Also, some readers of the code find starting the count at 1 for EE
cert confusing (since RFC5280 counts only non-self-issued intermediate
CAs, but we also counted the leaf). Therefore, never count the EE
cert, and adjust the path length comparison accordinly. This may
be more clear to the reader.
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit dc5831da59)
At the bottom of https://tools.ietf.org/html/rfc5280#page-12 and
top of https://tools.ietf.org/html/rfc5280#page-13 (last paragraph
of above https://tools.ietf.org/html/rfc5280#section-3.3), we see:
This specification covers two classes of certificates: CA
certificates and end entity certificates. CA certificates may be
further divided into three classes: cross-certificates, self-issued
certificates, and self-signed certificates. Cross-certificates are
CA certificates in which the issuer and subject are different
entities. Cross-certificates describe a trust relationship between
the two CAs. Self-issued certificates are CA certificates in which
the issuer and subject are the same entity. Self-issued certificates
are generated to support changes in policy or operations. Self-
signed certificates are self-issued certificates where the digital
signature may be verified by the public key bound into the
certificate. Self-signed certificates are used to convey a public
key for use to begin certification paths. End entity certificates
are issued to subjects that are not authorized to issue certificates.
that the term "self-issued" is only applicable to CAs, not end-entity
certificates. In https://tools.ietf.org/html/rfc5280#section-4.2.1.9
the description of path length constraints says:
The pathLenConstraint field is meaningful only if the cA boolean is
asserted and the key usage extension, if present, asserts the
keyCertSign bit (Section 4.2.1.3). In this case, it gives the
maximum number of non-self-issued intermediate certificates that may
follow this certificate in a valid certification path. (Note: The
last certificate in the certification path is not an intermediate
certificate, and is not included in this limit. Usually, the last
certificate is an end entity certificate, but it can be a CA
certificate.)
This makes it clear that exclusion of self-issued certificates from
the path length count applies only to some *intermediate* CA
certificates. A leaf certificate whether it has identical issuer
and subject or whether it is a CA or not is never part of the
intermediate certificate count. The handling of all leaf certificates
must be the same, in the case of our code to post-increment the
path count by 1, so that we ultimately reach a non-self-issued
intermediate it will be the first one (not zeroth) in the chain
of intermediates.
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit ed422a2d01)
Replace ECDH_KDF_X9_62() with internal ecdh_KDF_X9_63()
Signed-off-by: Antoine Salon <asalon@vmware.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/7345)
(cherry picked from commit ffd89124bd)
In pull request #4328 the seeding of the DRBG via RAND_add()/RAND_seed()
was implemented by buffering the data in a random pool where it is
picked up later by the rand_drbg_get_entropy() callback. This buffer
was limited to the size of 4096 bytes.
When a larger input was added via RAND_add() or RAND_seed() to the DRBG,
the reseeding failed, but the error returned by the DRBG was ignored
by the two calling functions, which both don't return an error code.
As a consequence, the data provided by the application was effectively
ignored.
This commit fixes the problem by a more efficient implementation which
does not copy the data in memory and by raising the buffer the size limit
to INT32_MAX (2 gigabytes). This is less than the NIST limit of 2^35 bits
but it was chosen intentionally to avoid platform dependent problems
like integer sizes and/or signed/unsigned conversion.
Additionally, the DRBG is now less permissive on errors: In addition to
pushing a message to the openssl error stack, it enters the error state,
which forces a reinstantiation on next call.
Thanks go to Dr. Falko Strenzke for reporting this issue to the
openssl-security mailing list. After internal discussion the issue
has been categorized as not being security relevant, because the DRBG
reseeds automatically and is fully functional even without additional
randomness provided by the application.
Fixes#7381
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7382)
(cherry picked from commit 3064b55134)
We don't need to use secure clean for public key.
CLA: trivial
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Paul Yang <yang.yang@baishancloud.com>
(Merged from https://github.com/openssl/openssl/pull/7363)
(cherry picked from commit c033101db3)
Negative displacement in memory references was not originally specified,
so that for maximum coverage one should abstain from it, just like with
any other extension. [Unless it's guarded by run-time switch, but there
is no switch in keccak1600-s390x.]
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7239)
(cherry picked from commit fc97c882f4)
Fixes a compiler warning about an unused syscall_random()
and cleans up the OPENSSL_RAND_SEED preprocessor logic.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/779)
(cherry picked from commit d90e128be6)
Should be 2018 instead of 20018.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7364)
We passed that ioctl a pointer to the whole session_op structure,
which wasn't quite right.
Notified by David Legault.
Fixes#7302
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/7304)
(cherry picked from commit 470096e576)
The BIO callback handling incorrectly wrote over the return code passed
to the callback, meaning that an incorrect result was (eventually) returned
to the caller.
Fixes#7343
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7344)
(cherry picked from commit d97ce8d9a0)
BIO_s_log() is declared for everyone, so should return NULL when not
actually implemented. Also, it had explicit platform limitations in
util/mkdef.pl that didn't correspond to what was actually in code.
While at it, a few other hard coded things that have lost their
relevance were removed.
include/openssl/ocsp.h had a few duplicate declarations.
Reviewed-by: Paul Yang <yang.yang@baishancloud.com>
(Merged from https://github.com/openssl/openssl/pull/7331)
(cherry picked from commit 7e09c5eaa5)
Change all calls to getenv() inside libcrypto to use a new wrapper function
that use secure_getenv() if available and an issetugid then getenv if not.
CPU processor override flags are unchanged.
Extra checks for OPENSSL_issetugid() have been removed in favour of the
safe getenv.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/7047)
(cherry picked from commit 5c39a55d04)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7277)
(cherry picked from commit 46d085096c)
This module includes bn.h via other headers, so it picks up the
definition from there and doesn't need to define them locally (any
more?). Worst case scenario, the redefinition may be different and
cause all sorts of compile errors.
Fixes#7227
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/7287)
(cherry picked from commit dda5396aae)
These both indicate that the file descriptor we're trying to use as a
terminal isn't, in fact, a terminal.
Fixes#7271
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7272)
(cherry picked from commit 276bf8620c)
The latter causes problems when complex.h is #included.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7233)
(cherry picked from commit 972f67889b)
It simply isn't available on older versions.
Issue submitted by Mark Daniels
Fixes#7229
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7230)
The new DRBG API added the aforementioned #define. However, it is
used internally only and having it defined publicly does not serve
any purpose except causing potential version compatibility problems.
Fixes#7182
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7190)
(cherry picked from commit c402e943cd)
- fix to use secure URL in generated Windows resources
- fix a potentially uninitialized variable
- fix an unused variable warning
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7189)
Reported by Coverity Scan (CID 1439138)
[extended tests]
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7156)
The deprecated ASN.1 type LONG / ZLONG (incorrectly) produced zero
length INTEGER encoding for zeroes. For the sake of backward
compatibility, we allow those to be read without fault when using the
replacement types INT32 / UINT32 / INT64 / UINT64.
Fixes#7134
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7144)
This was originally part of SipHash_Init. However, there are cases
where there isn't any key material to initialize from when setting the
hash size, and we do allow doing so with a EVP_PKEY control. The
solution is to provide a separate hash_size setter and to use it in
the corresponding EVP_PKEY_METHOD.
Fixes#7143
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7145)
zero-length ID is allowed, but it's not allowed to skip the ID.
Fixes: #6534
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7113)
Thus users can use this function to set customized EVP_PKEY_CTX to
EVP_MD_CTX structure.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7113)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7121)
`RSA_free()` and friends are called in case of error from
`RSA_new_method(ENGINE *e)` (or the respective equivalent functions).
For the rest of the description I'll talk about `RSA_*`, but the same
applies for the equivalent `DSA_free()`, `DH_free()`, `EC_KEY_free()`.
If `RSA_new_method()` fails because the engine does not implement the
required method, when `RSA_free(RSA *r)` is called,
`r->meth == NULL` and a segfault happens while checking if
`r->meth->finish` is defined.
This commit fixes this issue by ensuring that `r->meth` is not NULL
before dereferencing it to check for `r->meth->finish`.
Fixes#7102 .
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7121)
Added NIST test cases for these two as well.
Additionally deprecate the public definiton of HMAC_MAX_MD_CBLOCK in 1.2.0.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6972)
Add one more unit test case
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Paul Yang <yang.yang@baishancloud.com>
(Merged from https://github.com/openssl/openssl/pull/6892)
This trivial patch removes a duplicated call to ASN1_INTEGER_set.
Fixes Issue #6977
Signed-off-by: Eric Brown <browne@vmware.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6984)
asn1_encode has two form length octets: short form(1 byte), long form(1+n byte).
CLA: Trivial
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7027)
In [most common] case of p and q being of same width, it's possible to
replace CRT modulo operations with Montgomery reductions. And those are
even fixed-length Montgomery reductions...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6915)
Add bn_{mul|sqr}_fixed_top, bn_from_mont_fixed_top, bn_mod_sub_fixed_top.
Switch to bn_{mul|sqr}_fixed_top in bn_mul_mont_fixed_top and remove
memset in bn_from_montgomery_word.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6915)
The shared libraries are now stored as members of archives, as it is usual
on AIX. To correctly address this the custom dladdr()-implementation as
well as the dlfcn_load() routine need to be able to cope with such a
construct: libname.a(libname.so).
Signed-off-by: Matthias Kraft <Matthias.Kraft@softwareag.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6872)
It was assumed that CRYPTO_THREAD_LOCAL is universally scalar type,
which doesn't appear to hold true.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/6976)
Original could allocate nid and then bail out on malloc failure. Instead
allocate first *then* attempt to create object.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6998)
Previously you had to supply "null" as the digest to use EdDSA. This changes
things so that any digest is ignored.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6901)
Fixes#7022
In pull request #6432 a change was made to keep the handles to the
random devices opened in order to avoid reseeding problems for
applications in chroot environments.
As a consequence, the handles of the random devices were leaked at exit
if the random generator was not used by the application. This happened,
because the call to RAND_set_rand_method(NULL) in rand_cleanup_int()
triggered a call to the call_once function do_rand_init, which opened
the random devices via rand_pool_init().
Thanks to GitHub user @bwelling for reporting this issue.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7023)
This commit destroys the free list pointers which would otherwise be
present in the returned memory blocks. This in turn helps prevent
information leakage from the secure memory area.
Note: CRYPTO_secure_malloc is not guaranteed to return zeroed memory:
before the secure memory system is initialised or if it isn't implemented.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/7011)
The EFD database does not state that the "ladd-2002-it-3" algorithm
assumes X1 != 0.
Consequently the current implementation, based on it, fails to compute
correctly if the affine x coordinate of the scalar multiplication input
point is 0.
We replace this implementation using the alternative algorithm based on
Eq. (9) and (10) from the same paper, which being derived from the
additive relation of (6) does not incur in this problem, but costs one
extra field multiplication.
The EFD entry for this algorithm is at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
and the code to implement it was generated with tooling.
Regression tests add one positive test for each named curve that has
such a point. The `SharedSecret` was generated independently from the
OpenSSL codebase with sage.
This bug was originally reported by Dmitry Belyavsky on the
openssl-users maling list:
https://mta.openssl.org/pipermail/openssl-users/2018-August/008540.html
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7000)
Don't discard partial reads from /dev/*random and retry instead.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6990)
Fixes#6978
Don't discard partial reads from syscall_random() and retry instead.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6990)
Change return value type to ssize_t and ensure that a negative value
is returned only if a corresponding errno is set.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6990)
gcc 4.6 (arguably erroneously) warns about our use of 'free' as
the name of a function parameter, when --strict-warnings is enabled:
crypto/x509/x509_meth.c: In function 'X509_LOOKUP_meth_set_free':
crypto/x509/x509_meth.c:61:12: error: declaration of 'free' shadows a global declaration [-Werror=shadow]
cc1: all warnings being treated as errors
make[1]: *** [crypto/x509/x509_meth.o] Error 1
(gcc 4.8 is fine with this code, as are newer compilers.)
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6991)
CRYPTO_atomic_read was added with intention to read statistics counters,
but readings are effectively indistinguishable from regular load (even
in non-lock-free case). This is because you can get out-dated value in
both cases. CRYPTO_atomic_write was added for symmetry and was never used.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/6883)
If application explicitly calls CONF_modules_load_file() the SSL
conf module will be initialized twice and the module data would leak.
We need to free it before initializing it again.
Fixes#6835
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6948)
Originally fopen(3) was called from bio/bss_file.c, which performed the
aliasing. Then fopen(3) was moved to o_fopen.c, while "magic" definition
was left behind. It's still useful on 32-bit platforms, so pull it to
o_fopen.c.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6596)
Since 0.9.7, all i2d_ functions were documented to allocate an output
buffer if the user didn't provide one, under these conditions (from
the 1.0.2 documentation):
For OpenSSL 0.9.7 and later if B<*out> is B<NULL> memory will be
allocated for a buffer and the encoded data written to it. In this
case B<*out> is not incremented and it points to the start of the
data just written.
i2d_ASN1_OBJECT was found not to do this, and would crash if a NULL
output buffer was provided.
Fixes#6914
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6918)
This reverts commit 8839324450.
Removing these checks changes the behaviour of the API which is not
appropriate for a minor release. This also fixes a failure in the
fuzz tests when building with no-comp.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6895)
Rationale is that it wasn't providing accurate statistics anyway.
For statistics to be accurate CRYPTO_get_alloc_counts should acquire
a lock and lock-free additions should not be an option.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6786)
Checks are left in OPENSSL_sk_shift, OPENSSL_sk_pop and OPENSSL_sk_num.
This is because these are used as "opportunistic" readers, pulling
whatever datai, if any, set by somebody else. All calls that add data
don't check for stack being NULL, because caller should have checked
if stack was actually created.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6860)
In some cases it's about redundant check for return value, in some
cases it's about replacing check for -1 with comparison to 0.
Otherwise compiler might generate redundant check for <-1. [Even
formatting and readability fixes.]
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6860)
Documentation says "at most B<len> bytes will be written", which
formally doesn't prohibit zero. But if zero B<len> was passed, the
call to memcpy was bound to crash.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6860)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5935)
Fixes#6800
Replaces #5418
This commit reverts commit 7876dbffce and moves the check for a
zero-length input down the callstack into sha3_update().
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6838)
Ensure that the certificate required alert actually gets sent (and doesn't
get translated into handshake failure in TLSv1.3).
Ensure that proper reason codes are given for the new TLSv1.3 alerts.
Remove an out of date macro for TLS13_AD_END_OF_EARLY_DATA. This is a left
over from an earlier TLSv1.3 draft that is no longer used.
Fixes#6804
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6809)
Some EC functions exist in *_GFp and *_GF2m forms, in spite of the
implementations between the two curve types being identical. This
commit provides equivalent generic functions with the *_GFp and *_GF2m
forms just calling the generic functions.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6815)
Also streamline the code by relying on ASN1_INTEGER_to_BN to allocate the
BN instead of doing it separately.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6821)
FIPS 186-4 does not specify a hard requirement on DSA digest lengths,
and in any case the current check rejects the FIPS recommended digest
lengths for key sizes != 1024 bits.
Fixes: #6748
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6749)
This commit leverages the Montgomery ladder scaffold introduced in #6690
(alongside a specialized Lopez-Dahab ladder for binary curves) to
provide a specialized differential addition-and-double implementation to
speedup prime curves, while keeping all the features of
`ec_scalar_mul_ladder` against SCA attacks.
The arithmetic in ladder_pre, ladder_step and ladder_post is auto
generated with tooling, from the following formulae:
- `ladder_pre`: Formula 3 for doubling from Izu-Takagi "A fast parallel
elliptic curve multiplication resistant against side channel attacks",
as described at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- `ladder_step`: differential addition-and-doubling Eq. (8) and (10)
from Izu-Takagi "A fast parallel elliptic curve multiplication
resistant against side channel attacks", as described at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3
- `ladder_post`: y-coordinate recovery using Eq. (8) from Brier-Joye
"Weierstrass Elliptic Curves and Side-Channel Attacks", modified to
work in projective coordinates.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6772)
New implementation failed to correctly reset r->neg flag. Spotted by
OSSFuzz.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6783)
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6778)
Problem was that Windows threads that were terminating before libcrypto
was initialized were referencing uninitialized or possibly even
unrelated thread local storage index.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/6752)
A number intended to treat the base as secret should not be branching on
whether it is zero. Test-wise, this is covered by existing tests in bnmod.txt.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6733)
asn1_encode : x, y => 0 | x,0 | y
(because of DER encoding rules when x and y have high bit set)
CLA: Trivial
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6694)
If there's anything in the |biosk| stack, the first element is always
the input BIO. It should never be freed in this function, so we must
take careful steps not to do so inadvertently when freeing the stack.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/6769)
ecp_nistz256_set_from_affine is called when application attempts to use
custom generator, i.e. rarely. Even though it was wrong, it didn't
affect point operations, they were just not as fast as expected.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6738)
The ecp_nistz256_scatter_w7 function is called when application
attempts to use custom generator, i.e. rarely. Even though non-x86_64
versions were wrong, it didn't affect point operations, they were just
not as fast as expected.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6738)
The spec says that a client MUST set legacy_version to TLSv1.2, and
requires servers to verify that it isn't SSLv3.
Fixes#6600
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6747)
Originally suggested solution for "Return Of the Hidden Number Problem"
is arguably too expensive. While it has marginal impact on slower
curves, none to ~6%, optimized implementations suffer real penalties.
Most notably sign with P-256 went more than 2 times[!] slower. Instead,
just implement constant-time BN_mod_add_quick.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6664)
It was false positive, but one can as well view it as readability issue.
Switch even to unsigned indices because % BN_BYTES takes 4-6 instructions
with signed dividend vs. 1 (one) with unsigned.
Reviewed-by: Rich Salz <rsalz@openssl.org>
By default `ec_scalar_mul_ladder` (which uses the Lopez-Dahab ladder
implementation) is used only for (k * Generator) or (k * VariablePoint).
ECDSA verification uses (a * Generator + b * VariablePoint): this commit
forces the use of `ec_scalar_mul_ladder` also for the ECDSA verification
path, while using the default wNAF implementation for any other case.
With this commit `ec_scalar_mul_ladder` loses the static attribute, and
is added to ec_lcl.h so EC_METHODs can directly use it.
While working on a new custom EC_POINTs_mul implementation, I realized
that many checks (e.g. all the points being compatible with the given
EC_GROUP, creating a temporary BN_CTX if `ctx == NULL`, check for the
corner case `scalar == NULL && num == 0`) were duplicated again and
again in every single implementation (and actually some
implementations lacked some of the tests).
I thought that it makes way more sense for those checks that are
independent from the actual implementation and should always be done, to
be moved in the EC_POINTs_mul wrapper: so this commit also includes
these changes.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
This commit uses the new ladder scaffold to implement a specialized
ladder step based on differential addition-and-doubling in mixed
Lopez-Dahab projective coordinates, modified to independently blind the
operands.
The arithmetic in `ladder_pre`, `ladder_step` and `ladder_post` is
auto generated with tooling:
- see, e.g., "Guide to ECC" Alg 3.40 for reference about the
`ladder_pre` implementation;
- see https://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
for the differential addition-and-doubling formulas implemented in
`ladder_step`;
- see, e.g., "Fast Multiplication on Elliptic Curves over GF(2**m)
without Precomputation" (Lopez and Dahab, CHES 1999) Appendix Alg Mxy
for the `ladder_post` implementation to recover the `(x,y)` result in
affine coordinates.
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
for specialized Montgomery ladder implementations
PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.
The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.
- `ladder_pre` is executed before the main loop of the ladder: by
default it copies the input point P into S, and doubles it into R.
Specialized implementations could, e.g., use this hook to transition
to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
computes `S := R+S; R := 2R;`, but specific implementations could,
e.g., implement a more efficient formula for differential
addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
it's a noop, but specialized implementations could, e.g., use this
hook to transition back from the coordinate system used for optimizing
the differential addition-and-doubling or recover the y coordinate of
the result point.
This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
Run `make update ERROR_REBUILD=-rebuild` to remove some stale error
codes for SM2 (which is now using its own submodule for error codes,
i.e., `SM2_*`).
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
Move base 2^64 code to own #if section. It was nested in base 2^51 section,
which arguably might have been tricky to follow.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6699)
Base 2^64 addition/subtraction and final reduction failed to treat
partially reduced values correctly.
Thanks to Wycheproof Project for vectors and Paul Kehrer for report.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6699)
"Computationally constant-time" means that it might still leak
information about input's length, but only in cases when input
is missing complete BN_ULONG limbs. But even then leak is possible
only if attacker can observe memory access pattern with limb
granularity.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5254)
Note that exported functions maintain original behaviour, so that
external callers won't observe difference. While internally we can
now perform Montogomery multiplication on fixed-length vectors, fixed
at modulus size. The new functions, bn_to_mont_fixed_top and
bn_mul_mont_fixed_top, are declared in bn_int.h, because one can use
them even outside bn, e.g. in RSA, DSA, ECDSA...
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
The new flag marks vectors that were not treated with bn_correct_top,
in other words such vectors are permitted to be zero padded. For now
it's BN_DEBUG-only flag, as initial use case for zero-padded vectors
would be controlled Montgomery multiplication/exponentiation, not
general purpose. For general purpose use another type might be more
appropriate. Advantage of this suggestion is that it's possible to
back-port it...
bn/bn_div.c: fix memory sanitizer problem.
bn/bn_sqr.c: harmonize with BN_mul.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
Trouble is that addition is postponing expansion till carry is
calculated, and if addition carries, top word can be zero, which
triggers assertion in bn_check_top.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6662)
Fix the NULL check lack in a different way that is more compatible with
non-NULL branch. Refer #6632
Also mark and pop the error stack instead of clearing all errors when something
goes awry in CONF_get_number.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6643)
The sense of the check for build-time support for most hashes was inverted.
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6673)