9a43a73380
Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - |
||
---|---|---|
.. | ||
asm | ||
curve448 | ||
build.info | ||
curve25519.c | ||
ec2_oct.c | ||
ec2_smpl.c | ||
ec_ameth.c | ||
ec_asn1.c | ||
ec_check.c | ||
ec_curve.c | ||
ec_cvt.c | ||
ec_err.c | ||
ec_key.c | ||
ec_kmeth.c | ||
ec_lcl.h | ||
ec_lib.c | ||
ec_mult.c | ||
ec_oct.c | ||
ec_pmeth.c | ||
ec_print.c | ||
ecdh_kdf.c | ||
ecdh_ossl.c | ||
ecdsa_ossl.c | ||
ecdsa_sign.c | ||
ecdsa_vrf.c | ||
eck_prn.c | ||
ecp_mont.c | ||
ecp_nist.c | ||
ecp_nistp224.c | ||
ecp_nistp256.c | ||
ecp_nistp521.c | ||
ecp_nistputil.c | ||
ecp_nistz256.c | ||
ecp_nistz256_table.c | ||
ecp_oct.c | ||
ecp_smpl.c | ||
ecx_meth.c |