openssl/crypto/rand/rand_lib.c

856 lines
22 KiB
C
Raw Normal View History

/*
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <time.h>
#include "internal/cryptlib.h"
#include <openssl/opensslconf.h>
#include "internal/rand_int.h"
#include <openssl/engine.h>
#include "internal/thread_once.h"
#include "rand_lcl.h"
#include "e_os.h"
#ifndef OPENSSL_NO_ENGINE
/* non-NULL if default_RAND_meth is ENGINE-provided */
static ENGINE *funct_ref;
static CRYPTO_RWLOCK *rand_engine_lock;
#endif
static CRYPTO_RWLOCK *rand_meth_lock;
static const RAND_METHOD *default_RAND_meth;
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
int rand_fork_count;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
static CRYPTO_RWLOCK *rand_nonce_lock;
static int rand_nonce_count;
static int rand_cleaning_up = 0;
#ifdef OPENSSL_RAND_SEED_RDTSC
/*
* IMPORTANT NOTE: It is not currently possible to use this code
* because we are not sure about the amount of randomness it provides.
* Some SP900 tests have been run, but there is internal skepticism.
* So for now this code is not used.
*/
# error "RDTSC enabled? Should not be possible!"
/*
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* Acquire entropy from high-speed clock
*
* Since we get some randomness from the low-order bits of the
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* high-speed clock, it can help.
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
{
unsigned char c;
int i;
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
for (i = 0; i < TSC_READ_COUNT; i++) {
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
rand_pool_add(pool, &c, 1, 4);
}
}
return rand_pool_entropy_available(pool);
}
#endif
#ifdef OPENSSL_RAND_SEED_RDCPU
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
extern unsigned int OPENSSL_ia32cap_P[];
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
/*
* Acquire entropy using Intel-specific cpu instructions
*
* Uses the RDSEED instruction if available, otherwise uses
* RDRAND if available.
*
* For the differences between RDSEED and RDRAND, and why RDSEED
* is the preferred choice, see https://goo.gl/oK3KcN
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
{
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
size_t bytes_needed;
unsigned char *buffer;
bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (bytes_needed > 0) {
buffer = rand_pool_add_begin(pool, bytes_needed);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (buffer != NULL) {
/* Whichever comes first, use RDSEED, RDRAND or nothing */
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
== bytes_needed) {
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
}
} else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
== bytes_needed) {
rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed);
}
} else {
rand_pool_add_end(pool, 0, 0);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
}
}
}
return rand_pool_entropy_available(pool);
}
#endif
/*
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
*
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's RAND_DRBG_generate().
*
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* Otherwise, the entropy is polled from the system entropy sources
* using rand_pool_acquire_entropy().
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len,
int prediction_resistance)
{
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
size_t ret = 0;
size_t entropy_available = 0;
RAND_POOL *pool;
if (drbg->parent && drbg->strength > drbg->parent->strength) {
/*
* We currently don't support the algorithm from NIST SP 800-90C
* 10.1.2 to use a weaker DRBG as source
*/
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK);
return 0;
}
if (drbg->seed_pool != NULL) {
pool = drbg->seed_pool;
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
pool->entropy_requested = entropy;
} else {
pool = rand_pool_new(entropy, min_len, max_len);
if (pool == NULL)
return 0;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (drbg->parent) {
size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (buffer != NULL) {
size_t bytes = 0;
2017-10-11 17:25:26 +00:00
/*
* Get random from parent, include our state as additional input.
* Our lock is already held, but we need to lock our parent before
* generating bits from it. (Note: taking the lock will be a no-op
* if locking if drbg->parent->lock == NULL.)
2017-10-11 17:25:26 +00:00
*/
rand_drbg_lock(drbg->parent);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (RAND_DRBG_generate(drbg->parent,
buffer, bytes_needed,
prediction_resistance,
NULL, 0) != 0)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
bytes = bytes_needed;
drbg->reseed_next_counter
= tsan_load(&drbg->parent->reseed_prop_counter);
rand_drbg_unlock(drbg->parent);
rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
} else {
if (prediction_resistance) {
/*
* We don't have any entropy sources that comply with the NIST
* standard to provide prediction resistance (see NIST SP 800-90C,
* Section 5.4).
*/
RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY,
RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED);
goto err;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
/* Get entropy by polling system entropy sources. */
entropy_available = rand_pool_acquire_entropy(pool);
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (entropy_available > 0) {
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
err:
if (drbg->seed_pool == NULL)
rand_pool_free(pool);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return ret;
}
/*
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
*
*/
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
unsigned char *out, size_t outlen)
{
if (drbg->seed_pool == NULL)
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
OPENSSL_secure_clear_free(out, outlen);
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
}
/*
* Implements the get_nonce() callback (see RAND_DRBG_set_callbacks())
*
*/
size_t rand_drbg_get_nonce(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
size_t ret = 0;
RAND_POOL *pool;
struct {
void * instance;
int count;
} data = { 0 };
pool = rand_pool_new(0, min_len, max_len);
if (pool == NULL)
return 0;
if (rand_pool_add_nonce_data(pool) == 0)
goto err;
data.instance = drbg;
CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock);
if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0)
goto err;
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
err:
rand_pool_free(pool);
return ret;
}
/*
* Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks())
*
*/
void rand_drbg_cleanup_nonce(RAND_DRBG *drbg,
unsigned char *out, size_t outlen)
{
OPENSSL_secure_clear_free(out, outlen);
}
/*
* Generate additional data that can be used for the drbg. The data does
* not need to contain entropy, but it's useful if it contains at least
* some bits that are unpredictable.
*
* Returns 0 on failure.
*
* On success it allocates a buffer at |*pout| and returns the length of
* the data. The buffer should get freed using OPENSSL_secure_clear_free().
*/
size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout)
{
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
size_t ret = 0;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
if (rand_pool_add_additional_data(pool) == 0)
goto err;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
ret = rand_pool_length(pool);
*pout = rand_pool_detach(pool);
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
err:
return ret;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out)
{
rand_pool_reattach(pool, out);
}
void rand_fork(void)
{
rand_fork_count++;
}
DEFINE_RUN_ONCE_STATIC(do_rand_init)
{
#ifndef OPENSSL_NO_ENGINE
Revert the crypto "global lock" implementation Conceptually, this is a squashed version of: Revert "Address feedback" This reverts commit 75551e07bd2339dfea06ef1d31d69929e13a4495. and Revert "Add CRYPTO_thread_glock_new" This reverts commit ed6b2c7938ec6f07b15745d4183afc276e74c6dd. But there were some intervening commits that made neither revert apply cleanly, so instead do it all as one shot. The crypto global locks were an attempt to cope with the awkward POSIX semantics for pthread_atfork(); its documentation (the "RATIONALE" section) indicates that the expected usage is to have the prefork handler lock all "global" locks, and the parent and child handlers release those locks, to ensure that forking happens with a consistent (lock) state. However, the set of functions available in the child process is limited to async-signal-safe functions, and pthread_mutex_unlock() is not on the list of async-signal-safe functions! The only synchronization primitives that are async-signal-safe are the semaphore primitives, which are not really appropriate for general-purpose usage. However, the state consistency problem that the global locks were attempting to solve is not actually a serious problem, particularly for OpenSSL. That is, we can consider four cases of forking application that might use OpenSSL: (1) Single-threaded, does not call into OpenSSL in the child (e.g., the child calls exec() immediately) For this class of process, no locking is needed at all, since there is only ever a single thread of execution and the only reentrancy is due to signal handlers (which are themselves limited to async-signal-safe operation and should not be doing much work at all). (2) Single-threaded, calls into OpenSSL after fork() The application must ensure that it does not fork() with an unexpected lock held (that is, one that would get unlocked in the parent but accidentally remain locked in the child and cause deadlock). Since OpenSSL does not expose any of its internal locks to the application and the application is single-threaded, the OpenSSL internal locks will be unlocked for the fork(), and the state will be consistent. (OpenSSL will need to reseed its PRNG in the child, but that is an orthogonal issue.) If the application makes use of locks from libcrypto, proper handling for those locks is the responsibility of the application, as for any other locking primitive that is available for application programming. (3) Multi-threaded, does not call into OpenSSL after fork() As for (1), the OpenSSL state is only relevant in the parent, so no particular fork()-related handling is needed. The internal locks are relevant, but there is no interaction with the child to consider. (4) Multi-threaded, calls into OpenSSL after fork() This is the case where the pthread_atfork() hooks to ensure that all global locks are in a known state across fork() would come into play, per the above discussion. However, these "calls into OpenSSL after fork()" are still subject to the restriction to async-signal-safe functions. Since OpenSSL uses all sorts of locking and libc functions that are not on the list of safe functions (e.g., malloc()), this case is not currently usable and is unlikely to ever be usable, independently of the locking situation. So, there is no need to go through contortions to attempt to support this case in the one small area of locking interaction with fork(). In light of the above analysis (thanks @davidben and @achernya), go back to the simpler implementation that does not need to distinguish "library-global" locks or to have complicated atfork handling for locks. Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com> (Merged from https://github.com/openssl/openssl/pull/5089)
2018-01-16 15:49:54 +00:00
rand_engine_lock = CRYPTO_THREAD_lock_new();
if (rand_engine_lock == NULL)
return 0;
#endif
Revert the crypto "global lock" implementation Conceptually, this is a squashed version of: Revert "Address feedback" This reverts commit 75551e07bd2339dfea06ef1d31d69929e13a4495. and Revert "Add CRYPTO_thread_glock_new" This reverts commit ed6b2c7938ec6f07b15745d4183afc276e74c6dd. But there were some intervening commits that made neither revert apply cleanly, so instead do it all as one shot. The crypto global locks were an attempt to cope with the awkward POSIX semantics for pthread_atfork(); its documentation (the "RATIONALE" section) indicates that the expected usage is to have the prefork handler lock all "global" locks, and the parent and child handlers release those locks, to ensure that forking happens with a consistent (lock) state. However, the set of functions available in the child process is limited to async-signal-safe functions, and pthread_mutex_unlock() is not on the list of async-signal-safe functions! The only synchronization primitives that are async-signal-safe are the semaphore primitives, which are not really appropriate for general-purpose usage. However, the state consistency problem that the global locks were attempting to solve is not actually a serious problem, particularly for OpenSSL. That is, we can consider four cases of forking application that might use OpenSSL: (1) Single-threaded, does not call into OpenSSL in the child (e.g., the child calls exec() immediately) For this class of process, no locking is needed at all, since there is only ever a single thread of execution and the only reentrancy is due to signal handlers (which are themselves limited to async-signal-safe operation and should not be doing much work at all). (2) Single-threaded, calls into OpenSSL after fork() The application must ensure that it does not fork() with an unexpected lock held (that is, one that would get unlocked in the parent but accidentally remain locked in the child and cause deadlock). Since OpenSSL does not expose any of its internal locks to the application and the application is single-threaded, the OpenSSL internal locks will be unlocked for the fork(), and the state will be consistent. (OpenSSL will need to reseed its PRNG in the child, but that is an orthogonal issue.) If the application makes use of locks from libcrypto, proper handling for those locks is the responsibility of the application, as for any other locking primitive that is available for application programming. (3) Multi-threaded, does not call into OpenSSL after fork() As for (1), the OpenSSL state is only relevant in the parent, so no particular fork()-related handling is needed. The internal locks are relevant, but there is no interaction with the child to consider. (4) Multi-threaded, calls into OpenSSL after fork() This is the case where the pthread_atfork() hooks to ensure that all global locks are in a known state across fork() would come into play, per the above discussion. However, these "calls into OpenSSL after fork()" are still subject to the restriction to async-signal-safe functions. Since OpenSSL uses all sorts of locking and libc functions that are not on the list of safe functions (e.g., malloc()), this case is not currently usable and is unlikely to ever be usable, independently of the locking situation. So, there is no need to go through contortions to attempt to support this case in the one small area of locking interaction with fork(). In light of the above analysis (thanks @davidben and @achernya), go back to the simpler implementation that does not need to distinguish "library-global" locks or to have complicated atfork handling for locks. Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com> (Merged from https://github.com/openssl/openssl/pull/5089)
2018-01-16 15:49:54 +00:00
rand_meth_lock = CRYPTO_THREAD_lock_new();
if (rand_meth_lock == NULL)
goto err1;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
rand_nonce_lock = CRYPTO_THREAD_lock_new();
if (rand_nonce_lock == NULL)
goto err2;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
if (!rand_cleaning_up && !rand_pool_init())
goto err3;
return 1;
err3:
rand_pool_cleanup();
err2:
CRYPTO_THREAD_lock_free(rand_meth_lock);
rand_meth_lock = NULL;
err1:
#ifndef OPENSSL_NO_ENGINE
CRYPTO_THREAD_lock_free(rand_engine_lock);
rand_engine_lock = NULL;
#endif
return 0;
}
void rand_cleanup_int(void)
{
const RAND_METHOD *meth = default_RAND_meth;
rand_cleaning_up = 1;
if (meth != NULL && meth->cleanup != NULL)
meth->cleanup();
RAND_set_rand_method(NULL);
rand_pool_cleanup();
#ifndef OPENSSL_NO_ENGINE
CRYPTO_THREAD_lock_free(rand_engine_lock);
rand_engine_lock = NULL;
#endif
CRYPTO_THREAD_lock_free(rand_meth_lock);
rand_meth_lock = NULL;
DRBG: implement a get_nonce() callback Fixes #5849 In pull request #5503 a fallback was added which adds a random nonce of security_strength/2 bits if no nonce callback is provided. This change raised the entropy requirements form 256 to 384 bit, which can cause problems on some platforms (e.g. VMS, see issue #5849). The requirements for the nonce are given in section 8.6.7 of NIST SP 800-90Ar1: A nonce may be required in the construction of a seed during instantiation in order to provide a security cushion to block certain attacks. The nonce shall be either: a) A value with at least (security_strength/2) bits of entropy, or b) A value that is expected to repeat no more often than a (security_strength/2)-bit random string would be expected to repeat. Each nonce shall be unique to the cryptographic module in which instantiation is performed, but need not be secret. When used, the nonce shall be considered to be a critical security parameter. This commit implements a nonce of type b) in order to lower the entropy requirements during instantiation back to 256 bits. The formulation "shall be unique to the cryptographic module" above implies that the nonce needs to be unique among (with high probability) among all DRBG instances in "space" and "time". We try to achieve this goal by creating a nonce of the following form nonce = app-specific-data || high-resolution-utc-timestamp || counter Where || denotes concatenation. The application specific data can be something like the process or group id of the application. A utc timestamp is used because it increases monotonically, provided the system time is synchronized. This approach may not be perfect yet for a FIPS evaluation, but it should be good enough for the moment. This commit also harmonizes the implementation of the get_nonce() and the get_additional_data() callbacks and moves the platform specific parts from rand_lib.c into rand_unix.c, rand_win.c, and rand_vms.c. Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/5920)
2018-04-10 08:22:52 +00:00
CRYPTO_THREAD_lock_free(rand_nonce_lock);
rand_nonce_lock = NULL;
}
/*
* RAND_close_seed_files() ensures that any seed file decriptors are
* closed after use.
*/
void RAND_keep_random_devices_open(int keep)
{
if (RUN_ONCE(&rand_init, do_rand_init))
rand_pool_keep_random_devices_open(keep);
}
/*
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* RAND_poll() reseeds the default RNG using random input
*
* The random input is obtained from polling various entropy
* sources which depend on the operating system and are
* configurable via the --with-rand-seed configure option.
*/
int RAND_poll(void)
{
int ret = 0;
RAND_POOL *pool = NULL;
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth == RAND_OpenSSL()) {
/* fill random pool and seed the master DRBG */
RAND_DRBG *drbg = RAND_DRBG_get0_master();
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (drbg == NULL)
return 0;
rand_drbg_lock(drbg);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
ret = rand_drbg_restart(drbg, NULL, 0, 0);
rand_drbg_unlock(drbg);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return ret;
} else {
/* fill random pool and seed the current legacy RNG */
pool = rand_pool_new(RAND_DRBG_STRENGTH,
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
RAND_DRBG_STRENGTH / 8,
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
RAND_POOL_MAX_LENGTH);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (pool == NULL)
return 0;
if (rand_pool_acquire_entropy(pool) == 0)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
goto err;
if (meth->add == NULL
|| meth->add(rand_pool_buffer(pool),
rand_pool_length(pool),
(rand_pool_entropy(pool) / 8.0)) == 0)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
goto err;
ret = 1;
}
err:
rand_pool_free(pool);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return ret;
}
/*
* Allocate memory and initialize a new random pool
*/
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
RAND_POOL *rand_pool_new(int entropy_requested, size_t min_len, size_t max_len)
{
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
if (pool == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
return NULL;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
}
pool->min_len = min_len;
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ?
RAND_POOL_MAX_LENGTH : max_len;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
if (pool->buffer == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
pool->entropy_requested = entropy_requested;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return pool;
err:
OPENSSL_free(pool);
return NULL;
}
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
/*
* Attach new random pool to the given buffer
*
* This function is intended to be used only for feeding random data
* provided by RAND_add() and RAND_seed() into the <master> DRBG.
*/
RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len,
size_t entropy)
{
RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
if (pool == NULL) {
RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE);
return NULL;
}
/*
* The const needs to be cast away, but attached buffers will not be
* modified (in contrary to allocated buffers which are zeroed and
* freed in the end).
*/
pool->buffer = (unsigned char *) buffer;
pool->len = len;
pool->attached = 1;
pool->min_len = pool->max_len = pool->len;
pool->entropy = entropy;
return pool;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
/*
* Free |pool|, securely erasing its buffer.
*/
void rand_pool_free(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
if (pool == NULL)
return;
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
/*
* Although it would be advisable from a cryptographical viewpoint,
* we are not allowed to clear attached buffers, since they are passed
* to rand_pool_attach() as `const unsigned char*`.
* (see corresponding comment in rand_pool_attach()).
*/
if (!pool->attached)
OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
OPENSSL_free(pool);
}
/*
* Return the |pool|'s buffer to the caller (readonly).
*/
const unsigned char *rand_pool_buffer(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
return pool->buffer;
}
/*
* Return the |pool|'s entropy to the caller.
*/
size_t rand_pool_entropy(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
return pool->entropy;
}
/*
* Return the |pool|'s buffer length to the caller.
*/
size_t rand_pool_length(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
return pool->len;
}
/*
* Detach the |pool| buffer and return it to the caller.
* It's the responsibility of the caller to free the buffer
* using OPENSSL_secure_clear_free() or to re-attach it
* again to the pool using rand_pool_reattach().
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
*/
unsigned char *rand_pool_detach(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
unsigned char *ret = pool->buffer;
pool->buffer = NULL;
pool->entropy = 0;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return ret;
}
/*
* Re-attach the |pool| buffer. It is only allowed to pass
* the |buffer| which was previously detached from the same pool.
*/
void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer)
{
pool->buffer = buffer;
OPENSSL_cleanse(pool->buffer, pool->len);
pool->len = 0;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
/*
* If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one
* need to obtain at least |bits| bits of entropy?
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
*/
#define ENTROPY_TO_BYTES(bits, entropy_factor) \
(((bits) * (entropy_factor) + 7) / 8)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
/*
* Checks whether the |pool|'s entropy is available to the caller.
* This is the case when entropy count and buffer length are high enough.
* Returns
*
* |entropy| if the entropy count and buffer size is large enough
* 0 otherwise
*/
size_t rand_pool_entropy_available(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
if (pool->entropy < pool->entropy_requested)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return 0;
if (pool->len < pool->min_len)
return 0;
return pool->entropy;
}
/*
* Returns the (remaining) amount of entropy needed to fill
* the random pool.
*/
size_t rand_pool_entropy_needed(RAND_POOL *pool)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
DRBG: fix reseeding via RAND_add()/RAND_seed() with large input In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed() was implemented by buffering the data in a random pool where it is picked up later by the rand_drbg_get_entropy() callback. This buffer was limited to the size of 4096 bytes. When a larger input was added via RAND_add() or RAND_seed() to the DRBG, the reseeding failed, but the error returned by the DRBG was ignored by the two calling functions, which both don't return an error code. As a consequence, the data provided by the application was effectively ignored. This commit fixes the problem by a more efficient implementation which does not copy the data in memory and by raising the buffer the size limit to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits but it was chosen intentionally to avoid platform dependent problems like integer sizes and/or signed/unsigned conversion. Additionally, the DRBG is now less permissive on errors: In addition to pushing a message to the openssl error stack, it enters the error state, which forces a reinstantiation on next call. Thanks go to Dr. Falko Strenzke for reporting this issue to the openssl-security mailing list. After internal discussion the issue has been categorized as not being security relevant, because the DRBG reseeds automatically and is fully functional even without additional randomness provided by the application. Fixes #7381 Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/7382)
2018-10-09 23:53:29 +00:00
if (pool->entropy < pool->entropy_requested)
return pool->entropy_requested - pool->entropy;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return 0;
}
/*
* Returns the number of bytes needed to fill the pool, assuming
* the input has 1 / |entropy_factor| entropy bits per data bit.
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* In case of an error, 0 is returned.
*/
size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
size_t bytes_needed;
size_t entropy_needed = rand_pool_entropy_needed(pool);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (entropy_factor < 1) {
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
return 0;
}
bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor);
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (bytes_needed > pool->max_len - pool->len) {
/* not enough space left */
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (pool->len < pool->min_len &&
bytes_needed < pool->min_len - pool->len)
/* to meet the min_len requirement */
bytes_needed = pool->min_len - pool->len;
return bytes_needed;
}
/* Returns the remaining number of bytes available */
size_t rand_pool_bytes_remaining(RAND_POOL *pool)
{
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return pool->max_len - pool->len;
}
/*
* Add random bytes to the random pool.
*
* It is expected that the |buffer| contains |len| bytes of
* random input which contains at least |entropy| bits of
* randomness.
*
* Returns 1 if the added amount is adequate, otherwise 0
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
*/
int rand_pool_add(RAND_POOL *pool,
const unsigned char *buffer, size_t len, size_t entropy)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
return 0;
}
if (pool->buffer == NULL) {
RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR);
return 0;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
if (len > 0) {
memcpy(pool->buffer + pool->len, buffer, len);
pool->len += len;
pool->entropy += entropy;
}
return 1;
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
}
/*
* Start to add random bytes to the random pool in-place.
*
* Reserves the next |len| bytes for adding random bytes in-place
* and returns a pointer to the buffer.
* The caller is allowed to copy up to |len| bytes into the buffer.
* If |len| == 0 this is considered a no-op and a NULL pointer
* is returned without producing an error message.
*
* After updating the buffer, rand_pool_add_end() needs to be called
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* to finish the udpate operation (see next comment).
*/
unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
if (len == 0)
return NULL;
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
return NULL;
}
if (pool->buffer == NULL) {
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR);
return 0;
}
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
return pool->buffer + pool->len;
}
/*
* Finish to add random bytes to the random pool in-place.
*
* Finishes an in-place update of the random pool started by
* rand_pool_add_begin() (see previous comment).
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
* It is expected that |len| bytes of random input have been added
* to the buffer which contain at least |entropy| bits of randomness.
* It is allowed to add less bytes than originally reserved.
*/
int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy)
Fix reseeding issues of the public RAND_DRBG Reseeding is handled very differently by the classic RAND_METHOD API and the new RAND_DRBG api. These differences led to some problems when the new RAND_DRBG was made the default OpenSSL RNG. In particular, RAND_add() did not work as expected anymore. These issues are discussed on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API' and in Pull Request #4328. This commit fixes the mentioned issues, introducing the following changes: - Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which facilitates collecting entropy by the get_entropy() callback. - Don't use RAND_poll()/RAND_add() for collecting entropy from the get_entropy() callback anymore. Instead, replace RAND_poll() by RAND_POOL_acquire_entropy(). - Add a new function rand_drbg_restart() which tries to get the DRBG in an instantiated state by all means, regardless of the current state (uninstantiated, error, ...) the DRBG is in. If the caller provides entropy or additional input, it will be used for reseeding. - Restore the original documented behaviour of RAND_add() and RAND_poll() (namely to reseed the DRBG immediately) by a new implementation based on rand_drbg_restart(). - Add automatic error recovery from temporary failures of the entropy source to RAND_DRBG_generate() using the rand_drbg_restart() function. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Kurt Roeckx <kurt@roeckx.be> Reviewed-by: Rich Salz <rsalz@openssl.org> Reviewed-by: Ben Kaduk <kaduk@mit.edu> (Merged from https://github.com/openssl/openssl/pull/4328)
2017-08-31 21:16:22 +00:00
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (len > 0) {
pool->len += len;
pool->entropy += entropy;
}
return 1;
}
int RAND_set_rand_method(const RAND_METHOD *meth)
{
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
CRYPTO_THREAD_write_lock(rand_meth_lock);
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(funct_ref);
funct_ref = NULL;
#endif
default_RAND_meth = meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return 1;
}
const RAND_METHOD *RAND_get_rand_method(void)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return NULL;
CRYPTO_THREAD_write_lock(rand_meth_lock);
if (default_RAND_meth == NULL) {
#ifndef OPENSSL_NO_ENGINE
ENGINE *e;
/* If we have an engine that can do RAND, use it. */
if ((e = ENGINE_get_default_RAND()) != NULL
&& (tmp_meth = ENGINE_get_RAND(e)) != NULL) {
funct_ref = e;
default_RAND_meth = tmp_meth;
} else {
ENGINE_finish(e);
default_RAND_meth = &rand_meth;
}
#else
default_RAND_meth = &rand_meth;
#endif
}
tmp_meth = default_RAND_meth;
CRYPTO_THREAD_unlock(rand_meth_lock);
return tmp_meth;
}
#ifndef OPENSSL_NO_ENGINE
int RAND_set_rand_engine(ENGINE *engine)
{
const RAND_METHOD *tmp_meth = NULL;
if (!RUN_ONCE(&rand_init, do_rand_init))
return 0;
if (engine != NULL) {
if (!ENGINE_init(engine))
return 0;
tmp_meth = ENGINE_get_RAND(engine);
if (tmp_meth == NULL) {
ENGINE_finish(engine);
return 0;
}
}
CRYPTO_THREAD_write_lock(rand_engine_lock);
/* This function releases any prior ENGINE so call it first */
RAND_set_rand_method(tmp_meth);
funct_ref = engine;
CRYPTO_THREAD_unlock(rand_engine_lock);
return 1;
}
#endif
void RAND_seed(const void *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->seed != NULL)
meth->seed(buf, num);
}
void RAND_add(const void *buf, int num, double randomness)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->add != NULL)
meth->add(buf, num, randomness);
}
/*
* This function is not part of RAND_METHOD, so if we're not using
* the default method, then just call RAND_bytes(). Otherwise make
* sure we're instantiated and use the private DRBG.
*/
int RAND_priv_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
RAND_DRBG *drbg;
2017-10-11 17:25:26 +00:00
int ret;
if (meth != RAND_OpenSSL())
return RAND_bytes(buf, num);
drbg = RAND_DRBG_get0_private();
if (drbg == NULL)
return 0;
ret = RAND_DRBG_bytes(drbg, buf, num);
2017-10-11 17:25:26 +00:00
return ret;
}
int RAND_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->bytes != NULL)
return meth->bytes(buf, num);
RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED);
return -1;
}
#if OPENSSL_API_COMPAT < 0x10100000L
int RAND_pseudo_bytes(unsigned char *buf, int num)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->pseudorand != NULL)
return meth->pseudorand(buf, num);
return -1;
}
Deprecate RAND_pseudo_bytes The justification for RAND_pseudo_bytes is somewhat dubious, and the reality is that it is frequently being misused. RAND_bytes and RAND_pseudo_bytes in the default implementation both end up calling ssleay_rand_bytes. Both may return -1 in an error condition. If there is insufficient entropy then both will return 0, but RAND_bytes will additionally add an error to the error queue. They both return 1 on success. Therefore the fundamental difference between the two is that one will add an error to the error queue with insufficient entory whilst the other will not. Frequently there are constructions of this form: if(RAND_pseudo_bytes(...) <= 1) goto err; In the above form insufficient entropy is treated as an error anyway, so RAND_bytes is probably the better form to use. This form is also seen: if(!RAND_pseudo_bytes(...)) goto err; This is technically not correct at all since a -1 return value is incorrectly handled - but this form will also treat insufficient entropy as an error. Within libssl it is required that you have correctly seeded your entropy pool and so there seems little benefit in using RAND_pseudo_bytes. Similarly in libcrypto many operations also require a correctly seeded entropy pool and so in most interesting cases you would be better off using RAND_bytes anyway. There is a significant risk of RAND_pseudo_bytes being incorrectly used in scenarios where security can be compromised by insufficient entropy. If you are not using the default implementation, then most engines use the same function to implement RAND_bytes and RAND_pseudo_bytes in any case. Given its misuse, limited benefit, and potential to compromise security, RAND_pseudo_bytes has been deprecated. Reviewed-by: Richard Levitte <levitte@openssl.org>
2015-02-26 13:52:30 +00:00
#endif
int RAND_status(void)
{
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth->status != NULL)
return meth->status();
return 0;
}