From BoringSSL
- Send an alert when the client key exchange isn't correctly formatted.
- Reject overly short RSA ciphertexts to avoid a (benign) out-of-bounds memory access.
Reviewed-by: Kurt Roeckx <kurt@openssl.org>
the session's version (server).
See also BoringSSL's commit bdf5e72f50e25f0e45e825c156168766d8442dde.
Reviewed-by: Dr. Stephen Henson <steve@openssl.org>
once the ChangeCipherSpec message is received. Previously, the server would
set the flag once at SSL3_ST_SR_CERT_VRFY and again at SSL3_ST_SR_FINISHED.
This would allow a second CCS to arrive and would corrupt the server state.
(Because the first CCS would latch the correct keys and subsequent CCS
messages would have to be encrypted, a MitM attacker cannot exploit this,
though.)
Thanks to Joeri de Ruiter for reporting this issue.
Reviewed-by: Matt Caswell <matt@openssl.org>
When no-ssl3 is set only make SSLv3 disabled by default. Retain -ssl3
options for s_client/s_server/ssltest.
When no-ssl3-method is set SSLv3_*method() is removed and all -ssl3
options.
We should document this somewhere, e.g. wiki, FAQ or manual page.
Reviewed-by: Emilia Käsper <emilia@openssl.org>
The supported signature algorithms extension needs to be processed before
the certificate to use is decided and before a cipher is selected (as the
set of shared signature algorithms supported may impact the choice).
Reviewed-by: Matt Caswell <matt@openssl.org>
(cherry picked from commit 56e8dc542b)
Conflicts:
ssl/ssl.h
ssl/ssl_err.c
The addition of SRP authentication needs to be checked in various places
to work properly. Specifically:
A certificate is not sent.
A certificate request must not be sent.
Server key exchange message must not contain a signature.
If appropriate SRP authentication ciphersuites should be chosen.
Reviewed-by: Matt Caswell <matt@openssl.org>
Only accept change cipher spec when it is expected instead of at any
time. This prevents premature setting of session keys before the master
secret is determined which an attacker could use as a MITM attack.
Thanks to KIKUCHI Masashi (Lepidum Co. Ltd.) for reporting this issue
and providing the initial fix this patch is based on.
(cherry picked from commit bc8923b1ec)
Replace manual ASN.1 decoder with ASN1_get object. This
will decode the tag and length properly and check against
it does not exceed the supplied buffer length.
PR#3335
Security callback: selects which parameters are permitted including
sensible defaults based on bits of security.
The "parameters" which can be selected include: ciphersuites,
curves, key sizes, certificate signature algorithms, supported
signature algorithms, DH parameters, SSL/TLS version, session tickets
and compression.
In some cases prohibiting the use of a parameters will mean they are
not advertised to the peer: for example cipher suites and ECC curves.
In other cases it will abort the handshake: e.g DH parameters or the
peer key size.
Documentation to follow...
Add auto DH parameter support. This is roughly equivalent to the
ECDH auto curve selection but for DH. An application can just call
SSL_CTX_set_auto_dh(ctx, 1);
and appropriate DH parameters will be used based on the size of the
server key.
Unlike ECDH there is no way a peer can indicate the range of DH parameters
it supports. Some peers cannot handle DH keys larger that 1024 bits for
example. In this case if you call:
SSL_CTX_set_auto_dh(ctx, 2);
Only 1024 bit DH parameters will be used.
If the server key is 7680 bits or more in size then 8192 bit DH parameters
will be used: these will be *very* slow.
The old export ciphersuites aren't supported but those are very
insecure anyway.
If multiple TLS extensions are expected but not received, the TLS extension and supplemental data 'generate' callbacks are the only chance for the receive-side to trigger a specific TLS alert during the handshake.
Removed logic which no-op'd TLS extension generate callbacks (as the generate callbacks need to always be called in order to trigger alerts), and updated the serverinfo-specific custom TLS extension callbacks to track which custom TLS extensions were received by the client, where no-ops for 'generate' callbacks are appropriate.
DHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEDH should probably be deprecated at some
point, though.
ECDHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEECDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEECDH should probably be deprecated at some
point, though.
When sending an invalid version number alert don't change the
version number to the client version if a session is already
established.
Thanks to Marek Majkowski for additional analysis of this issue.
PR#3191
Instead, send random bytes, unless SSL_SEND_{CLIENT,SERVER}RANDOM_MODE
is set.
This is a forward-port of commits:
4af793036ff4c93b46ed3da721dac92583270191
While the gmt_unix_time record was added in an ostensible attempt to
mitigate the dangers of a bad RNG, its presence leaks the host's view
of the current time in the clear. This minor leak can help
fingerprint TLS instances across networks and protocols... and what's
worse, it's doubtful thet the gmt_unix_time record does any good at
all for its intended purpose, since:
* It's quite possible to open two TLS connections in one second.
* If the PRNG output is prone to repeat itself, ephemeral
handshakes (and who knows what else besides) are broken.
Removed prior audit proof logic - audit proof support was implemented using the generic TLS extension API
Tests exercising the new supplemental data registration and callback api can be found in ssltest.c.
Implemented changes to s_server and s_client to exercise supplemental data callbacks via the -auth argument, as well as additional flags to exercise supplemental data being sent only during renegotiation.
Check for Suite B support using method flags instead of version numbers:
anything supporting TLS 1.2 cipher suites will also support Suite B.
Return an error if an attempt to use DTLS 1.0 is made in Suite B mode.
If we successfully match a cookie don't set return value to 2 as this
results in other error conditions returning 2 as well.
Instead set return value to -2 which can be checked later if everything
else is OK.
Add new methods DTLS_*_method() which support both DTLS 1.0 and DTLS 1.2 and
pick the highest version the peer supports during negotiation.
As with SSL/TLS options can change this behaviour specifically
SSL_OP_NO_DTLSv1 and SSL_OP_NO_DTLSv1_2.
Use the enc_flags field to determine whether we should use explicit IV,
signature algorithms or SHA256 default PRF instead of hard coding which
versions support each requirement.
Revise DTLS code. There was a *lot* of code duplication in the
DTLS code that generates records. This makes it harder to maintain and
sometimes a TLS update is omitted by accident from the DTLS code.
Specifically almost all of the record generation functions have code like
this:
some_pointer = buffer + HANDSHAKE_HEADER_LENGTH;
... Record creation stuff ...
set_handshake_header(ssl, SSL_MT_SOMETHING, message_len);
...
write_handshake_message(ssl);
Where the "Record creation stuff" is identical between SSL/TLS and DTLS or
in some cases has very minor differences.
By adding a few fields to SSL3_ENC to include the header length, some flags
and function pointers for handshake header setting and handshake writing the
code can cope with both cases.
Note: although this passes "make test" and some simple DTLS tests there may
be some minor differences in the DTLS code that have to be accounted for.
is required by client or server. An application can decide which
certificate chain to present based on arbitrary criteria: for example
supported signature algorithms. Add very simple example to s_server.
This fixes many of the problems and restrictions of the existing client
certificate callback: for example you can now clear existing certificates
and specify the whole chain.