This extends the recently added ECDSA signature blinding to blind DSA too.
This is based on side channel attacks demonstrated by Keegan Ryan (NCC
Group) for ECDSA which are likely to be able to be applied to DSA.
Normally, as in ECDSA, during signing the signer calculates:
s:= k^-1 * (m + r * priv_key) mod order
In ECDSA, the addition operation above provides a sufficient signal for a
flush+reload attack to derive the private key given sufficient signature
operations.
As a mitigation (based on a suggestion from Keegan) we add blinding to
the operation so that:
s := k^-1 * blind^-1 (blind * m + blind * r * priv_key) mod order
Since this attack is a localhost side channel only no CVE is assigned.
This commit also tweaks the previous ECDSA blinding so that blinding is
only removed at the last possible step.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6522)
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
Keegan Ryan (NCC Group) has demonstrated a side channel attack on an
ECDSA signature operation. During signing the signer calculates:
s:= k^-1 * (m + r * priv_key) mod order
The addition operation above provides a sufficient signal for a
flush+reload attack to derive the private key given sufficient signature
operations.
As a mitigation (based on a suggestion from Keegan) we add blinding to
the operation so that:
s := k^-1 * blind^-1 (blind * m + blind * r * priv_key) mod order
Since this attack is a localhost side channel only no CVE is assigned.
Reviewed-by: Rich Salz <rsalz@openssl.org>
When signing or verifying a file using pkeyutl the input is supposed to
be a hash. Some algorithms sanity check the length of the input, while
others don't and silently truncate. To avoid accidents we check that the
length of the input looks sane.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6284)
Because TLS 1.3 sends more non-application data records some clients run
into problems because they don't expect SSL_read() to return and set
SSL_ERROR_WANT_READ after processing it.
This can cause problems for clients that use blocking I/O and use
select() to see if data is available. It can be cleared using
SSL_CTX_clear_mode().
Reviewed-by: Matt Caswell <matt@openssl.org>
GH: #6260
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
* EC_POINT_mul is now responsible for constant time point multiplication
(for single fixed or variable point multiplication, when the scalar is
in the range [0,group_order), so we need to strip the nonce padding
from ECDSA.
* Entry added to CHANGES
* Updated EC_POINT_mul documentation
- Integrate existing EC_POINT_mul and EC_POINTs_mul entries in the
manpage to reflect the shift in constant-time expectations when
performing a single fixed or variable point multiplication;
- Add documentation to ec_method_st to reflect the updated "contract"
between callers and implementations of ec_method_st.mul.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
CLA: trivial
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5801)
Where a CMS detached signature is used with text content the text goes
through a canonicalisation process first prior to signing or verifying a
signature. This process strips trailing space at the end of lines, converts
line terminators to CRLF and removes additional trailing line terminators
at the end of a file. A bug in the canonicalisation process meant that
some characters, such as form-feed, were incorrectly treated as whitespace
and removed. This is contrary to the specification (RFC5485). This fix
could mean that detached text data signed with an earlier version of
OpenSSL 1.1.0 may fail to verify using the fixed version, or text data
signed with a fixed OpenSSL may fail to verify with an earlier version of
OpenSSL 1.1.0. A workaround is to only verify the canonicalised text data
and use the "-binary" flag (for the "cms" command line application) or set
the SMIME_BINARY/PKCS7_BINARY/CMS_BINARY flags (if using CMS_verify()).
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5790)
The RAND_DRBG API was added in PR #5462 and modified by PR #5547.
This commit adds the corresponding documention.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5461)
With "-multi" the OCSP responder forks multiple child processes,
and respawns them as needed. This can be used as a long-running
service, not just a demo program. Therefore the index file is
automatically re-read when changed. The responder also now optionally
times out client requests.
Reviewed-by: Matt Caswell <matt@openssl.org>
Support added for these two digests, available only via the EVP interface.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5093)
Similar to commit 17b602802114d53017ff7894319498934a580b17(
"Remove extra `the` in SSL_SESSION_set1_id.pod"), this commit removes
typos where additional 'the' have been added.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4999)
* Introduce RSA_generate_multi_prime_key to generate multi-prime
RSA private key. As well as the following functions:
RSA_get_multi_prime_extra_count
RSA_get0_multi_prime_factors
RSA_get0_multi_prime_crt_params
RSA_set0_multi_prime_params
RSA_get_version
* Support EVP operations for multi-prime RSA
* Support ASN.1 operations for multi-prime RSA
* Support multi-prime check in RSA_check_key_ex
* Support multi-prime RSA in apps/genrsa and apps/speed
* Support multi-prime RSA manipulation functions
* Test cases and documentation are added
* CHANGES is updated
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/4241)
Around 138 distinct errors found and fixed; thanks!
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/3459)
SM3 is a secure hash function which is part of the Chinese
"Commercial Cryptography" suite of algorithms which use is
required for certain commercial applications in China.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4616)
Rewrite the -req-nodes flag from CA.pl (idea from Andy)
Rewrite ERR_string_error_n
Reviewed-by: Andy Polyakov <appro@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4478)