$nlo));
|
|
|
|
|
&movd ($rem,$Zlo);
|
|
|
|
|
&jmp (&label("mmx_loop"));
|
|
|
|
|
|
|
|
|
|
&set_label("mmx_loop",16);
|
|
|
|
|
&psrlq ($Zlo,4);
|
|
|
|
|
&and ($rem,0xf);
|
|
|
|
|
&movq ($tmp,$Zhi);
|
|
|
|
|
&psrlq ($Zhi,4);
|
|
|
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
|
|
|
|
|
&mov (&LB($nlo),&BP(0,$inp,$cnt));
|
|
|
|
|
&psllq ($tmp,60);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
|
|
|
&dec ($cnt);
|
|
|
|
|
&movd ($rem,$Zlo);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
|
|
|
|
|
&mov ($nhi,$nlo);
|
|
|
|
|
&pxor ($Zlo,$tmp);
|
|
|
|
|
&js (&label("mmx_break"));
|
|
|
|
|
|
|
|
|
|
&shl (&LB($nlo),4);
|
|
|
|
|
&and ($rem,0xf);
|
|
|
|
|
&psrlq ($Zlo,4);
|
|
|
|
|
&and ($nhi,0xf0);
|
|
|
|
|
&movq ($tmp,$Zhi);
|
|
|
|
|
&psrlq ($Zhi,4);
|
|
|
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
|
|
|
|
|
&psllq ($tmp,60);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
|
|
|
&movd ($rem,$Zlo);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
|
|
|
|
|
&pxor ($Zlo,$tmp);
|
|
|
|
|
&jmp (&label("mmx_loop"));
|
|
|
|
|
|
|
|
|
|
&set_label("mmx_break",16);
|
|
|
|
|
&shl (&LB($nlo),4);
|
|
|
|
|
&and ($rem,0xf);
|
|
|
|
|
&psrlq ($Zlo,4);
|
|
|
|
|
&and ($nhi,0xf0);
|
|
|
|
|
&movq ($tmp,$Zhi);
|
|
|
|
|
&psrlq ($Zhi,4);
|
|
|
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nlo));
|
|
|
|
|
&psllq ($tmp,60);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
|
|
|
&movd ($rem,$Zlo);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nlo));
|
|
|
|
|
&pxor ($Zlo,$tmp);
|
|
|
|
|
|
|
|
|
|
&psrlq ($Zlo,4);
|
|
|
|
|
&and ($rem,0xf);
|
|
|
|
|
&movq ($tmp,$Zhi);
|
|
|
|
|
&psrlq ($Zhi,4);
|
|
|
|
|
&pxor ($Zlo,&QWP(8,$Htbl,$nhi));
|
|
|
|
|
&psllq ($tmp,60);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
|
|
|
|
|
&movd ($rem,$Zlo);
|
|
|
|
|
&pxor ($Zhi,&QWP(0,$Htbl,$nhi));
|
|
|
|
|
&pxor ($Zlo,$tmp);
|
|
|
|
|
|
|
|
|
|
&psrlq ($Zlo,32); # lower part of Zlo is already there
|
|
|
|
|
&movd ($Zhl,$Zhi);
|
|
|
|
|
&psrlq ($Zhi,32);
|
|
|
|
|
&movd ($Zlh,$Zlo);
|
|
|
|
|
&movd ($Zhh,$Zhi);
|
|
|
|
|
|
|
|
|
|
&bswap ($Zll);
|
|
|
|
|
&bswap ($Zhl);
|
|
|
|
|
&bswap ($Zlh);
|
|
|
|
|
&bswap ($Zhh);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
&function_begin("gcm_gmult_4bit_mmx");
|
|
|
|
|
&mov ($inp,&wparam(0)); # load Xi
|
|
|
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
|
|
|
|
&call (&label("pic_point"));
|
|
|
|
|
&set_label("pic_point");
|
|
|
|
|
&blindpop("eax");
|
|
|
|
|
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
|
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&movz ($Zll,&BP(15,$inp));
|
|
|
|
|
|
|
|
|
|
&mmx_loop($inp,"eax");
|
|
|
|
|
|
|
|
|
|
&emms ();
|
|
|
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
|
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
|
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
|
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
|
&function_end("gcm_gmult_4bit_mmx");
|
|
|
|
|
|
|
|
|
|
# Streamed version performs 20% better on P4, 7% on Opteron,
|
|
|
|
|
# 10% on Core2 and PIII...
|
|
|
|
|
&function_begin("gcm_ghash_4bit_mmx");
|
2010-04-14 19:04:51 +00:00
|
|
|
|
&mov ($Zhh,&wparam(0)); # load Xi
|
|
|
|
|
&mov ($Htbl,&wparam(1)); # load Htable
|
|
|
|
|
&mov ($inp,&wparam(2)); # load in
|
|
|
|
|
&mov ($Zlh,&wparam(3)); # load len
|
2010-05-13 15:32:43 +00:00
|
|
|
|
|
|
|
|
|
&call (&label("pic_point"));
|
|
|
|
|
&set_label("pic_point");
|
|
|
|
|
&blindpop("eax");
|
|
|
|
|
&lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
|
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&add ($Zlh,$inp);
|
2010-04-14 19:04:51 +00:00
|
|
|
|
&mov (&wparam(3),$Zlh); # len to point at the end of input
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&stack_push(4+1); # +1 for stack alignment
|
2010-05-13 15:32:43 +00:00
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
|
|
|
|
|
&mov ($Zhl,&DWP(4,$Zhh));
|
|
|
|
|
&mov ($Zlh,&DWP(8,$Zhh));
|
|
|
|
|
&mov ($Zhh,&DWP(0,$Zhh));
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&jmp (&label("mmx_outer_loop"));
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
|
|
|
|
&set_label("mmx_outer_loop",16);
|
|
|
|
|
&xor ($Zll,&DWP(12,$inp));
|
|
|
|
|
&xor ($Zhl,&DWP(4,$inp));
|
|
|
|
|
&xor ($Zlh,&DWP(8,$inp));
|
|
|
|
|
&xor ($Zhh,&DWP(0,$inp));
|
|
|
|
|
&mov (&DWP(12,"esp"),$Zll);
|
|
|
|
|
&mov (&DWP(4,"esp"),$Zhl);
|
|
|
|
|
&mov (&DWP(8,"esp"),$Zlh);
|
|
|
|
|
&mov (&DWP(0,"esp"),$Zhh);
|
|
|
|
|
|
|
|
|
|
&shr ($Zll,24);
|
|
|
|
|
|
|
|
|
|
&mmx_loop("esp","eax");
|
|
|
|
|
|
|
|
|
|
&lea ($inp,&DWP(16,$inp));
|
2010-04-14 19:04:51 +00:00
|
|
|
|
&cmp ($inp,&wparam(3));
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&jb (&label("mmx_outer_loop"));
|
|
|
|
|
|
2010-04-14 19:04:51 +00:00
|
|
|
|
&mov ($inp,&wparam(0)); # load Xi
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&emms ();
|
|
|
|
|
&mov (&DWP(12,$inp),$Zll);
|
|
|
|
|
&mov (&DWP(4,$inp),$Zhl);
|
|
|
|
|
&mov (&DWP(8,$inp),$Zlh);
|
|
|
|
|
&mov (&DWP(0,$inp),$Zhh);
|
|
|
|
|
|
|
|
|
|
&stack_pop(4+1);
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&function_end("gcm_ghash_4bit_mmx");
|
|
|
|
|
|
|
|
|
|
if ($sse2) {{
|
|
|
|
|
######################################################################
|
|
|
|
|
# PCLMULQDQ version.
|
|
|
|
|
|
|
|
|
|
$Xip="eax";
|
|
|
|
|
$Htbl="edx";
|
|
|
|
|
$const="ecx";
|
|
|
|
|
$inp="esi";
|
|
|
|
|
$len="ebx";
|
|
|
|
|
|
|
|
|
|
($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
|
|
|
|
|
($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
|
|
|
|
|
($Xn,$Xhn)=("xmm6","xmm7");
|
|
|
|
|
|
|
|
|
|
&static_label("bswap");
|
|
|
|
|
|
|
|
|
|
sub clmul64x64_T2 { # minimal "register" pressure
|
|
|
|
|
my ($Xhi,$Xi,$Hkey)=@_;
|
|
|
|
|
|
|
|
|
|
&movdqa ($Xhi,$Xi); #
|
|
|
|
|
&pshufd ($T1,$Xi,0b01001110);
|
|
|
|
|
&pshufd ($T2,$Hkey,0b01001110);
|
|
|
|
|
&pxor ($T1,$Xi); #
|
|
|
|
|
&pxor ($T2,$Hkey);
|
|
|
|
|
|
|
|
|
|
&pclmulqdq ($Xi,$Hkey,0x00); #######
|
|
|
|
|
&pclmulqdq ($Xhi,$Hkey,0x11); #######
|
|
|
|
|
&pclmulqdq ($T1,$T2,0x00); #######
|
|
|
|
|
&pxor ($T1,$Xi); #
|
|
|
|
|
&pxor ($T1,$Xhi); #
|
|
|
|
|
|
|
|
|
|
&movdqa ($T2,$T1); #
|
|
|
|
|
&psrldq ($T1,8);
|
|
|
|
|
&pslldq ($T2,8); #
|
|
|
|
|
&pxor ($Xhi,$T1);
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
}
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
sub clmul64x64_T3 {
|
|
|
|
|
# Even though this subroutine offers visually better ILP, it
|
|
|
|
|
# was empirically found to be a tad slower than above version.
|
|
|
|
|
# At least in gcm_ghash_clmul context. But it's just as well,
|
|
|
|
|
# because loop modulo-scheduling is possible only thanks to
|
|
|
|
|
# minimized "register" pressure...
|
|
|
|
|
my ($Xhi,$Xi,$Hkey)=@_;
|
|
|
|
|
|
|
|
|
|
&movdqa ($T1,$Xi); #
|
|
|
|
|
&movdqa ($Xhi,$Xi);
|
|
|
|
|
&pclmulqdq ($Xi,$Hkey,0x00); #######
|
|
|
|
|
&pclmulqdq ($Xhi,$Hkey,0x11); #######
|
|
|
|
|
&pshufd ($T2,$T1,0b01001110); #
|
|
|
|
|
&pshufd ($T3,$Hkey,0b01001110);
|
|
|
|
|
&pxor ($T2,$T1); #
|
|
|
|
|
&pxor ($T3,$Hkey);
|
|
|
|
|
&pclmulqdq ($T2,$T3,0x00); #######
|
|
|
|
|
&pxor ($T2,$Xi); #
|
|
|
|
|
&pxor ($T2,$Xhi); #
|
|
|
|
|
|
|
|
|
|
&movdqa ($T3,$T2); #
|
|
|
|
|
&psrldq ($T2,8);
|
|
|
|
|
&pslldq ($T3,8); #
|
|
|
|
|
&pxor ($Xhi,$T2);
|
|
|
|
|
&pxor ($Xi,$T3); #
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (1) { # Algorithm 9 with <<1 twist.
|
|
|
|
|
# Reduction is shorter and uses only two
|
|
|
|
|
# temporary registers, which makes it better
|
|
|
|
|
# candidate for interleaving with 64x64
|
|
|
|
|
# multiplication. Pre-modulo-scheduled loop
|
|
|
|
|
# was found to be ~20% faster than Algorithm 5
|
|
|
|
|
# below. Algorithm 9 was then chosen and
|
|
|
|
|
# optimized further...
|
|
|
|
|
|
|
|
|
|
sub reduction_alg9 { # 17/13 times faster than Intel version
|
|
|
|
|
my ($Xhi,$Xi) = @_;
|
|
|
|
|
|
|
|
|
|
# 1st phase
|
|
|
|
|
&movdqa ($T1,$Xi) #
|
|
|
|
|
&psllq ($Xi,1);
|
|
|
|
|
&pxor ($Xi,$T1); #
|
|
|
|
|
&psllq ($Xi,5); #
|
|
|
|
|
&pxor ($Xi,$T1); #
|
|
|
|
|
&psllq ($Xi,57); #
|
|
|
|
|
&movdqa ($T2,$Xi); #
|
|
|
|
|
&pslldq ($Xi,8);
|
|
|
|
|
&psrldq ($T2,8); #
|
|
|
|
|
&pxor ($Xi,$T1);
|
|
|
|
|
&pxor ($Xhi,$T2); #
|
|
|
|
|
|
|
|
|
|
# 2nd phase
|
|
|
|
|
&movdqa ($T2,$Xi);
|
|
|
|
|
&psrlq ($Xi,5);
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
&psrlq ($Xi,1); #
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
&pxor ($T2,$Xhi);
|
|
|
|
|
&psrlq ($Xi,1); #
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
}
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&function_begin_B("gcm_init_clmul");
|
|
|
|
|
&mov ($Htbl,&wparam(0));
|
|
|
|
|
&mov ($Xip,&wparam(1));
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Xip));
|
|
|
|
|
&pshufd ($Hkey,$Hkey,0b01001110);# dword swap
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# <<1 twist
|
|
|
|
|
&pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
|
|
|
|
|
&movdqa ($T1,$Hkey);
|
|
|
|
|
&psllq ($Hkey,1);
|
|
|
|
|
&pxor ($T3,$T3); #
|
|
|
|
|
&psrlq ($T1,63);
|
|
|
|
|
&pcmpgtd ($T3,$T2); # broadcast carry bit
|
|
|
|
|
&pslldq ($T1,8);
|
|
|
|
|
&por ($Hkey,$T1); # H<<=1
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# magic reduction
|
|
|
|
|
&pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
|
|
|
|
|
&pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
# calculate H^2
|
|
|
|
|
&movdqa ($Xi,$Hkey);
|
|
|
|
|
&clmul64x64_T2 ($Xhi,$Xi,$Hkey);
|
|
|
|
|
&reduction_alg9 ($Xhi,$Xi);
|
2010-03-09 23:03:33 +00:00
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&movdqu (&QWP(0,$Htbl),$Hkey); # save H
|
|
|
|
|
&movdqu (&QWP(16,$Htbl),$Xi); # save H^2
|
|
|
|
|
|
|
|
|
|
&ret ();
|
|
|
|
|
&function_end_B("gcm_init_clmul");
|
|
|
|
|
|
|
|
|
|
&function_begin_B("gcm_gmult_clmul");
|
|
|
|
|
&mov ($Xip,&wparam(0));
|
|
|
|
|
&mov ($Htbl,&wparam(1));
|
|
|
|
|
|
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Xi,&QWP(0,$Xip));
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl));
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T2 ($Xhi,$Xi,$Hkey);
|
|
|
|
|
&reduction_alg9 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
&movdqu (&QWP(0,$Xip),$Xi);
|
|
|
|
|
|
|
|
|
|
&ret ();
|
|
|
|
|
&function_end_B("gcm_gmult_clmul");
|
|
|
|
|
|
|
|
|
|
&function_begin("gcm_ghash_clmul");
|
|
|
|
|
&mov ($Xip,&wparam(0));
|
|
|
|
|
&mov ($Htbl,&wparam(1));
|
|
|
|
|
&mov ($inp,&wparam(2));
|
|
|
|
|
&mov ($len,&wparam(3));
|
|
|
|
|
|
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Xi,&QWP(0,$Xip));
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl));
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
|
|
|
|
|
&sub ($len,0x10);
|
|
|
|
|
&jz (&label("odd_tail"));
|
|
|
|
|
|
|
|
|
|
#######
|
|
|
|
|
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
|
|
|
|
|
# [(H*Ii+1) + (H*Xi+1)] mod P =
|
|
|
|
|
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
|
|
|
|
|
#
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&movdqu ($Xn,&QWP(16,$inp)); # Ii+1
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pshufb ($Xn,$T3);
|
|
|
|
|
&pxor ($Xi,$T1); # Ii+Xi
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
|
|
|
|
|
&movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
|
|
|
|
|
|
|
|
|
|
&lea ($inp,&DWP(32,$inp)); # i+=2
|
|
|
|
|
&sub ($len,0x20);
|
|
|
|
|
&jbe (&label("even_tail"));
|
|
|
|
|
|
|
|
|
|
&set_label("mod_loop");
|
|
|
|
|
&clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl)); # load H
|
|
|
|
|
|
|
|
|
|
&pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
|
|
|
|
|
&pxor ($Xhi,$Xhn);
|
|
|
|
|
|
|
|
|
|
&movdqu ($Xn,&QWP(16,$inp)); # Ii+1
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pshufb ($Xn,$T3);
|
|
|
|
|
|
|
|
|
|
&movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
|
|
|
|
|
&movdqa ($Xhn,$Xn);
|
|
|
|
|
&pxor ($Xhi,$T1); # "Ii+Xi", consume early
|
|
|
|
|
|
|
|
|
|
&movdqa ($T1,$Xi) #&reduction_alg9($Xhi,$Xi); 1st phase
|
|
|
|
|
&psllq ($Xi,1);
|
|
|
|
|
&pxor ($Xi,$T1); #
|
|
|
|
|
&psllq ($Xi,5); #
|
|
|
|
|
&pxor ($Xi,$T1); #
|
|
|
|
|
&pclmulqdq ($Xn,$Hkey,0x00); #######
|
|
|
|
|
&psllq ($Xi,57); #
|
|
|
|
|
&movdqa ($T2,$Xi); #
|
|
|
|
|
&pslldq ($Xi,8);
|
|
|
|
|
&psrldq ($T2,8); #
|
|
|
|
|
&pxor ($Xi,$T1);
|
|
|
|
|
&pshufd ($T1,$T3,0b01001110);
|
|
|
|
|
&pxor ($Xhi,$T2); #
|
|
|
|
|
&pxor ($T1,$T3);
|
|
|
|
|
&pshufd ($T3,$Hkey,0b01001110);
|
|
|
|
|
&pxor ($T3,$Hkey); #
|
|
|
|
|
|
|
|
|
|
&pclmulqdq ($Xhn,$Hkey,0x11); #######
|
|
|
|
|
&movdqa ($T2,$Xi); # 2nd phase
|
|
|
|
|
&psrlq ($Xi,5);
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
&psrlq ($Xi,1); #
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
&pxor ($T2,$Xhi);
|
|
|
|
|
&psrlq ($Xi,1); #
|
|
|
|
|
&pxor ($Xi,$T2); #
|
|
|
|
|
|
|
|
|
|
&pclmulqdq ($T1,$T3,0x00); #######
|
|
|
|
|
&movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
|
|
|
|
|
&pxor ($T1,$Xn); #
|
|
|
|
|
&pxor ($T1,$Xhn); #
|
|
|
|
|
|
|
|
|
|
&movdqa ($T3,$T1); #
|
|
|
|
|
&psrldq ($T1,8);
|
|
|
|
|
&pslldq ($T3,8); #
|
|
|
|
|
&pxor ($Xhn,$T1);
|
|
|
|
|
&pxor ($Xn,$T3); #
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
|
|
|
|
|
&lea ($inp,&DWP(32,$inp));
|
|
|
|
|
&sub ($len,0x20);
|
|
|
|
|
&ja (&label("mod_loop"));
|
|
|
|
|
|
|
|
|
|
&set_label("even_tail");
|
|
|
|
|
&clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
|
|
|
|
|
|
|
|
|
|
&pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
|
|
|
|
|
&pxor ($Xhi,$Xhn);
|
|
|
|
|
|
|
|
|
|
&reduction_alg9 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&test ($len,$len);
|
|
|
|
|
&jnz (&label("done"));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl)); # load H
|
|
|
|
|
&set_label("odd_tail");
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pxor ($Xi,$T1); # Ii+Xi
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
|
|
|
|
|
&reduction_alg9 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&set_label("done");
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
&movdqu (&QWP(0,$Xip),$Xi);
|
|
|
|
|
&function_end("gcm_ghash_clmul");
|
|
|
|
|
|
|
|
|
|
} else { # Algorith 5. Kept for reference purposes.
|
|
|
|
|
|
|
|
|
|
sub reduction_alg5 { # 19/16 times faster than Intel version
|
|
|
|
|
my ($Xhi,$Xi)=@_;
|
|
|
|
|
|
|
|
|
|
# <<1
|
|
|
|
|
&movdqa ($T1,$Xi); #
|
|
|
|
|
&movdqa ($T2,$Xhi);
|
|
|
|
|
&pslld ($Xi,1);
|
|
|
|
|
&pslld ($Xhi,1); #
|
|
|
|
|
&psrld ($T1,31);
|
|
|
|
|
&psrld ($T2,31); #
|
|
|
|
|
&movdqa ($T3,$T1);
|
|
|
|
|
&pslldq ($T1,4);
|
|
|
|
|
&psrldq ($T3,12); #
|
|
|
|
|
&pslldq ($T2,4);
|
|
|
|
|
&por ($Xhi,$T3); #
|
|
|
|
|
&por ($Xi,$T1);
|
|
|
|
|
&por ($Xhi,$T2); #
|
|
|
|
|
|
|
|
|
|
# 1st phase
|
|
|
|
|
&movdqa ($T1,$Xi);
|
|
|
|
|
&movdqa ($T2,$Xi);
|
|
|
|
|
&movdqa ($T3,$Xi); #
|
|
|
|
|
&pslld ($T1,31);
|
|
|
|
|
&pslld ($T2,30);
|
|
|
|
|
&pslld ($Xi,25); #
|
|
|
|
|
&pxor ($T1,$T2);
|
|
|
|
|
&pxor ($T1,$Xi); #
|
|
|
|
|
&movdqa ($T2,$T1); #
|
|
|
|
|
&pslldq ($T1,12);
|
|
|
|
|
&psrldq ($T2,4); #
|
|
|
|
|
&pxor ($T3,$T1);
|
|
|
|
|
|
|
|
|
|
# 2nd phase
|
|
|
|
|
&pxor ($Xhi,$T3); #
|
|
|
|
|
&movdqa ($Xi,$T3);
|
|
|
|
|
&movdqa ($T1,$T3);
|
|
|
|
|
&psrld ($Xi,1); #
|
|
|
|
|
&psrld ($T1,2);
|
|
|
|
|
&psrld ($T3,7); #
|
|
|
|
|
&pxor ($Xi,$T1);
|
|
|
|
|
&pxor ($Xhi,$T2);
|
|
|
|
|
&pxor ($Xi,$T3); #
|
|
|
|
|
&pxor ($Xi,$Xhi); #
|
2010-03-09 23:03:33 +00:00
|
|
|
|
}
|
|
|
|
|
|
2010-05-13 15:32:43 +00:00
|
|
|
|
&function_begin_B("gcm_init_clmul");
|
|
|
|
|
&mov ($Htbl,&wparam(0));
|
|
|
|
|
&mov ($Xip,&wparam(1));
|
|
|
|
|
|
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Xip));
|
|
|
|
|
&pshufd ($Hkey,$Hkey,0b01001110);# dword swap
|
|
|
|
|
|
|
|
|
|
# calculate H^2
|
|
|
|
|
&movdqa ($Xi,$Hkey);
|
|
|
|
|
&clmul64x64_T3 ($Xhi,$Xi,$Hkey);
|
|
|
|
|
&reduction_alg5 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&movdqu (&QWP(0,$Htbl),$Hkey); # save H
|
|
|
|
|
&movdqu (&QWP(16,$Htbl),$Xi); # save H^2
|
|
|
|
|
|
|
|
|
|
&ret ();
|
|
|
|
|
&function_end_B("gcm_init_clmul");
|
|
|
|
|
|
|
|
|
|
&function_begin_B("gcm_gmult_clmul");
|
|
|
|
|
&mov ($Xip,&wparam(0));
|
|
|
|
|
&mov ($Htbl,&wparam(1));
|
|
|
|
|
|
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Xi,&QWP(0,$Xip));
|
|
|
|
|
&movdqa ($Xn,&QWP(0,$const));
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl));
|
|
|
|
|
&pshufb ($Xi,$Xn);
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T3 ($Xhi,$Xi,$Hkey);
|
|
|
|
|
&reduction_alg5 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&pshufb ($Xi,$Xn);
|
|
|
|
|
&movdqu (&QWP(0,$Xip),$Xi);
|
|
|
|
|
|
|
|
|
|
&ret ();
|
|
|
|
|
&function_end_B("gcm_gmult_clmul");
|
|
|
|
|
|
|
|
|
|
&function_begin("gcm_ghash_clmul");
|
|
|
|
|
&mov ($Xip,&wparam(0));
|
|
|
|
|
&mov ($Htbl,&wparam(1));
|
|
|
|
|
&mov ($inp,&wparam(2));
|
|
|
|
|
&mov ($len,&wparam(3));
|
|
|
|
|
|
|
|
|
|
&call (&label("pic"));
|
|
|
|
|
&set_label("pic");
|
|
|
|
|
&blindpop ($const);
|
|
|
|
|
&lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Xi,&QWP(0,$Xip));
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl));
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
|
|
|
|
|
&sub ($len,0x10);
|
|
|
|
|
&jz (&label("odd_tail"));
|
|
|
|
|
|
|
|
|
|
#######
|
|
|
|
|
# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
|
|
|
|
|
# [(H*Ii+1) + (H*Xi+1)] mod P =
|
|
|
|
|
# [(H*Ii+1) + H^2*(Ii+Xi)] mod P
|
|
|
|
|
#
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&movdqu ($Xn,&QWP(16,$inp)); # Ii+1
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pshufb ($Xn,$T3);
|
|
|
|
|
&pxor ($Xi,$T1); # Ii+Xi
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
|
|
|
|
|
&movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
|
|
|
|
|
|
|
|
|
|
&sub ($len,0x20);
|
|
|
|
|
&lea ($inp,&DWP(32,$inp)); # i+=2
|
|
|
|
|
&jbe (&label("even_tail"));
|
|
|
|
|
|
|
|
|
|
&set_label("mod_loop");
|
|
|
|
|
&clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl)); # load H
|
|
|
|
|
|
|
|
|
|
&pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
|
|
|
|
|
&pxor ($Xhi,$Xhn);
|
|
|
|
|
|
|
|
|
|
&reduction_alg5 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
#######
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&movdqu ($Xn,&QWP(16,$inp)); # Ii+1
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pshufb ($Xn,$T3);
|
|
|
|
|
&pxor ($Xi,$T1); # Ii+Xi
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
|
|
|
|
|
&movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
|
|
|
|
|
|
|
|
|
|
&sub ($len,0x20);
|
|
|
|
|
&lea ($inp,&DWP(32,$inp));
|
|
|
|
|
&ja (&label("mod_loop"));
|
|
|
|
|
|
|
|
|
|
&set_label("even_tail");
|
|
|
|
|
&clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
|
|
|
|
|
|
|
|
|
|
&pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
|
|
|
|
|
&pxor ($Xhi,$Xhn);
|
|
|
|
|
|
|
|
|
|
&reduction_alg5 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&test ($len,$len);
|
|
|
|
|
&jnz (&label("done"));
|
|
|
|
|
|
|
|
|
|
&movdqu ($Hkey,&QWP(0,$Htbl)); # load H
|
|
|
|
|
&set_label("odd_tail");
|
|
|
|
|
&movdqu ($T1,&QWP(0,$inp)); # Ii
|
|
|
|
|
&pshufb ($T1,$T3);
|
|
|
|
|
&pxor ($Xi,$T1); # Ii+Xi
|
|
|
|
|
|
|
|
|
|
&clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
|
|
|
|
|
&reduction_alg5 ($Xhi,$Xi);
|
|
|
|
|
|
|
|
|
|
&movdqa ($T3,&QWP(0,$const));
|
|
|
|
|
&set_label("done");
|
|
|
|
|
&pshufb ($Xi,$T3);
|
|
|
|
|
&movdqu (&QWP(0,$Xip),$Xi);
|
|
|
|
|
&function_end("gcm_ghash_clmul");
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
&set_label("bswap",64);
|
|
|
|
|
&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
|
|
|
|
|
&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
|
|
|
|
|
}} # $sse2
|
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&set_label("rem_4bit",64);
|
|
|
|
|
&data_word(0,0x0000<<16,0,0x1C20<<16,0,0x3840<<16,0,0x2460<<16);
|
|
|
|
|
&data_word(0,0x7080<<16,0,0x6CA0<<16,0,0x48C0<<16,0,0x54E0<<16);
|
|
|
|
|
&data_word(0,0xE100<<16,0,0xFD20<<16,0,0xD940<<16,0,0xC560<<16);
|
|
|
|
|
&data_word(0,0x9180<<16,0,0x8DA0<<16,0,0xA9C0<<16,0,0xB5E0<<16);
|
2010-05-13 15:32:43 +00:00
|
|
|
|
}}} # !$x86only
|
|
|
|
|
|
2010-03-09 23:03:33 +00:00
|
|
|
|
&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
|
|
|
|
&asm_finish();
|