b8a437ffa0
Looking at http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf we see that in the CTR_DRBG_Update() algorithm (internal page number 51), the provided input data is (after truncation to seedlen) xor-d with the key and V vector (of length keylen and blocklen respectively). The comment in ctr_XOR notes that xor-ing with 0 is the identity function, so we can just ignore the case when the provided input is shorter than seedlen. The code in ctr_XOR() then proceeds to xor the key with the input, up to the amount of input present, and computes the remaining input that could be used to xor with the V vector, before accessing a full 16-byte stretch of the input vector and ignoring the calculated length. The correct behavior is to respect the supplied input length and only xor the indicated number of bytes. Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/3971)
449 lines
12 KiB
C
449 lines
12 KiB
C
/*
|
|
* Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <openssl/crypto.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/rand.h>
|
|
#include "rand_lcl.h"
|
|
#include "internal/thread_once.h"
|
|
|
|
/*
|
|
* Mapping of NIST SP 800-90A DRBG to OpenSSL RAND_METHOD.
|
|
*/
|
|
|
|
|
|
/*
|
|
* The default global DRBG and its auto-init/auto-cleanup.
|
|
*/
|
|
static DRBG_CTX ossl_drbg;
|
|
|
|
static CRYPTO_ONCE ossl_drbg_init = CRYPTO_ONCE_STATIC_INIT;
|
|
|
|
DEFINE_RUN_ONCE_STATIC(do_ossl_drbg_init)
|
|
{
|
|
ossl_drbg.lock = CRYPTO_THREAD_lock_new();
|
|
return ossl_drbg.lock != NULL;
|
|
}
|
|
|
|
void rand_drbg_cleanup(void)
|
|
{
|
|
CRYPTO_THREAD_lock_free(ossl_drbg.lock);
|
|
}
|
|
|
|
static void inc_128(DRBG_CTR_CTX *cctx)
|
|
{
|
|
int i;
|
|
unsigned char c;
|
|
unsigned char *p = &cctx->V[15];
|
|
|
|
for (i = 0; i < 16; i++, p--) {
|
|
c = *p;
|
|
c++;
|
|
*p = c;
|
|
if (c != 0) {
|
|
/* If we didn't wrap around, we're done. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ctr_XOR(DRBG_CTR_CTX *cctx, const unsigned char *in, size_t inlen)
|
|
{
|
|
size_t i, n;
|
|
|
|
if (in == NULL || inlen == 0)
|
|
return;
|
|
|
|
/*
|
|
* Any zero padding will have no effect on the result as we
|
|
* are XORing. So just process however much input we have.
|
|
*/
|
|
n = inlen < cctx->keylen ? inlen : cctx->keylen;
|
|
for (i = 0; i < n; i++)
|
|
cctx->K[i] ^= in[i];
|
|
if (inlen <= cctx->keylen)
|
|
return;
|
|
|
|
n = inlen - cctx->keylen;
|
|
if (n > 16) {
|
|
/* Should never happen */
|
|
n = 16;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
cctx->V[i] ^= in[i + cctx->keylen];
|
|
}
|
|
|
|
/*
|
|
* Process a complete block using BCC algorithm of SP 800-90A 10.3.3
|
|
*/
|
|
static void ctr_BCC_block(DRBG_CTR_CTX *cctx, unsigned char *out,
|
|
const unsigned char *in)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
out[i] ^= in[i];
|
|
AES_encrypt(out, out, &cctx->df_ks);
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle several BCC operations for as much data as we need for K and X
|
|
*/
|
|
static void ctr_BCC_blocks(DRBG_CTR_CTX *cctx, const unsigned char *in)
|
|
{
|
|
ctr_BCC_block(cctx, cctx->KX, in);
|
|
ctr_BCC_block(cctx, cctx->KX + 16, in);
|
|
if (cctx->keylen != 16)
|
|
ctr_BCC_block(cctx, cctx->KX + 32, in);
|
|
}
|
|
|
|
/*
|
|
* Initialise BCC blocks: these have the value 0,1,2 in leftmost positions:
|
|
* see 10.3.1 stage 7.
|
|
*/
|
|
static void ctr_BCC_init(DRBG_CTR_CTX *cctx)
|
|
{
|
|
memset(cctx->KX, 0, 48);
|
|
memset(cctx->bltmp, 0, 16);
|
|
ctr_BCC_block(cctx, cctx->KX, cctx->bltmp);
|
|
cctx->bltmp[3] = 1;
|
|
ctr_BCC_block(cctx, cctx->KX + 16, cctx->bltmp);
|
|
if (cctx->keylen != 16) {
|
|
cctx->bltmp[3] = 2;
|
|
ctr_BCC_block(cctx, cctx->KX + 32, cctx->bltmp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process several blocks into BCC algorithm, some possibly partial
|
|
*/
|
|
static void ctr_BCC_update(DRBG_CTR_CTX *cctx,
|
|
const unsigned char *in, size_t inlen)
|
|
{
|
|
if (in == NULL || inlen == 0)
|
|
return;
|
|
|
|
/* If we have partial block handle it first */
|
|
if (cctx->bltmp_pos) {
|
|
size_t left = 16 - cctx->bltmp_pos;
|
|
|
|
/* If we now have a complete block process it */
|
|
if (inlen >= left) {
|
|
memcpy(cctx->bltmp + cctx->bltmp_pos, in, left);
|
|
ctr_BCC_blocks(cctx, cctx->bltmp);
|
|
cctx->bltmp_pos = 0;
|
|
inlen -= left;
|
|
in += left;
|
|
}
|
|
}
|
|
|
|
/* Process zero or more complete blocks */
|
|
for (; inlen >= 16; in += 16, inlen -= 16) {
|
|
ctr_BCC_blocks(cctx, in);
|
|
}
|
|
|
|
/* Copy any remaining partial block to the temporary buffer */
|
|
if (inlen > 0) {
|
|
memcpy(cctx->bltmp + cctx->bltmp_pos, in, inlen);
|
|
cctx->bltmp_pos += inlen;
|
|
}
|
|
}
|
|
|
|
static void ctr_BCC_final(DRBG_CTR_CTX *cctx)
|
|
{
|
|
if (cctx->bltmp_pos) {
|
|
memset(cctx->bltmp + cctx->bltmp_pos, 0, 16 - cctx->bltmp_pos);
|
|
ctr_BCC_blocks(cctx, cctx->bltmp);
|
|
}
|
|
}
|
|
|
|
static void ctr_df(DRBG_CTR_CTX *cctx,
|
|
const unsigned char *in1, size_t in1len,
|
|
const unsigned char *in2, size_t in2len,
|
|
const unsigned char *in3, size_t in3len)
|
|
{
|
|
static unsigned char c80 = 0x80;
|
|
size_t inlen;
|
|
unsigned char *p = cctx->bltmp;
|
|
|
|
ctr_BCC_init(cctx);
|
|
if (in1 == NULL)
|
|
in1len = 0;
|
|
if (in2 == NULL)
|
|
in2len = 0;
|
|
if (in3 == NULL)
|
|
in3len = 0;
|
|
inlen = in1len + in2len + in3len;
|
|
/* Initialise L||N in temporary block */
|
|
*p++ = (inlen >> 24) & 0xff;
|
|
*p++ = (inlen >> 16) & 0xff;
|
|
*p++ = (inlen >> 8) & 0xff;
|
|
*p++ = inlen & 0xff;
|
|
|
|
/* NB keylen is at most 32 bytes */
|
|
*p++ = 0;
|
|
*p++ = 0;
|
|
*p++ = 0;
|
|
*p = (unsigned char)((cctx->keylen + 16) & 0xff);
|
|
cctx->bltmp_pos = 8;
|
|
ctr_BCC_update(cctx, in1, in1len);
|
|
ctr_BCC_update(cctx, in2, in2len);
|
|
ctr_BCC_update(cctx, in3, in3len);
|
|
ctr_BCC_update(cctx, &c80, 1);
|
|
ctr_BCC_final(cctx);
|
|
/* Set up key K */
|
|
AES_set_encrypt_key(cctx->KX, cctx->keylen * 8, &cctx->df_kxks);
|
|
/* X follows key K */
|
|
AES_encrypt(cctx->KX + cctx->keylen, cctx->KX, &cctx->df_kxks);
|
|
AES_encrypt(cctx->KX, cctx->KX + 16, &cctx->df_kxks);
|
|
if (cctx->keylen != 16)
|
|
AES_encrypt(cctx->KX + 16, cctx->KX + 32, &cctx->df_kxks);
|
|
}
|
|
|
|
/*
|
|
* NB the no-df Update in SP800-90A specifies a constant input length
|
|
* of seedlen, however other uses of this algorithm pad the input with
|
|
* zeroes if necessary and have up to two parameters XORed together,
|
|
* handle both cases in this function instead.
|
|
*/
|
|
static void ctr_update(DRBG_CTX *dctx,
|
|
const unsigned char *in1, size_t in1len,
|
|
const unsigned char *in2, size_t in2len,
|
|
const unsigned char *nonce, size_t noncelen)
|
|
{
|
|
DRBG_CTR_CTX *cctx = &dctx->ctr;
|
|
|
|
/* ks is already setup for correct key */
|
|
inc_128(cctx);
|
|
AES_encrypt(cctx->V, cctx->K, &cctx->ks);
|
|
|
|
/* If keylen longer than 128 bits need extra encrypt */
|
|
if (cctx->keylen != 16) {
|
|
inc_128(cctx);
|
|
AES_encrypt(cctx->V, cctx->K + 16, &cctx->ks);
|
|
}
|
|
inc_128(cctx);
|
|
AES_encrypt(cctx->V, cctx->V, &cctx->ks);
|
|
|
|
/* If 192 bit key part of V is on end of K */
|
|
if (cctx->keylen == 24) {
|
|
memcpy(cctx->V + 8, cctx->V, 8);
|
|
memcpy(cctx->V, cctx->K + 24, 8);
|
|
}
|
|
|
|
if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) {
|
|
/* If no input reuse existing derived value */
|
|
if (in1 != NULL || nonce != NULL || in2 != NULL)
|
|
ctr_df(cctx, in1, in1len, nonce, noncelen, in2, in2len);
|
|
/* If this a reuse input in1len != 0 */
|
|
if (in1len)
|
|
ctr_XOR(cctx, cctx->KX, dctx->seedlen);
|
|
} else {
|
|
ctr_XOR(cctx, in1, in1len);
|
|
ctr_XOR(cctx, in2, in2len);
|
|
}
|
|
|
|
AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks);
|
|
}
|
|
|
|
int ctr_instantiate(DRBG_CTX *dctx,
|
|
const unsigned char *ent, size_t entlen,
|
|
const unsigned char *nonce, size_t noncelen,
|
|
const unsigned char *pers, size_t perslen)
|
|
{
|
|
DRBG_CTR_CTX *cctx = &dctx->ctr;
|
|
|
|
memset(cctx->K, 0, sizeof(cctx->K));
|
|
memset(cctx->V, 0, sizeof(cctx->V));
|
|
AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks);
|
|
ctr_update(dctx, ent, entlen, pers, perslen, nonce, noncelen);
|
|
return 1;
|
|
}
|
|
|
|
int ctr_reseed(DRBG_CTX *dctx,
|
|
const unsigned char *ent, size_t entlen,
|
|
const unsigned char *adin, size_t adinlen)
|
|
{
|
|
ctr_update(dctx, ent, entlen, adin, adinlen, NULL, 0);
|
|
return 1;
|
|
}
|
|
|
|
int ctr_generate(DRBG_CTX *dctx,
|
|
unsigned char *out, size_t outlen,
|
|
const unsigned char *adin, size_t adinlen)
|
|
{
|
|
DRBG_CTR_CTX *cctx = &dctx->ctr;
|
|
|
|
if (adin != NULL && adinlen != 0) {
|
|
ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0);
|
|
/* This means we reuse derived value */
|
|
if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) {
|
|
adin = NULL;
|
|
adinlen = 1;
|
|
}
|
|
} else {
|
|
adinlen = 0;
|
|
}
|
|
|
|
for ( ; ; ) {
|
|
inc_128(cctx);
|
|
if (outlen < 16) {
|
|
/* Use K as temp space as it will be updated */
|
|
AES_encrypt(cctx->V, cctx->K, &cctx->ks);
|
|
memcpy(out, cctx->K, outlen);
|
|
break;
|
|
}
|
|
AES_encrypt(cctx->V, out, &cctx->ks);
|
|
out += 16;
|
|
outlen -= 16;
|
|
if (outlen == 0)
|
|
break;
|
|
}
|
|
|
|
ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0);
|
|
return 1;
|
|
}
|
|
|
|
int ctr_uninstantiate(DRBG_CTX *dctx)
|
|
{
|
|
memset(&dctx->ctr, 0, sizeof(dctx->ctr));
|
|
return 1;
|
|
}
|
|
|
|
int ctr_init(DRBG_CTX *dctx)
|
|
{
|
|
DRBG_CTR_CTX *cctx = &dctx->ctr;
|
|
size_t keylen;
|
|
|
|
switch (dctx->nid) {
|
|
default:
|
|
/* This can't happen, but silence the compiler warning. */
|
|
return -1;
|
|
case NID_aes_128_ctr:
|
|
keylen = 16;
|
|
break;
|
|
case NID_aes_192_ctr:
|
|
keylen = 24;
|
|
break;
|
|
case NID_aes_256_ctr:
|
|
keylen = 32;
|
|
break;
|
|
}
|
|
|
|
cctx->keylen = keylen;
|
|
dctx->strength = keylen * 8;
|
|
dctx->blocklength = 16;
|
|
dctx->seedlen = keylen + 16;
|
|
|
|
if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) {
|
|
/* df initialisation */
|
|
static unsigned char df_key[32] = {
|
|
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
|
|
0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
|
|
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,
|
|
0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f
|
|
};
|
|
/* Set key schedule for df_key */
|
|
AES_set_encrypt_key(df_key, dctx->strength, &cctx->df_ks);
|
|
|
|
dctx->min_entropy = cctx->keylen;
|
|
dctx->max_entropy = DRBG_MAX_LENGTH;
|
|
dctx->min_nonce = dctx->min_entropy / 2;
|
|
dctx->max_nonce = DRBG_MAX_LENGTH;
|
|
dctx->max_pers = DRBG_MAX_LENGTH;
|
|
dctx->max_adin = DRBG_MAX_LENGTH;
|
|
} else {
|
|
dctx->min_entropy = dctx->seedlen;
|
|
dctx->max_entropy = dctx->seedlen;
|
|
/* Nonce not used */
|
|
dctx->min_nonce = 0;
|
|
dctx->max_nonce = 0;
|
|
dctx->max_pers = dctx->seedlen;
|
|
dctx->max_adin = dctx->seedlen;
|
|
}
|
|
|
|
dctx->max_request = 1 << 16;
|
|
dctx->reseed_interval = MAX_RESEED;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* The following function tie the DRBG code into the RAND_METHOD
|
|
*/
|
|
|
|
DRBG_CTX *RAND_DRBG_get_default(void)
|
|
{
|
|
if (!RUN_ONCE(&ossl_drbg_init, do_ossl_drbg_init))
|
|
return NULL;
|
|
return &ossl_drbg;
|
|
}
|
|
|
|
static int drbg_bytes(unsigned char *out, int count)
|
|
{
|
|
DRBG_CTX *dctx = RAND_DRBG_get_default();
|
|
int ret = 0;
|
|
|
|
CRYPTO_THREAD_write_lock(dctx->lock);
|
|
do {
|
|
size_t rcnt;
|
|
|
|
if (count > (int)dctx->max_request)
|
|
rcnt = dctx->max_request;
|
|
else
|
|
rcnt = count;
|
|
ret = RAND_DRBG_generate(dctx, out, rcnt, 0, NULL, 0);
|
|
if (!ret)
|
|
goto err;
|
|
out += rcnt;
|
|
count -= rcnt;
|
|
} while (count);
|
|
ret = 1;
|
|
err:
|
|
CRYPTO_THREAD_unlock(dctx->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int drbg_status(void)
|
|
{
|
|
DRBG_CTX *dctx = RAND_DRBG_get_default();
|
|
int ret;
|
|
|
|
CRYPTO_THREAD_write_lock(dctx->lock);
|
|
ret = dctx->status == DRBG_STATUS_READY ? 1 : 0;
|
|
CRYPTO_THREAD_unlock(dctx->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void drbg_cleanup(void)
|
|
{
|
|
DRBG_CTX *dctx = RAND_DRBG_get_default();
|
|
|
|
CRYPTO_THREAD_write_lock(dctx->lock);
|
|
RAND_DRBG_uninstantiate(dctx);
|
|
CRYPTO_THREAD_unlock(dctx->lock);
|
|
}
|
|
|
|
static const RAND_METHOD rand_drbg_meth =
|
|
{
|
|
NULL,
|
|
drbg_bytes,
|
|
drbg_cleanup,
|
|
NULL,
|
|
drbg_bytes,
|
|
drbg_status
|
|
};
|
|
|
|
const RAND_METHOD *RAND_drbg(void)
|
|
{
|
|
return &rand_drbg_meth;
|
|
}
|