The default ASN.1 handling can be used for SEED. This also makes
CMS work with SEED.
PR#4504
Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit c0aa8c2748)
Try to set the ASN.1 parameters for CMS encryption even if the IV
length is zero as the underlying cipher should still set the type.
This will correctly result in errors if an attempt is made to use
an unsupported cipher type.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit 3fd60dc422)
Conflicts:
crypto/cms/cms_enc.c
The name length limit check in x509_name_ex_d2i() includes
the containing structure as well as the actual X509_NAME. This will
cause large CRLs to be rejected.
Fix by limiting the length passed to ASN1_item_ex_d2i() which will
then return an error if the passed X509_NAME exceeds the length.
RT#4531
Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit 4e0d184ac1)
Only treat an ASN1_ANY type as an integer if it has the V_ASN1_INTEGER
tag: V_ASN1_NEG_INTEGER is an internal only value which is never used
for on the wire encoding.
Thanks to David Benjamin <davidben@google.com> for reporting this bug.
This was found using libFuzzer.
RT#4364 (part)CVE-2016-2108.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
With the EVP_EncodeUpdate function it is the caller's responsibility to
determine how big the output buffer should be. The function writes the
amount actually used to |*outl|. However this could go negative with a
sufficiently large value for |inl|. We add a check for this error
condition.
Reviewed-by: Richard Levitte <levitte@openssl.org>
An overflow can occur in the EVP_EncodeUpdate function which is used for
Base64 encoding of binary data. If an attacker is able to supply very large
amounts of input data then a length check can overflow resulting in a heap
corruption. Due to the very large amounts of data involved this will most
likely result in a crash.
Internally to OpenSSL the EVP_EncodeUpdate function is primarly used by the
PEM_write_bio* family of functions. These are mainly used within the
OpenSSL command line applications, so any application which processes
data from an untrusted source and outputs it as a PEM file should be
considered vulnerable to this issue.
User applications that call these APIs directly with large amounts of
untrusted data may also be vulnerable.
Issue reported by Guido Vranken.
CVE-2016-2105
Reviewed-by: Richard Levitte <levitte@openssl.org>
ASN1 Strings that are over 1024 bytes can cause an overread in
applications using the X509_NAME_oneline() function on EBCDIC systems.
This could result in arbitrary stack data being returned in the buffer.
Issue reported by Guido Vranken.
CVE-2016-2176
Reviewed-by: Andy Polyakov <appro@openssl.org>
An overflow can occur in the EVP_EncryptUpdate function. If an attacker is
able to supply very large amounts of input data after a previous call to
EVP_EncryptUpdate with a partial block then a length check can overflow
resulting in a heap corruption.
Following an analysis of all OpenSSL internal usage of the
EVP_EncryptUpdate function all usage is one of two forms.
The first form is like this:
EVP_EncryptInit()
EVP_EncryptUpdate()
i.e. where the EVP_EncryptUpdate() call is known to be the first called
function after an EVP_EncryptInit(), and therefore that specific call
must be safe.
The second form is where the length passed to EVP_EncryptUpdate() can be
seen from the code to be some small value and therefore there is no
possibility of an overflow.
Since all instances are one of these two forms, I believe that there can
be no overflows in internal code due to this problem.
It should be noted that EVP_DecryptUpdate() can call EVP_EncryptUpdate()
in certain code paths. Also EVP_CipherUpdate() is a synonym for
EVP_EncryptUpdate(). Therefore I have checked all instances of these
calls too, and came to the same conclusion, i.e. there are no instances
in internal usage where an overflow could occur.
This could still represent a security issue for end user code that calls
this function directly.
CVE-2016-2106
Issue reported by Guido Vranken.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(cherry picked from commit 3f3582139f)
Sanity check field lengths and sums to avoid potential overflows and reject
excessively large X509_NAME structures.
Issue reported by Guido Vranken.
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit 9b08619cb4)
Conflicts:
crypto/x509/x509.h
crypto/x509/x509_err.c
Reject zero length buffers passed to X509_NAME_onelne().
Issue reported by Guido Vranken.
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit b33d1141b6)
This adds an explicit limit to the size of an X509_NAME structure. Some
part of OpenSSL (e.g. TLS) already effectively limit the size due to
restrictions on certificate size.
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit 295f3a2491)
The traditional private key encryption algorithm doesn't function
properly if the IV length of the cipher is zero. These ciphers
(e.g. ECB mode) are not suitable for private key encryption
anyway.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
(cherry picked from commit d78df5dfd6)
The i2d_X509() function can return a negative value on error. Therefore
we should make sure we check it.
Issue reported by Yuan Jochen Kang.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
(cherry picked from commit 446ba8de9a)
This causes a compilation failure when using --strict-warnings in 1.0.2
and 1.0.1
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(cherry picked from commit 0ca67644dd)
If the ASN.1 BIO is presented with a large length field read it in
chunks of increasing size checking for EOF on each read. This prevents
small files allocating excessive amounts of data.
CVE-2016-2109
Thanks to Brian Carpenter for reporting this issue.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(cherry picked from commit c62981390d)
Free up parsed X509_NAME structure if the CertificateRequest message
contains excess data.
The security impact is considered insignificant. This is a client side
only leak and a large number of connections to malicious servers would
be needed to have a significant impact.
This was found by libFuzzer.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
Reviewed-by: Stephen Henson <steve@openssl.org>
(cherry picked from commit ec66c8c988)
no-comp on Windows was not actually suppressing compilation of the code,
although it was suppressing its use.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(cherry picked from commit a6406c9598)
If a call to EVP_DecryptUpdate fails then a memory leak could occur.
Ensure that the memory is freed appropriately.
Issue reported by Guido Vranken.
Reviewed-by: Richard Levitte <levitte@openssl.org>
There is a potential double free in EVP_DigestInit_ex. This is believed
to be reached only as a result of programmer error - but we should fix it
anyway.
Issue reported by Guido Vranken.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(cherry picked from commit ffe9150b15)
Some OSes, *cough*-dows, insist on stack being "wired" to
physical memory in strictly sequential manner, i.e. if stack
allocation spans two pages, then reference to farmost one can
be punishable by SEGV. But page walking can do good even on
other OSes, because it guarantees that villain thread hits
the guard page before it can make damage to innocent one...
Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit adc4f1fc25)
Resolved conflicts:
crypto/bn/asm/x86_64-mont.pl
crypto/bn/asm/x86_64-mont5.pl
Reviewed-by: Richard Levitte <levitte@openssl.org>
PVK files with abnormally large length or salt fields can cause an
integer overflow which can result in an OOB read and heap corruption.
However this is an rarely used format and private key files do not
normally come from untrusted sources the security implications not
significant.
Fix by limiting PVK length field to 100K and salt to 10K: these should be
more than enough to cover any files encountered in practice.
Issue reported by Guido Vranken.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(cherry picked from commit 5f57abe2b1)